2020-2021初中数学四边形专项训练解析含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学四边形专项训练解析含答案
一、选择题
1.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )
A .7
B .7或8
C .8或9
D .7或8或9
【答案】D
【解析】
试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .
考点:多边形内角与外角.
2.如图,在平行四边形ABCD 中,2=AD AB ,CE 平分BCD ∠交AD 于点E ,且8BC =,则AB 的长为( )
A .4
B .3
C .52
D .2
【答案】A
【解析】
【分析】 利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB 即可得出答案.
【详解】
∵CE 平分∠BCD 交AD 边于点E ,
∴∠ECD=∠ECB ,
∵在平行四边形ABCD 中,AD ∥BC ,AB=CD ,
∴∠DEC=∠ECB ,
∠DEC=∠DCE ,
∴DE=DC ,
∵AD=2AB ,
∴AD=2CD ,
∴AE=DE=AB .
∵8AD BC ==,2=AD AB
∴AB=4,
【点睛】
此题考查了平行四边形的性质,得出∠DEC=∠DCE是解题关键.
3.若菱形的对角线分别为6和8,则这个菱形的周长为()
A.10 B.20 C.40 D.48
【答案】B
【解析】
【分析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
如图所示,
根据题意得AO=1
2
×8=4,BO=
1
2
×6=3,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB=22169
AO BO
+=+=5,
∴此菱形的周长为:5×4=20.
故选:B.
【点睛】
此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键.
4.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()
A 213
B
313
C.
2
3
D
13
【答案】B 【解析】
首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面
积等于△ABE 的面积与△ADE 的面积之和得到
12
•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.
【详解】
∵四边形ABCD 为正方形,
∴BA =AD ,∠BAD =90°,
∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,
∴∠AFB =90°,∠DEA =90°,
∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,
∴∠ABF =∠EAD ,
在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩
∴△ABF ≌△DEA (AAS ),
∴BF =AE ;
设AE =x ,则BF =x ,DE =AF =1,
∵四边形ABED 的面积为6, ∴
111622
x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF
中,BE
∴cos BF EBF BE ∠=
== 故选B .
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
5.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点
为顶点画平行四边形,则第四个顶点不可能在( ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【答案】C
【解析】
A 点在原点上,
B 点在横轴上,
C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C
6.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m =.连接BE ,将BCE V 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )
A .33
B .3
C 3
D .4
【答案】A
【解析】
【分析】
设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.
【详解】
解:设AC′=x ,
∵AB=m ,BC=6,23CE m =
, 根据折叠的性质可得:
BC′=6,EC′=23
CE m =, ∴C ′D=6-x ,DE=13m ,
在△ABC ′中,
AB 2+AC′2=BC′2,
即2226x m +=,
在△DEC ′中,
C′D 2+DE 2=C′E 2,
即()222
12633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2
236x m -=,代入2226x m +=中,
得:()222366x x -=-,
解得:x=3或x=6,代入2226x m +=,
-(舍),
可得:当x=3时,m=33或33
当x=6时,m=0(舍),
故m的值为33,
故选A.
【点睛】
本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.
7.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()
A.3 B.4 C.5 D.6
【答案】C
【解析】
【分析】
先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.
【详解】
解:如图
∵四边形ABCD是菱形,对角线AC=6,BD=8,
∴22
+,
34
作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,
∵F是BC的中点,
∴E ′F=AB=5.
故选C .
8.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB V 的周长多3cm ,则AE 的长度为( )
A .3cm
B .4cm
C .5cm
D .8cm
【答案】B
【解析】
【分析】 根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB V 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.
【详解】
解:∵平行四边形ABCD 的周长是26cm , ∴126132
AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,
∵AOD △的周长比AOB V 的周长多3cm ,
∴()()3AO OD AD AO OB AB AD AB ++-++=-=,
∴5AB =,8AD =,
∴8BC AD ==,
∵AC AB ⊥,点E 是BC 中点, ∴118422
AE BC =
=⨯=; 故选:B .
【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.
9.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )
A .16
B .15.2
C .15
D .14.8
【答案】D
【解析】
【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.
【详解】
解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,
在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,
由勾股定理,得
226810BD +=,
∴=10PB PD BD +=,
在△BCD 中,由三角形的面积公式,得
11=22
BD PC BC CD ••, 即
1110=8622
PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.
【点睛】
本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.
10.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
11.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,可添加的条件不正确的是()
A.AB∥CD B.∠B=∠D C.AD=BC D.AB=CD
【答案】D
【解析】
【分析】
根据平行四边形的判定解答即可.
【详解】
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,故A正确;
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,故C正确;
∵AD∥BC,
∴∠D+∠C=180°,
∵∠B=∠D,
∴∠B+C=180°,
∴AB∥CD,
∴四边形ABCD是平行四边形,故B正确;
【点睛】
此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.
12.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()
A.60 B.48 C.24 D.96
【答案】D
【解析】
【分析】
由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO=6,
∴AO=22100368
AB OB
-=-=,
∴AC=16,BD=12,
∴菱形面积=1216
2
⨯
=96,
故选:D.
【点睛】
本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.
13.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()
A.2 B.4 C.3D.3
【解析】
【分析】
点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】
解:设AB=a,∠C=30°,则AC=2a,BC=3a,
设P、Q同时到达的时间为T,
则点P的速度为3a
T
,点Q的速度为
3a
,故点P、Q的速度比为3:3,
故设点P、Q的速度分别为:3v、3v,
由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,
y=1
2
⨯AB×BQ=
1
2
⨯6v×23v=63,解得:v=1,
故点P、Q的速度分别为:3,3,AB=6v=6=a,
则AC=12,BC=63,
如图当点P在AC的中点时,PC=6,
此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,
PC=6,则PH=PC sin C=6×1
2
=3,同理CH=3,则HQ=CH﹣CQ=33
3,
PQ22
PH HQ
+39
+3,
故选:C.
【点睛】
本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
14.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()
A.40 B.24 C.20 D.15
【答案】B
【解析】
【分析】
根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.
【详解】
∵AB=AD,点O是BD的中点,
∴AC⊥BD,∠BAO=∠DAO,
∵∠ABD=∠CDB,
∴AB∥CD,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∴AB=CD,
∴四边形ABCD是菱形,
∵AB=5,BO
1
2
=BD=4,
∴AO=3,
∴AC=2AO=6,
∴四边形ABCD的面积
1
2
=⨯6×8=24,
故选:B.
【点睛】
本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.
15.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()
A.100°B.160°C.80°D.60°
【答案】D
【解析】
【分析】
由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠B=180°,求得∠A的度数,继而求得答案.
【详解】
∵四边形ABCD是平行四边形,如图,
∴∠A=∠C,AD∥BC,
∴∠A+∠B=180°,
∵∠A+∠C=240°,
∴∠A=120°,
∴∠B=180°﹣∠A=60°.
故选D.
【点睛】
此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等、邻角互补的知识.
4,1, 点D的坐标为16.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()
()
0,1,则菱形ABCD的周长等于()
A5B.3C.45D.20
【答案】C
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD 的周长.
【详解】
如下图,连接AC、BD,交于点E
∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB
又∵B ()4,1,D ()0,1
∴E(2,1)
∴A(2,0)
∴AD=()()2220015-+-=
∴菱形ABCD 的周长为:45
故选:C
【点睛】
本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.
17.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )
A .130︒
B .120︒
C .110︒
D .100︒
【答案】A
【解析】
【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;
【详解】
∵四边形ABCD 是菱形,
∴∠ACD =∠ACB =12
∠BCD=25°, ∵EF 垂直平分线段BC ,
∴FB=FC ,
∴∠FBC=∠FCB=25°,
∴∠CFB=180°-25°-25°=130°,
根据对称性可知:∠CFD=∠CFB=130°,
故选:A.
【点睛】
此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
18.如图点P是矩形ABCD的对角线AC上一点,过点P作//
EF BC,分别交AB、CD于点E、F,连接PB、PD,若1
AE=,8
PF=,则图中阴影部分的面积为()
A.5B.6C.8D.9
【答案】C
【解析】
【分析】
由矩形的性质可证明S△PEB=S△PFD,即可求解.
【详解】
作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
∴S△DFP=S△PBE=1
2
×1×8=4,
∴S阴=4+4=8,
故选:C.
【点睛】
此题考查矩形的性质、三角形的面积,解题的关键是证明S△PEB=S△PFD.
19.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点
G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,即AB∥CE,
∴∠ABF=∠E,
∵DE=CD,
∴AB=DE,
在△ABF和△DEF中,
∵
=
=
=
ABF E
AFB DFE AB DE
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
,
∴△ABF≌△DEF(AAS),
∴AF=DF,BF=EF;
可得③⑤正确,
故选:B.
【点睛】
此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()
A.6
5
B.
8
5
C.
12
5
D.
24
5
【答案】D
【解析】
【分析】
连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC,D为BC的中点,BC=12,
∴AD⊥BC,BD=DC=6,
在Rt△ADB中,由勾股定理得:2222
1068
AB BD=+=,
∵S△ADB=1
2
×AD×BD=
1
2
×AB×DE,
∴DE=
8624
105 AD BD
AB
⨯⨯
==,
故选D.
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。