平行四边形总复习讲义

合集下载

平行四边形复习课 优课教学课件

平行四边形复习课 优课教学课件

A x D 2x
E
3X
3x
B
C
B
C
如图,Rt△OAB的两条直角边在坐标轴上,已知
点A(0,2),点B(3,0),则以点O,A,B为其
中三个顶点的平行四边形的第四个顶点C的坐标
为 。 _________________
y
(-3,2)
3
2A
(3,2 )
O
B
7
-4 -3 -2 -1
12 34 x
-1
1
-2
证法2: 连接BD,交AC于点O ,连接DE,BF
∵四边形ABCD是平行四边形
BC=AD
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
课堂小结
5矩形、菱形、正方形都具有的性质是( B)
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
6.已知矩形的一条对角线与一边的夹角是40°,
则两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
7、 已知菱形ABCD的周长为20cm。∠A: ∠ABC=1:2 ,则对角线BD的长等于 _____5_____cm。
四边形知识结构(定义)图
两组对边平行
角90° 个 一
矩形
一 组 邻 边 相 等
四边 形
平行四边
一角为直角且一组邻边相等

正方形
一 组 邻 边 相 等
菱形

特殊的平行四边形复习讲义

特殊的平行四边形复习讲义

特殊的平行四边形复习讲义考试考点综述:特殊平行四边形即矩形、菱形、正方形,它们是初二的必考内容之一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。

内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。

知识目标掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。

重难点:1.矩形、菱形性质及判定的应用2.相关知识的综合应用教学过程知识点归纳矩形定义:有一角是直角的平行四边形叫做矩形.【强调】矩形(1)是平行四边形;(2)一一个角是直角.矩形的性质性质1矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。

;矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形.矩形判断方法3:有一个角是直角的平行四边形是矩形。

例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为例2:菱形具有而矩形不具有的性质是()A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补例3:已知:如图,□ABCD各角的平分线分别相交于点E,F,G,•H,•求证:•四边形EFGH是矩形.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.例1已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.例2已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、例3、如图,在BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M , 若AB=AE,∠EAD=2∠BAE 。

人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.

人教初中数学八下 18 平行四边形总复习课件 【经典初中数学课件汇编】

人教初中数学八下 18 平行四边形总复习课件 【经典初中数学课件汇编】

b3
h
2
5
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a
被开方数
二次根号
a 读作“根号 ”
形 如 a ( a 0 ) 的 式 子 叫 做 二 次 根 式 .
1.表示a的算术平方, a ≥0 ( 双重非负性) 5.既可表示开方运算,也可表示运算的结果.
(5) (1 2)2 ( 21)2
练一练: x2-6x+9 + x2+2x+1 ( -1<x<3 )
思考:若m(m m 24)82 m 416m4, 则m的取值范围是 _________
1.若 (1x)2 1x ,则x的取值范围为 A
((A) x)≤1 (B) x≥1 (C) 0≤x≤1 (D)一切有理数
2
7 _____;
1 22_____.
一般地,二次根式有下面的性质:
2
a aa0
面积 a a
a
2
2
1
32______,2
2 7
______,3
213
________,
4
52________,5
232________.
? 一般地,二次根式有下面的性质:
性质1: a 2a (a0) 1149a765
例题讲解
例1 x为何值时,下列各式在实数范围内有意义。
(1) x 5 (2) 1 x2 (3) 1 x 3 x
例2 当x取何值时, 1 在实数范围内有意义。 x5
练习、 x取何值时,下列二次根式有意义?
(1) x1
(2) 3x
(3)4x2 1
(4)x1
(5) x3

第十八章四边形章节复习辅导讲义

第十八章四边形章节复习辅导讲义

第十八章、四边形章节复习辅导讲义一、四边形知识框架: 1.四边形的知识结构 2.平行四边形的知识结构 二、四边形1. 定义:有不在同一直线上的四条首尾依次连接的线段构成的封闭图形。

2. 四边形的表示:四边形一般由依次的四个大写的字母表示,如四边形ABCD 等。

3. 四边形的分类:(1) 按照四边形的凹凸性将四边形分为凸四边形和凹四边形。

注意:中学阶段学习的四边形都是凸四边形。

(2) 按照四边形对边的平行性将四边形分为: ① 一般四边形:任何对边都不平行的四边形。

② 梯形:只有一组对边平行的四边形; A. 梯形分类: a .一般的梯形b .等腰梯形:一组对边平行,另一组对边相等的四边形。

c. 直角梯形:有一个内角为直角的梯形。

(3) 平行四边形:两组对边分别平行的四边形。

① 平行四边形的分类: A. 一般的平行四边形 B. 矩形(长方形):有一个较为直角的平行四边形。

C. 菱形:邻边相等的平行四边形。

D. 正方形:四条边都相等,四个内角也相等的四边形。

4. 四边形的内角和与外角和: (1) 四边形的内角和为360度 (2) 四边形的外角和为360度。

5. 四边形的性质:依次连接四边形各边中点所得的四边形称为中点四边形。

不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形【基础练习】1. 顺次连接一个任意四边形四边的中点,得到一个_______四边形. 2.顺次连接对角线相等的四边形的各边中点,所得四边形是_________.3. 如图1,已知:在ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD•于点E ,交CD 的延长线于点F ,则DF=______cm .4. 如图,四边形ABCD 为正方形,△ADE 为等边三角形,AC 为正方形ABCD 的对角线,则∠EAC =___度.5. 四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示)1250°1 2A BC DB F C6.在如图所示的四边形中,若去掉一个50的角得到一个五边形,则12+=∠∠ 度.7.如图,已知AC 平分BAD ∠,12∠=∠,3AB DC ==, 则BC = . 8.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.三、平行四边形(一) 平行四边形:1. 定义:两组对边分别平行的四边形。

平行四边形的性质复习课件ppt

平行四边形的性质复习课件ppt

分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

平行四边形复习课件

平行四边形复习课件

一组对边平行且相等的四边形是平行四边 形。
两组对角分别相等的四边形是平行四边形 。
02
平行四边形的特殊形式
矩形
01 定义
有一个角是直角的平行四边形是矩形。
02 性质
矩形的四个角都是直角,矩形的对角线相等。
03 判定
有一个角是直角的平行四边形是矩形;对角线相 等的平行四边形是矩形。
菱形
01 定义
矩形、菱形、正方形的判定方法与证明思路
正方形的判定方法与证明思路
正方形是特殊的长方形和菱形,其判 定方法有五种。
正方形的判定方法主要有五种,一是 有一组邻边相等且有一个角是直角的 平行四边形是正方形;二是有一个角 是直角的菱形是正方形;三是有一个 角是直角的矩形是正方形;四是有一 组邻边相等的矩形是正方形;五是有 一个角是直角的等腰梯形是正方形。 在证明过程中,需要结合已知条件, 通过全等三角形、平行线的性质等定 理进行证明。
2. 举例说明:例如,我们要证明四边形ABCD是平行 四边形,那么我们需要证明AB//CD且AB=CD。
总结词:如果一个四边形的一组对边平行且相 等,那么这个四边形是平行四边形。
1. 介绍利用一组对边平行且相等证明平行四边形 的方法:一组对边平行且相等的四边形是平行四 边形。
06
典型例题解析与拓展
矩形、菱形、正方形的判定方法与证明思路
01
菱形的判定方法与证明思路
02
菱形是平行四边形的一个特例,其判定方法有三种。
03
菱形的判定方法主要有三种,一是有一组邻边相等的平行 四边形是菱形;二是有一个角是直角的菱形是菱形;三是 有一组邻边相等的矩形是菱形。在证明过程中,需要结合 已知条件,通过全等三角形、平行线的性质等定理进行证 明。

第二单元 平行四边形的初步认识(期末复习讲义)二年级数学上册(苏教版)

第二单元 平行四边形的初步认识(期末复习讲义)二年级数学上册(苏教版)

苏教版二年级数学上册期末复习重难点知识点第二单元平行四边形的初步认识同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:认识多边形由几条边组成的封闭图形就是几边形,它们的每条边都是直直的。

知识点二:认识平行四边形1.平行四边形有四条边,它相对的两条边是相等的。

2.长方形变成了平行四边形,说明了四边形容易变形。

重点:初步认识四边形、五边形、六边形以及平行四边形等平面图形。

难点:通过对图形的折、剪、拼等活动,使学生体会图形的变换,开展空间观念。

考点一:多边形与平行四边形的认识由几条边组成的封闭图形就是几边形,它们的每条边都是直直的。

平行四边形有四条边,它相对的两条边是相等的。

考点二:多边形由4条直直的边组成的封闭图形是四边形;由5条直直的边组成的封闭图形是五边形;由6条直直的边组成的封闭图形是六边形;……一、选择题1.在下面图形上直直的剪一刀,一定不能将图形分成两个四边形的是()。

A.B.C.2.下面的图形是平行四边形的是()。

A.B.C.3.把分成三角形,最少能分成()个。

A.3 B.4 C.5 D.64.下列图形中,哪一个是平行四边形?()A.B.C.D.5.能围成平行四边形的是()。

A.B.C.6.一张四边形纸剪去一个角,剩下的不可能是()图形?A.四边形B.五边形C.六边形二、填空题7.有( )条线段;有( )条线。

11.图中一共有( )个四边形。

三、判断题13.平行四边形一定是四边形。

( )14.平行四边形剪掉一个角剩下的一定是四边形。

( )15.6根同样长的小棒可以摆成一个平行四边形。

( )16.两个完全相同的三角形一定能拼成一个平行四边形。

( )17.图中,一共有2个平行四边形。

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。

人教版数学八年级下册第十八章-平行四边形-专题复习辅导讲义

人教版数学八年级下册第十八章-平行四边形-专题复习辅导讲义

辅导讲义是”;是平行四边形,可以记做“ABDC1题图2.如图所示,在ABCD所示,在ABCD125.在ABCD 中,∠B-∠A=30°,则∠A ,∠B ,∠C ,∠D 的度数是( ).A .95°,85°,95°,85°B .85°,95°,85°,95°C .105°,75°,105°,75°D .75°,105°,75°,105° 6.在ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ).A .1:2:3:4B .3:4:4:3C .3:3:4:4D .3:4:3:4 7.如图所示,如果ABCD 的对角线AC ,BD 相交于点O ,•那么图中的全等三角形有( ).A .1对B .2对C .3对D .4对8.如图所示,若平行四边形ABCD 的周长为22cm ,AC ,BD 相交于点O ,•△AOD 的周长比△AOB 的周长小3cm ,则AD=_______,AB=_______. 答案:4cm 7cm知识点3 平行四边形的面积 9.如图所示,ABCD 的对角线AC 的长为10cm ,∠CAB=30°,AB 的长为6cm.求ABCD 的面积.答案:30cm 210.如图所示,在ABCD 中,AB=10cm ,AB 边上的高DH=6cm ,BC=6cm ,求BC 边上的高DF 的长.答案:10cm知识点4 平行四边形的判定11.1已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF . 提示:证明DE ∥BF ,DE=BF12.1已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F . 求证:四边形BEDF 是平行四边形. 提示:证明BE ∥DF ,BE=DF13.1已知:如图ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE=CF .求证:四边形BFDE 是平行四边形. 提示:证明OB=OD, OE=OF知识点5 三角形的中位线14.1如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点3题图 4题图7题图 8题图3的距离是 m ,理由是 .答案:40 三角形两边的中点连线平行于第三边且等于第三边的一半15.1△ABC 中,D 、E 分别为AB 、AC 的中点,若DE =4,AD =3,AE =2,则△ABC 的周长为______. 答案:1816.1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 提示:连结BD ,利用中位线定理得:EH BD ,GFBD知识点6 矩形的定义与性质 17.已知在四边形ABCD 中,AB CD ,请添加一个条件,使四边形ABCD 是矩形,•加上的条件是_______.答案:AC=BD (答案不唯一) 18.如图所示,M 是ABCD 的边AD 的中点,且MB=MC .求证:ABCD 是矩形.提示:证明△ABM ≌△DCM ,得到∠A=∠D ,又因为∠A+∠D=180°19.如图所示,矩形ABCD 的两条对角线相交于点D ,∠AOD=120°,AB=4cm ,求矩形的对角线的长.答案:8cm知识点7 直角三角形斜边中线的性质20.已知直角三角形两直角边的长分别为6cm 和8cm ,则斜边上的中线长 . 答案:5cm21.如图所示,在△ABC 中,∠ACB=90°,点D ,E 分别为AC ,AB 的中点,点F•在BC 的延长线上,且∠CDF=∠A .求证:四边形DECF 为平行四边形. 提示:AE=CE,得到角相等,推出DF ∥CE ,又DE ∥BF ,即证 22.如图所示,在△ABC 中,∠C=90°,AC=BC ,AD=BD ,PE ⊥AC 于点E ,PF⊥BC 于点F ,求证:DE=DF . 提示:连结CD ,证明△ADE ≌△CDF 知识点8 矩形的判定 23.下列说法中:(1)四个角都相等的四边形是矩形.(2)两组对边分别相等并且有一个角是直角的四边形是矩形. (3)对角线相等并且有一个角是直角的四边形是矩形.B=AC,推出.如图所示,在菱形ABCD4如图,ABCD.对角线互相平分.若正方形的一条对角线长为,则它的边长是求∠AFD的度数.56提示:证明△ABE ≌△BCF知识点12 正方形的判定43.有下列命题,其中真命题有( ). ①四边都相等的四边形是正方形; ②四个内角都相等的四边形是正方形;③有三个角是直角,且有一组邻边相等的四边形是正方形; ④对角线与一边夹角为45°的四边形是正方形.A .1个B .2个C .3个D .4个 44.如图所示,在△ABC 中,∠ABC=90°,BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB. 求证:四边形BEDF 是正方形.提示:由角平分线的性质可推出:DE=DF ,又三个角为90°的四边形是矩形,所以推出四边形BEDF 是正方形.一、专题精讲专题1 动点问题例1 1如图所示,在矩形ABCD 中,AB=4cm ,BC=8cm 、点P 从点D 出发向点A 运动,同时点Q 从点B 出发向点C 运动,点P 、Q 的速度都是1cm/s .(1)在运动过程中,四边形AQCP 可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP 是菱形?(2)分别求出菱形AQCP 的周长、面积.分析:(1)设经过x 秒后,四边形AQCP 是菱形,根据菱形的四边相等列方程即可求得所需的时间.(2)根据第一问可求得菱形的边长,从而不难求得其周长及面积. 解答:解:(1)经过x 秒后,四边形AQCP 是菱形 ∴DP=xcm,AP=CP=AD-DP=(8-x )cm , ∵DP 2+CD 2=PC 2,∴16+x 2=(8-x )2,解得x=3 即经过3秒后四边形是菱形.(2)由第一问得菱形的边长为5∴菱形AQCP的周长=5×4=20(cm)菱形AQCP的面积=5×4=20(cm2)点评:此题主要考查菱形的性质及矩形的性质的理解及运用.ABC’D’是菱形,并请说8ABCFD ∴BC′=21AC . 而∠ACB=30°, ∴AB=21AC ∴AB=BC′.∴四边形ABC′D′是菱形.点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力. 重合,点D 落到分析:(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE≌△AD′F;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴平行四边形AECF是菱形.点评:此题考查了全等三角形的判定及菱形的判定方法,做题时要求学生对常用的知识点牢固掌握.分析:要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.910∴Rt△AGH≌Rt△ABH(HL),∴HG=HB.证法2:连接GB,∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°,由题意知AB=AG,∴∠AGB=∠ABG,∴∠HGB=∠HBG,∴HG=HB.点评:解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.二、专题过关1. 如图所示,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.分析:(1)根据平行线性质和角平分线性质及,由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证解答:(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO ,∴EO=FO.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形.∵EO=FO,点O 是AC 的中点.∴四边形AECF 是平行四边形,∵C F 平分∠BCA 的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=21×180°=90°. 即∠ECF=90度,∴四边形AECF 是矩形.点评:本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.12图3【解法指导】欲证两条线段之和等于第三条线段,可通过截长补1415 分析:过F 作AB 、CD 的平行线FG ,由于F 是AD 的中点,那么G 是BC 的中点,即Rt△BCE 斜边上的中点,由此可得BC=2EG=2FG ,即△GEF、△BEG 都是等腰三角形,因此求∠B 的度数,只需求得∠B EG 的度数即可;易知四边形ABGF 是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG 的度数,即可得到∠AEG 的度数,根据邻补角的定义可得∠BEG 的值,由此得解.解答:解:过F 作FG∥AB∥CD,交BC 于G ;则四边形ABGF 是平行四边形,所以AF=BG ,即G 是BC 的中点;连接EG ,在Rt△BEC 中,EG 是斜边上的中线,则BG=GE=FG=21BC ; ∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D .点评:此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.17。

中考 四边形(矩形 平行四边形 梯形 菱形)专题 数学思想方法 总复习

中考  四边形(矩形  平行四边形  梯形  菱形)专题   数学思想方法 总复习
解:延长 与 的延长线相交于 ,则有
∽ , ∽ , ∽
第六类:把对角线交点与一边中点连结,构造三角形中位线
经典例题6.已知:如右上图6,在平行四边形 中, , ,
交 于 ,求
解:连结 交 于点 ,连结
∵四边形 为平行四边形
专题二梯形中的辅助线
常见的梯形辅助线规律口诀为:梯形问题巧转化,变为△和□;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下:
(4)对角线相等且互相平分的四边形.四边形ABCD是矩形.
5.菱形的性质:
因为ABCD是菱形
6.菱形的判定:
四边形四边形ABCD是菱形.
7.正方形的性质:
ABCD是正方形
8.正方形的判定:
四边形ABCD是正方形.
名称
定义
性质
判定
面积





两组对边分别平行的四边形叫做平行四边形。
1对边平行;
②对边相等;
∴ ,即 解得 故选A
第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
经典例题3.已知:如左下图3,四边形 为平行四边形
求证:
证明:过 分别作 于点 , 的延长线于点F


∵四边形 为平行四边形∴ ∥ 且 ,
∴ ∵
∴ ∴

第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。

∴ 是直角三角形,∵ , ,

第五单元 平行四边形和梯形(期末复习讲义)四年级数学上册(人教版)

第五单元 平行四边形和梯形(期末复习讲义)四年级数学上册(人教版)

人教版四年级数学上册期末复习重难点知识点第五单元平行四边形和梯形同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:平行与垂直1.在同一个平面内,不相交的两条直线叫做平行线。

2.在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

3.ɑ与b互相平行,记作ɑ∥b,读作ɑ平行于b。

4.两条直线相交成直角,就说这两条直线互相垂直;其中一条直线是另一条直线的垂线;这两条直线的交点叫垂足。

5.直线ɑ与b互相垂直,记作ɑ⊥b,读作ɑ垂直于b。

知识点二:画垂线一靠,二移,三画,四标。

知识点三:点到直线的距离1.点到直线的距离是垂直线段最短。

2.从直线外一点到这条直线所画的垂直线段的长度,叫做这点到这条直线的距离。

3.与两条平行线相互垂直的线段的长度都相等。

知识点四:画垂线的实际应用1.先画长;2.再用画垂线的方法画出两条宽(等长的边);3.最后连接两条宽(边)。

知识点五:认识平行四边形1.平行四边形的对边互相平行,且相等。

2.平行四边形的对角相等。

3.两组对边分别平行的四边形,叫做平行四边形。

4.从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

知识点六:平行四边形的特性1.平行四边形容易变形,具有不稳定性。

2.平行四边形在实际生活中的一些应用。

知识点七:认识梯形、平行四边形的关系1.只有一组对边平行的四边形叫做梯形。

特殊梯形:两个腰相等的等腰梯形;有一个角是直角的直角梯形。

2.长方形、正方形、平行四边形和梯形这几种四边形之间的关系:重点:1.掌握平行和垂直的特点并能描述平行与垂直两种位置关系;2.掌握画垂线的步骤并能画出一条已知直线的垂线;3.理解点到直线的距离,并理解两条平行线之间的垂直线段都相等;4.掌握长方形的画法,按照题目的要求正确画出长方形,应用垂直于平行知识解决实际问题。

平行四边形单元整体分类总复习 专题突破八年级数学下学期重难点及章节分类精品讲义

平行四边形单元整体分类总复习 专题突破八年级数学下学期重难点及章节分类精品讲义

第6讲 平行四边形单元整体分类总复习考点一 多边形的内角和、外角和知识点睛:1. n 边形的内角和为()()31802≥︒⨯-n n ,外角和为360°,反过来,已知一些内、外角的度数或数量关系也能确定多边形的边数2. 对角线公式从n 边形的一个顶点可引出(n-3)条对角线,将n 边形分成(n-2)个三角形,n 边形的对角线共有()23-n n 条 类题训练1.(2022•九龙坡区校级开学)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,这个多边形是( )A .十边形B .十一边形C .十二边形D .十三边形【分析】设这个多边形为n 边形,根据多边形的内角和公式及外角和定理即可求解.【解答】解:设这个多边形为n 边形,它的外角分别为x 1,x 2,⋯,x n ,则对应的内角分别为4x 1+30°,4x 2+30°,⋯,4x n +30°,根据题意得,x 1+x 2+⋯+x n =360°,(4x 1+30°)+(4x 2+30°)+⋯+(4x n +30°)=(n ﹣2)×180°,∴4×(x 1+x 2+⋯+x n )+30°n =(n ﹣2)×180°,∴4×360°+30°n =(n ﹣2)×180°,∴1440°+30°n =180°n ﹣360°,∴150°n =1800°,∴n =12,故选:C .2.(2021秋•黄冈期末)一个多边形的每个外角都等于40°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .9条B .8条C .7条D .6条【分析】首先计算出多边形的边数,再根据n 边形从一个顶点出发可引出(n ﹣3)条对角线可得答案.【解答】解:多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9﹣3=6(条),故选:D .3.(2021秋•海阳市期末)小东在计算多边形的内角和时不小心多计算一个内角,得到的和为1350°,则这个多边形的边数是()A.7B.8C.9D.10【分析】根据多边形的内角和公式(n﹣2)•180°列方程即可得解.【解答】解:设多边形的边数为n,多加的内角度数为α,则(n﹣2)•180°=1350°﹣α,∵0°<α<180°,∴(1350﹣180)÷180<n﹣2<1350÷180,∴6<n−2<7,∵n为正整数,∴n=9,∴这个多边形的边数n的值是9.故选:C.4.(2021秋•丹东期末)如果过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【分析】根据从每一个顶点出发可以作的对角线的总条数为n﹣3计算即可.【解答】解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.5.(2021秋•天元区期末)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值是()A.36°B.72°C.108°D.144°【分析】由l1∥l2,得∠2=∠BMD.由∠1=∠BMD﹣∠MBC,得∠BMD=∠1﹣∠MBC,那么∠1﹣∠2=∠MBC.欲求∠1﹣∠2,需求∠MBC.由正五边形的性质,得∠MBC=72°,从而解决此题.【解答】解:如图,AB的延长线交l2于点M,∵五边形ABCDE是正五边形,∴正五边形ABCDE的每个外角相等.∴∠MBC==72°.∵l1∥l2,∴∠2=∠BMD,∵∠1=∠BMD+∠MBC,∴∠BMD=∠1﹣∠MBC,∴∠1﹣∠2=∠MBC=72°.故选:B.6.(2021春•浦江县期末)如图,在四边形ABCD中,∠C=110°,与∠BAD,∠ABC相邻的外角都是110°,则∠ADC的外角α的度数是()A.90°B.85°C.80°D.70°【分析】根据多边形外角和为360°,进行求解即可.【解答】解:∵在四边形ABCD中,∠C=110°,∴∠C相邻的外角度数为:180°﹣110°=70°,∴∠α=360°﹣70°﹣110°﹣110°=70°.故选:D.考点二平行四边形的性质知识点睛:1.平行四边形的性质定理∶(1)平行四边形的对边平行且相等.(2)平行四边形的对角相等,邻角互补.(3)平行四边形的对角线互相平分.2.利用平行四边形的性质证明边、角关系时,一定要找准那些对解题有帮助的性质,有时也可以根据结论逆向推理看是否符合那些性质.类题训练1.(2021秋•任城区校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,则下列判断错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD 【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴AD∥BC,故B正确;∴AD=BC,故C正确;故选:D.2.(2021秋•鄞州区校级期末)如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠BAD=120°,则∠BCE的度数为()A.30°B.20°C.40°D.35°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B的度数,由直角三角形的两上锐角互余得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=120°,∴∠B=60°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=90°﹣60°=30°;故选:A.3.(2022春•秀英区校级月考)如图,在▱ABCD中,AD=8,AB=5,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F,则EF=()A.2B.2.5C.3D.3.5【分析】根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【解答】解:在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴EF=2;故选:A.4.(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【分析】分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,由平行四边形的性质可得CG=2EF,AG=2AF,结合A,E两点坐标可求解CG,OG的长,进而求解C 点坐标.【解答】解:分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,∴EF∥CG,∵四边形ABCD为平行四边形,∴AE=CE,∴AG=2AF,CG=2EF,∵A(4,0),E(3,1),∴OA=4,OF=3,EF=1,∴AF=OA﹣OF=4﹣3=1,CG=2,∴AG=2,∴OG=OA﹣OG=4﹣2=2,∴C(2,2).故选:D.5.(2022•越秀区校级开学)如图,平行四边形ABCD的对角线AC,BD交于点O,AB=,∠AOB=60°,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+2EF的值为()A.+1B.C.D.【分析】依据含30°角的直角三角形的性质可求解AO=1,BO=2,利用三角形的面积公式计算△ABO的面积,结合平行四边形的性质可得DO=BO=2,S△ADO=S△ABO=,即可得到OE+2EF的值.【解答】解:∵∠BAO=90°,∠AOB=60°,∴∠ABO=30°,∴BO=2AO,∵AB=,∴AO=1,BO=2,∴S△ABO=AO•AB=,∵四边形ABCD为平行四边形,∴DO=BO=2,S△ADO=S△ABO=,∵OF⊥AO,EF⊥OD,∴S△ADO=S△AEO+S△EDO===,即OE+2EF=.故选:B.6.(2021秋•九江期末)在平行四边形ABCD中,对角线AC长为8cm,∠BAC=30°,AB =5cm,则它的面积为.【分析】根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【解答】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5cm,∴BE=AB•sin∠CAB=5×=2.5(cm),S△ABC=AC•BE÷2=10(cm2),∴S▱ABCD=2S△ABC=20cm2.故答案为:20cm2.7.(2021秋•鄞州区校级期末)平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=10,BD=6,AB=m,那么m的取值范围是.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA与OB的值,然后根据三角形三边关系,即可求得m的取值范围.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC=×10=5,OB=OD=BD=×6=3,∵OA﹣OB<AB<OA+OB,∴5﹣3<m<5+3,∴m的取值范围是:2<m<8.故答案为:2<m<8.8.(2021秋•桓台县期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.【分析】作AM⊥BC于M,如图所示:根据直角三角形的性质得到BM=AB=×2=1,根据勾股定理得到AM===,得到S平行四边形ABCD=BC•AM =3,根据平行四边形的性质得到AD∥BC,BO=DO,根据全等三角形的性质得到S=S△DOF,于是得到结论.△BOE【解答】解:作AM⊥BC于M,如图所示:则∠AMB=90°,∵∠ABC=60°,∴∠BAM=30°,∴BM=AB=×2=1,在Rt△ABM中,AB2=AM2+BM2,∴AM===,∴S平行四边形ABCD=BC•AM=3,∵四边形ABCD是平行四边形,∴AD∥BC,BO=DO,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴图中阴影部分的面积=▱ABCD的面积=,故答案为:.9.(2022•海曙区校级开学)如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点.(1)求证:AF=CE;(2)若四边形AECF的周长为10,AF=3,AB=2,求平行四边形ABCD的周长.【分析】(1)根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论;(2)根据平行四边形的性质和平行四边形的周长公式即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵点E,F分别是边AD,BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形,∴AF=CE;(2)解:∵四边形AECF的周长为10,AF=3,∴AE+CF=10﹣2×3=4,∵点E,F分别是边AD,BC的中点,∴AD+BC=2(AE+CF)=8,∵AB=2,∴平行四边形ABCD的周长=8+2×2=12.10.(2021秋•海曙区校级期末)如图,在平行四边形ABCD中,点F是AD中点,连接CF 并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.【分析】(1)由题意易得AB=CD,AB∥CD,进而易证△AFE≌△DFC,则有CD=AE,然后问题可求证;(2)由(1)及题意易得AF=AE,则∠AFE=∠E=31°,然后根据三角形外角的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,∴∠E=∠DCF,∵点F是AD中点,∴AF=DF,∵∠EF A=∠CFD,∴△AFE≌△DFC(AAS),∴CD=AE,∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD,∵BC=2AE,∴AE=AF,∵∠E=31°,∴∠AFE=∠E=31°,∴∠DAB=2∠E=62°.11.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.【分析】(1)根据四边形ABCD是平行四边形,得AD=BC,AD∥BC,BO=DO,可证∠ADE=∠CBF,DE=BF,然后通过SAS即可证得△ADE≌△CBF;(2)证出四边形AHCG是平行四边形,由平行四边形的性质可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BO=DO,∴∠ADE=∠CBF,∵OE=OF,∴DE=BF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠BCA,∵△ADE≌△CBF,∴∠DAE=∠BCF,∴∠EAO=∠FCO,∴AG∥HC,∵AH∥CG,∴四边形AHCG是平行四边形,∴AH=CG.考点三平行四边形的判定知识点睛:1.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形。

平行四边形复习

平行四边形复习

复习目标
知识回顾
重点解析
探究拓展
真题演练
五、三角形中位线的概念与性质 1. 连接三角形 的线段叫做三角形的中位线. 于三角形的第三边, 且等于第三边
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
2. 性质: 三角形的中位线 的 .
【答案】一、平行 二、1. 相等 2. 相等 互补 3. 互相平分 4. 中心 两条对角线的交点 5.
复习目标
知识回顾
重点解析
探究拓展
真题演练
【自主解答】 ( 1) 证明: ∵四边形 A B C D 是平行四边形, ∴A B = D C , A B ∥D C . ∴∠C D E = ∠F . 又∵B F = A B , ∴D C = F B . 在△D C E 和△F B E 中, ∵ ∠C D E = ∠F , ∠C E D = ∠B E F , D C = F B , ∴△D C E ≌△F B E ( A A S) .
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
( 2) 证法一: 连接 B E . ∵B F = E F , ∠E F B = 60°, ∴△E F B 是等边三角形. ∴E B = E F , ∠E B F = 60°. ∵D C = E F , ∴E B = D C . ∵△A B C 是等边三角形, ∴∠A C B = 60°, AB= AC . ∴∠E B F = ∠A C B . ∴△A E B ≌△A D C . ∴A E = A D .
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
复习目标
知识回顾
重点解析
探究拓展
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形
【知识梳理】
平行四边形是由三角形绕其一边的中点旋转180°而成的中心对称图形。

(1)定义:两组对边分别平行的四边形是平行四边形。

平行四边形是中心对称图形,对角线的交点是它的对称中心。

记作:□ABCD,读作平行四边形ABCD。

如图:
(2)平行四边形的性质:(证明)
①平行四边形的对边;②平行四边形的对边;
③平行四边形的对角;④平行四边形的对角
题型一、填空题:
【例题精讲】
1、如图1,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于.
2、如图2,过平行四边形ABCD的顶点A分别引高AE、AF,如果AE=3.5,AF=2.8,∠EAF=30°,则AB=,AD=.
3、如图3,平行四边形ABCD的周长是36,且AB:BC=5:4,对角线AC、BD相交于点O,且BD⊥AD,则BD=,AC=.
4、已知平行四边形的面积为4,O为两条对角线的交点,那么△AOB的面积为.
5、在平面直角坐标系内,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D坐标为.
6、如图6,在周长为20cm的平行四边形ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为.
7、如图7,平行四边形ABCD中,∠A=70°,将平行四边形ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠BNE=.
8、如图8,□ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B 是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=.
9、如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
【课堂练习】
1、如图,?ABCD的对角线AC、BD相交于点O,下列结论正确的是()
A.S□ABCD=4S△AOB B. AC=BD
C.AC⊥BD D.?ABCD是轴对称图形
2、如图2,在□ABCD 中,EF经过对角线的交点O,交AB于点E,交CD于点F.若AB=5,AD=4,OF=1.8,那么四边形BCFE的周长为 ( )
A.8.3 B.9.6 C.12.6 D.13.6
3、如图3,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE AB于E,PF AC
于F,M为EF的中点,则AM的最小值为 ( )
A.1 B.1.2 C.1.3 D.1.5
题型二:解答题
【知识梳理】
平行四边形判定
(1)两组对边分别相等的四边形是平行四边形。

(2)对角线互相平分的四边形是平行四边形。

(3)一组对边平行且相等的四边形是平行四边形。

(4)两组对边分别平行的四边形是平行四边形。

(5)两组对角分别相等的四边形是平行四边形
【例题精讲】
例1:如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED ⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.
例2:已知:如图,在平行四边形ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形
例3:已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.
例4:已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?
例5:已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.求证:MN=AC.
例6:在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=。

相关文档
最新文档