浑南区一中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浑南区一中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,,A=60°,则满足条件的三角形个数为()
A.0B.1C.2D.以上都不对
2.已知命题p:“∀∈[1,e],a>lnx”,命题q:“∃x∈R,x2﹣4x+a=0””若“p∧q”是真命题,则实数a的取值范围是()
A.(1,4]B.(0,1]C.[﹣1,1]D.(4,+∞)
3.图1是由哪个平面图形旋转得到的()
A.B.C.D.
4.若方程C:x2+=1(a是常数)则下列结论正确的是()
A.∀a∈R+,方程C表示椭圆B.∀a∈R﹣,方程C表示双曲线
C.∃a∈R﹣,方程C表示椭圆D.∃a∈R,方程C表示抛物线
5.已知点P(x,y)的坐标满足条件,(k为常数),若z=3x+y的最大值为8,则k的值为(

A.B.C.﹣6D.6
6.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,﹣)的所有直线中()
A.有无穷多条直线,每条直线上至少存在两个有理点
B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点
C.有且仅有一条直线至少过两个有理点
D.每条直线至多过一个有理点
7. 已知平面向量与的夹角为,且,,则(

3
π
32|2|=+b a 1||=b =||a A .
B .
C .
D . 38. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是(

A .①
B .②
C .③
D .④
9. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为(

A .
B .4
C .
D .2
10.∃x ∈R ,x 2﹣2x+3>0的否定是( )
A .不存在x ∈R ,使∃x 2﹣2x+3≥0
B .∃x ∈R ,x 2﹣2x+3≤0
C .∀x ∈R ,x 2﹣2x+3≤0
D .∀x ∈R ,x 2﹣2x+3>0
11.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(

A .2sin 2cos 2αα-+
B .sin 3
αα-+
C. 3sin 1αα+ D .2sin cos 1
αα-+12.已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( )
A .5
B .18
C .24
D .36
二、填空题
13.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
14.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .
 15.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN
⋅=MN 的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想
和基本运算能力.
16.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.17.若

共线,则y= .
18.设MP 和OM 分别是角
的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM ,其中正确的是 (把所有正确的序号都填上).
三、解答题
19.如图,四边形ABCD 内接于⊙O ,过点A 作⊙O 的切钱EP 交CB 的延长线于P ,己知∠PAB=25°.(1)若BC 是⊙O 的直径,求∠D 的大小;(2)若∠DAE=25°,求证:DA 2=DC •BP .
20.(本小题满分12分)已知点,直线与圆
()()(),0,0,4,4A a B b a b >>AB 相交于两点, 且,求.
22:4430M x y x y +--+=,C D 2CD =(1)的值;()()44a b --A (2)线段中点的轨迹方程;AB P (3)的面积的最小值.
ADP ∆21.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.
(1)若p=,求A ∩B ;
(2)若A ∩B=B ,求实数p 的取值范围.
22.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).
(1)若函数在区间上是单调减函数,求实数的取值范围;
(2)求函数的极值;
(3)设函数
图象上任意一点处的切线为,求在轴上的截距的取值范围.
23.本小题满分12分如图,在边长为4的菱形中,,点、分别在边、上.点ABCD 60BAD ∠=
E F CD CB 与点、不重合,,,沿将翻折到的位置,使平面E C D EF AC ⊥EF AC O = EF CEF ∆PEF ∆PEF ⊥平面.
ABFED Ⅰ求证:平面;
BD ⊥POA Ⅱ记三棱锥的体积为,四棱锥的体积为,且
,求此时线段的长.P ABD -1V P BDEF -2V 124
3
V V =PO 24.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点(1)求证:直线AF ∥平面BEC 1(2)求A 到平面BEC 1的距离.
P
A
C
D
O E
F F
E
O D
C
A
浑南区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:∵a=3,,A=60°,
∴由正弦定理可得:sinB===1,
∴B=90°,
即满足条件的三角形个数为1个.
故选:B.
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.
2.【答案】A
【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,
则a>lne=1,
若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,
则△=16﹣4a≥0,解得a≤4,
若命题“p∧q”为真命题,
则p,q都是真命题,
则,
解得:1<a≤4.
故实数a的取值范围为(1,4].
故选:A.
【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.
3.【答案】A
【解析】
试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.
考点:旋转体的概念.
4.【答案】B
【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆
∴∃a∈R+,使方程C不表示椭圆.故A项不正确;
∵当a<0时,方程C:表示焦点在x轴上的双曲线
∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确
∵不论a取何值,方程C:中没有一次项
∴∀a∈R,方程C不能表示抛物线,故D项不正确
综上所述,可得B为正确答案
故选:B
5.【答案】B
【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,
由,解得y=0,x=,
(,0)代入2x+y+k=0,∴k=﹣,
故选B.
【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.
6.【答案】C
【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),
由于也在此直线上,
所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;
当x1≠x2时,直线的斜率存在,且有,
又x2﹣a为无理数,而为有理数,
所以只能是,且y2﹣y1=0,
即;
所以满足条件的直线只有一条,且直线方程是;
所以,正确的选项为C.
故选:C.
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
7.【答案】C
考点:平面向量数量积的运算.
8.【答案】D
【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,
只有④符合.
故选:D.
【点评】本题考查了幂函数的图象与性质,属于基础题.
9.【答案】C
【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得
这个几何体是一个四棱锥
由图可知,底面两条对角线的长分别为2,2,底面边长为2
故底面棱形的面积为=2
侧棱为2,则棱锥的高h=
=3
故V=
=2
故选C
10.【答案】C
【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2﹣2x+3≤0.故选:C . 
11.【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-112
2
1-=+=S ;利用三角形知识得出四个等
腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=
S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()
αcos 2-1122+,进而得到正方形的面积()
ααcos 22cos 2-112
21-=+=S ,最后得到
答案.
12.【答案】D
【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x 4﹣2r ,
令4﹣2r=0,解得r=2,∴展开式的常数项为6=a 5,∴a 3a 7=a 52=36,故选:D .
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 
二、填空题
13.【答案】 (1,2) .
【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3),∴0<a <1,x >0,
若f (2x ﹣1)<f (2﹣x ),则

解得:1<x <2,故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题. 
14.【答案】 .
【解析】解:如图,将AM 平移到B 1E ,NC 平移到B 1F ,则∠EB 1F 为直线AM 与CN 所成角
设边长为1,则B 1E=B 1F=,EF=
∴cos ∠EB 1F=,故答案为
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题. 
15.【答案】2]
(,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN
范围为.
2]
x
16.【答案】 75 
【解析】计数原理的应用.
【专题】应用题;排列组合.
【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.
【解答】解:由题意知本题需要分类来解,
第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,
第二类,若从其他六门中选4门有C64=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故答案为:75.
【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
17.【答案】 ﹣6 .
【解析】解:若与共线,则2y﹣3×(﹣4)=0
解得y=﹣6
故答案为:﹣6
【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.
18.【答案】

【解析】解:由MP ,OM 分别为角的正弦线、余弦线,如图,∵

∴OM <0<MP .故答案为:②.
【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小. 
三、解答题
19.【答案】
【解析】解:(1)∵EP 与⊙O 相切于点A ,∴∠ACB=∠PAB=25°,又BC 是⊙O 的直径,∴∠ABC=65°,
∵四边形ABCD 内接于⊙O ,∴∠ABC+∠D=180°,∴∠D=115°.
证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB ,∠D=∠PBA ,∴△ADC ∽△PBA ,∴

又DA=BA ,∴DA 2=DC •BP .
20.【答案】(1);(2);(3).
()()448a b --=()()()2222,2x y x y --=>>6
【解析】
试题分析:(1)利用,得圆心到直线的距离
,再进行化简,即可求
2CD =2d =2解的值;(2)设点的坐标为,则代入①,化简即可求得线段中点的轨()()44a b --A P (),x y 2
2
a x
b y ⎧=⎪⎪⎨
⎪=⎪⎩AB P 迹方程;(3)将面积表示为,再利用基本
()()()11
4482446224
ADP b S a a b a b a b ∆
==+-=+-=-+-+A 不等式,即可求得的面积的最小值.
ADP ∆(3
),(
)()()11
4482446662
24
ADP b S a a b a b a b
∆=
=+-=+-=-+-+≥+=A 当时, 面积最小, 最小值为.
∴4a b ==+6+考点:直线与圆的综合问题.
【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为,再利用基本不等式是解答的一个难点,属于()()446ADP S a b ∆=-+-+中档试题.21.【答案】
【解析】解:(1)当p=时,B={x|0≤x ≤},∴A ∩B={x|2<x ≤};(2)当A ∩B=B 时,B ⊆A ;
令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;
当p≤4时,应满足,
解得p不存在;
综上,实数p的取值范围p>4.
22.【答案】(1)(2)见解析(3)
【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.
试题解析:(1)函数的导函数,
则在区间上恒成立,且等号不恒成立,
又,所以在区间上恒成立,
记,只需,即,解得.
(2)由,得,
①当时,有;,
所以函数在单调递增,单调递减,
所以函数在取得极大值,没有极小值.
②当时,有;,
所以函数在单调递减,单调递增,
所以函数在取得极小值,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.
(3)设切点为,
则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.
当时,令,得切线在轴上的截距为

当时,

当且仅当,即或时取等号;
当时,

当且仅当,即或时取等号.
所以切线在轴上的截距范围是.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.
(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.
23.【答案】
ABCD
【解析】Ⅰ证明:在菱形中,
∵,∴.

⊥BD AO
BD AC
∵,∴,
EF AC ⊥PO EF ⊥∵平面⊥平面,平面平面,且平面,PEF ABFED PEF ABFED EF =PO ⊂PEF ∴平面,
PO ⊥ABFED ∵平面,∴.BD ⊂ABFED PO BD ⊥∵,∴平面.
AO PO O = BD ⊥POA Ⅱ设.由Ⅰ知,平面, AO BD H = PO ⊥ABFED ∴为三棱锥及四棱锥的高,
PO P ABD -P BDEF -∴,∵,
1211
,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形1243
V V =∴,∴, 3344ABD CBD BFED S S S ∆∆=
=梯形1
4
CEF CBD S S ∆∆=∵,
,BD AC EF AC ⊥⊥∴,∴∽. ∴, //EF BD CEF ∆CBD ∆21
(
)4
CEF CBD S
CO CH S ∆∆==∴ ∴.
111
222
CO CH AH ===⨯=PO OC ==24.【答案】
【解析】解:(1)取BC 1的中点H ,连接HE 、HF ,则△BCC 1中,HF ∥CC 1且HF=CC 1
又∵平行四边形AA 1C 1C 中,AE ∥CC 1且AE=CC 1
∴AE ∥HF 且AE=HF ,可得四边形AFHE 为平行四边形,∴AF ∥HE ,

AF ⊄平面REC 1
,HE ⊂平面REC 1∴AF ∥平面REC 1.…(2)等边△ABC 中,高
AF=
=
,所以EH=AF=
由三棱柱ABC ﹣A 1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B 的距离等于∵Rt △A 1C 1E ≌Rt
△ABE ,∴EC 1=EB ,得EH ⊥BC 1可得S △
=BC 1•EH=×
×
=

而S △ABE =AB ×BE=2
由等体积法得V A ﹣BEC1=V C1﹣
BEC ,∴S △
×d=
S △ABE ×,(d 为点A 到平面BEC 1的距离)
即×
×d=×2×
,解之得d=
∴点A到平面BEC1的距离等于.…
【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.。

相关文档
最新文档