图形的旋转复习单元测试

合集下载

旋转单元测试试题及答案

旋转单元测试试题及答案
答案:B.
第13题.如图,已知四边形 ,是关于点 成中心对称图形,试判定四边形 的形状.并说明理由.
答案:解:是平行四边形,理由如下:
四边形 是关于点 成中心对称图形.

四边形 是平行四边形.
第14题. 在等边三角形、平行四边形、矩形和圆这四个图形中,即是轴对称图形,又是中心对称图形的有( )
A.1个B.2个C.3个D.4个
A.矩形、菱形、正方形都是中心对称图形,对角线的交点是对称中心
B.中心对称的对称中心只有一个,而轴对称图形的对称轴可能不只一条
C.中心对称图形一定是轴对称图形
D.正方形有4条对称轴,一个对称中心
答案:C.
第20题.把图中的各三角形绕 边中点 ,旋转 ,画出得到的图形,并说明拼成了一个什么图形?分析它的对称性.
答案:B.
第32题. 下列文字中属于中心对称图形的有( )
A.干B.中C.我D.甲
答案:B.
第33题. 下图中是中心对称图形的是( )
A.A和BB.B和CC.C和DD.都是
答案:B.
第34题.如图 与 关于 点成中心对称.则 _______ , ______, ________.
答案:=, , .
第35题.已知四边形 和点 ,作四边形 使四边形 和四边形 交于点 成中心对称.
A.只能作一个B.能作三个C.能作无数个D.不存在
答案:A.
第24题. 已知 及边 上一点 ,画出 以点 为对称中心的对称图形.
答案:略.
第25题. 等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有( )
A.1个B.2个C.3个D.4个
答案:B.
第26题. 下列各图中,不是中心对称图形的是( )

旋转单元测试题及答案

旋转单元测试题及答案

旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。

5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。

三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。

7. 解释什么是旋转对称图形,并给出一个例子。

四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。

9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。

五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。

答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。

生活中的例子包括门的开关,地球的自转等。

7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。

四、8. 点A的新坐标为(4, -3)。

9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。

五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。

具体例子需根据题目要求给出。

初三数学旋转单元测试题及答案

初三数学旋转单元测试题及答案

旋转【1】一、选择题1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于() A.60° B.105° C.120° D.135°3.(南平)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是( )A.50°B.60°C.70°D.80°4.(安徽)在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( ) A.(-4,3) B.(-3,4) C.(3,-4) D.(4,-3)5.(济宁)在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ) A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)6.(嘉兴)如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°. 其中,能将△ABC变换成△PQR的是( )A.①②B.①③C.②③D.①②③7.(黑龙江)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )8.(潍坊)如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为( ) A.B. C. D.二、填空题9.(盐城)写出两个你熟悉的中心对称的几何图形名称,它们是____________.10.(衡阳)如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_____________.11.(吉林)如图,直线与双曲线交于A、C两点,将直线绕点O顺时针旋转度角(0°<≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是_________.12.(邵阳)如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点的对应点A′点的坐标是_____________.13.(北京)在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线,直线与反比例函数的图象的一个交点为A(a,3),则反比例函数的解析式是______.14.(东营)在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三、解答题15.(宿迁)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.16.(大连)如图,已知△ABC和△A″B″C″及点O.⑴画出△ABC关于点O对称的△A′B′C′;⑵若△A″B″C″与△ABC关于点O′对称,请确定点O′的位置;17.(大兴安岭)如图,在网格中有一个四边形图案.(1)请你画出此图案绕点D顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1、A2、A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.18. 已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想A E与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.19. 如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.20.如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.。

旋转单元测试卷含答案

旋转单元测试卷含答案

单元测试(三) 旋转(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个正确的.题号 1 2 3 4 5 6 7 8 9 10 答案 B A C D C C D A A D 1.下列图形中,是中心对称图形的是(B)A B C D2.正方形ABCD绕着它的中心至少旋转________才能与它本身重合(A)A.90°B.180°C.120°D.60°3.如图,将△ABC绕点A按顺时针方向旋转115°后能与△AB1C1重合,若∠C=90°,且点C,A,B1在同一条直线上,则∠BAC1等于(C)A.30°B.40°C.50°D.60°4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是(D)A.(b-2,-a) B.(b+2,-a) C.(-a+2,-b) D.(-a -2,-b)5.若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足(C)A.m>3 B.0<m≤3 C.m<0 D.m<0或m>36.如图,将△ABC绕点C顺时针旋转90°得到△A′B′C,点A的对应点A′的坐标为(C) A.(0,2) B.(3,0) C.(2,2) D.(0,-3)7.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是(D)A.0 B.1 C.2 D.38.如图,网格纸上正方形小格的边长为1个单位长度.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则点P′所在的单位正方形区域是(A)A.4区B.3区C.2区D.1区9.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接BB1,取BB1的中点D,连接A1D,则A1D的长度是(A) A.7 B.2 2 C.3 D.2 310.如图,在平面直角坐标系中,A(-8,-1),B(-6,-9),C(-2,-9),D(-4,-1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为(D)A.(-4,0) B.(5,0) C.(4,0)或(-4,0) D.(5,0)或(-5,0)二、填空题(每小题3分,共15分)11.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,则图中成中心对称的三角形共有4对.12.若点P(ac 2,b a)在第二象限,则点Q(a ,b)关于原点对称的点在第一象限.13.如图,教室里有一只倒地的装垃圾的灰斗,BC 与地面的夹角为50°,∠C =25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB 绕点C 转动的角度为105°.14.如图,将边长为3 cm 的正方形ABCD 绕顶点B 逆时针旋转30°得到正方形EBGF ,则两个图形重叠部分(阴影部分)的面积为33cm 2.15.如图,在平面直角坐标系中,等腰Rt △OA 1B 1的斜边OA 1=2,且OA 1在x 轴的正半轴上,点B 1落在第一象限内.将Rt △OA 1B 1绕原点O 逆时针旋转45°,得到Rt △OA 2B 2,再将Rt △OA 2B 2绕原点O 逆时针旋转45°,又得到Rt △OA 3B 3,…,依此规律继续旋转,得到Rt △OA 2019B 2 019,则点B 2 019的坐标为(-1,1).三、解答题(本大题共8个小题,满分75分)16.(8分)在方格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕点O 按逆时针方向旋转90°后的图案. 解:(1)(2)如图所示.17.(9分)已知,平面直角坐标系第二象限内的点P(x 2+2x ,3)与另一点Q(x +2,y)关于原点对称,试求x +2y 的值.解:由已知得⎩⎪⎨⎪⎧(x 2+2x )+(x +2)=0,y =-3.∴x 1=-1,x 2=-2,y =-3. 当x 1=-1时,x 2+2x =-1.当x 2=-2时,x 2+2x =0(不合题意,舍去). ∴x +2y =-1+2×(-3)=-7.18.(9分)如图,点P 是等边三角形ABC 内的一点,且PA =6,PB =8,PC =10,若△PAC 绕点A 逆时针旋转后,得△P ′AB. (1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.解:(1)连接PP′.由题意可知BP′=PC=10,AP′=AP, ∠PAC=P′AB.∵∠PAC+∠BAP=60°,∴∠PAP′=60°.∴△APP′为等边三角形.∴PP′=AP=AP′=6.故点P与点P′之间的距离为6.(2)∵PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°.∴∠APB=90°+60°=150°.19.(9分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)解:(1)画出下列其中一种即可.(2)画出下列其中一种即可.(3)画出下列其中一种即可.20.(9分)已知直线y =2x +4交x 轴于点A ,交y 轴于点B ,点C ,D 分别是点A ,B 关于原点的对称点.(1)求直线CD 的解析式; (2)求四边形ABCD 的面积.解:(1)令y =0,则x =-2,令x =0,则y =4,∴A(-2,0),B(0,4). ∵点C ,D 分别是点A ,B 关于原点的对称点, ∴C(2,0),D(0,-4).设直线CD 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧2k +b =0,b =-4.解得⎩⎪⎨⎪⎧k =2,b =-4. ∴直线CD 的解析式为y =2x -4.(2)S 四边形ABCD =S △ACB +S △ACD =12×4×4+12×4×4=16.21.(10分)如图,△ABC 是等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作60°角,角的两边分别交AB ,AC 于点M ,N ,连接MN.试探究BM ,MN ,NC 之间的关系,并加以证明.解:MN =BM +NC.证明:∵∠A =60°,∠BDC =120°,∴∠DBM +∠ACD =180°.将△DBM绕点D顺时针旋转120°得到△DCE,则点A,C,E在同一直线上.∴BM=CE,DM=DE,∠BDM=∠CDE,∠EDN=∠CDN+∠CDE=∠CDN+∠BDM=∠BDC-∠MDN=60°=∠MDN.又∵DN=DN,∴△DMN≌△DEN(SAS).∴MN=EN=NC+CE=BM+NC.22.(10分)你可以直接利用结论“有一个角是60°的等腰三角形是等边三角形”解决下列问题:已知,在△ABC中,AB=AC.(1)如图1,若∠B=60°,则△ABC共有3条对称轴,∠A=60°,∠C=60°;(2)如图2,已知∠ABC=60°,点E是△ABC内部一点,连接AE,BE,将△ABE绕点A逆时针方向旋转,使边AB与AC重合,旋转后得到△ACF,连接EF,当AE=3时,求EF的长度;(3)如图3,在△ABC中,已知∠BAC=30°,点P是△ABC内部一点,AP=2,点M,N分别在边AB,AC上,△PMN的周长的大小将随着M,N位置的变化而变化,请你画出点M,N,使△PMN的周长最小,要写出画图方法,并直接写出周长的最小值.图1 图2 图3 解:(2)∵AB=AC,∠ABC=60°,∴△ABC是等边三角形.∴∠BAC=60°.∵△ACF是由△ABE绕点A旋转而得到的,且边AB与AC重合,∴∠EAF=∠BAC=60°,AF=AE.∴△AEF是等边三角形.∴EF=AE=3.(3)如图,画图方法:①画点P关于边AB的对称点G,②画点P关于边AC的对称点H,③连接GH ,分别交AB ,AC 于点M ,N , 此时△PMN 周长最小,最小值为2.23.(11分)在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P.(1)如图1,当α=90°时,线段BD 1的长等于25,线段CE 1的长等于25;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1; (3)设BC 的中点为M ,则线段PM 的长为22.(直接填写结果)证明:∵Rt △AD 1E 1是由Rt △ADE 绕点A 逆时针旋转135°得到, ∴AD 1=AE 1,∠D 1AB =∠E 1AC =135°. 在△D 1AB 和△E 1AC 中, ⎩⎪⎨⎪⎧AD 1=AE 1,∠D 1AB =∠E 1AC ,AB =AC ,∴△D 1AB ≌△E 1AC(SAS). ∴BD 1=CE 1,∠D 1BA =∠E 1CA.令直线BD 1与AC 交于点F ,则∠BFA =∠CFP. ∵∠CAB =90°,∠ABF =∠PCF , ∴∠CPF =∠FAB =90°. ∴BD 1⊥CE 1.。

小学旋转测试题及答案

小学旋转测试题及答案

小学旋转测试题及答案一、选择题(每题2分,共10分)1. 一个正方形旋转90度后,它的形状会改变吗?A. 会B. 不会C. 不确定答案:B2. 一个圆在平面内旋转360度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B3. 一个等边三角形绕着它的一个顶点旋转120度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B4. 一个矩形绕着它的中心点旋转180度后,它的形状和位置会改变吗?A. 形状和位置都会改变B. 形状不会改变,位置会改变C. 形状和位置都不会改变答案:C5. 如果一个图形绕着一个点旋转了360度,那么这个图形的位置会回到原来的位置吗?A. 会B. 不会C. 不确定答案:A二、填空题(每题2分,共10分)1. 一个图形绕着一个点旋转____度后,会回到原来的位置。

答案:3602. 一个图形旋转后,它的形状____改变。

答案:不会3. 一个图形绕着它的中心点旋转,它的形状和位置____改变。

答案:不会4. 一个图形旋转180度后,它的位置____改变。

答案:会5. 一个图形绕着一个点旋转90度后,它的位置____改变。

答案:会三、判断题(每题2分,共10分)1. 一个正方形旋转180度后,它的形状和位置都会改变。

()答案:×2. 一个圆在平面内旋转任意角度后,它的形状都不会改变。

()答案:√3. 一个矩形绕着它的一个顶点旋转90度后,它的形状不会改变。

()答案:√4. 一个等边三角形绕着它的中心点旋转120度后,它的位置不会改变。

()答案:√5. 一个图形旋转360度后,它的位置一定会回到原来的位置。

()答案:√四、简答题(每题5分,共20分)1. 请简述旋转对称图形的特点。

答案:旋转对称图形是指一个图形绕着一个点旋转一定角度后,能够与自身重合的图形。

这样的图形在旋转过程中,其形状和大小不会发生改变,只是位置发生了变化。

2. 为什么一个圆在平面内旋转任意角度后,它的形状不会改变?答案:一个圆在平面内旋转任意角度后,它的形状不会改变,因为圆是所有点到圆心距离相等的点的集合,无论旋转多少角度,这些点到圆心的距离都保持不变,因此圆的形状不会发生改变。

最新人教版九年级上册数学 旋转 单元测试(含答案)

最新人教版九年级上册数学 旋转 单元测试(含答案)

旋转 单元测试一、 选择题1.平面图形的旋转一般情况下改变图形的( )A. 位置B.大小C.形状D.性质 2. 9点钟时,钟表的时针与分针的夹角是( )A.30°B.45°C.60°D.90°3. 将□ABCD 旋转到□A ′B ′C ′D ′的位置,下面结论错误的是( ) A. AB=A ′B ′B. AB ∥A ′B ′ C.∠A=∠A ′D.△ABC ≌△A ′B ′C ′4.在下列图形中,既是中心对称又是轴对称的图形是( )5.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是() A. 30°B. 60°C.90°D. 120°6.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕AB C DFEDCB AOFEDCBA第5题图第6题图第8题图点C 顺时针旋转90°得到△DCF ,连接EF ,若∠BEC=60°,则∠EFD 的 度数为()A. 10°B. 15°C. 20°D. 25° 7.把一个正方形绕它的中心旋转一周和原来的图形重合() A. 1次 B. 2次 C. 3次 D. 4次8.如图,△ABC 和△DEF 关于点O 中心对称,要得到△DEF ,需要将△ABC A. 30° B. 90° C. 180° D. 360° 二、填空题9.钟表上的时针随时间的变化而转动,这可以看做的数学上的 . 10.菱形ABCD 绕点O 沿逆时针方向旋转得到四边形A ′B ′C ′D ′,则四边形A ′B ′C ′D ′是 .11.钟表的分针经过20分钟,旋转了° . 12.等边三角形至少旋转 °才能与自身重合.13.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得到的△A B 1B 是 三角形。

人教版九年级上学期数学《旋转》单元测试题附答案

人教版九年级上学期数学《旋转》单元测试题附答案

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .4.正方形ABCD中的顶点A在平面坐标系中的坐标为()1,1,若将正方形ABCD绕着原点O按逆时针旋转135.则旋转后的点A坐标为( )A .(-1, 1)B .(1, -1)C .(0, -D .(-5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A .1个B .2个C .3个D .4个6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行8.根据指令[],(0,0360)s A s A ≥≤<机器人在平面上能完成如下动作:先在原地顺时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点()3,0-,应下的指令是( ) A . 3,90?⎡⎤⎣⎦ B . 90,3⎡⎤⎣⎦ C . 3,90⎡⎤-⎣⎦ D . 3,270⎡⎤⎣⎦9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形10.如图,Rt △A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为( )A .4B .6C .8D .1011.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )A B .5 C .8 D .412.如图,Rt ABC 中,C 90∠=,A 60∠=,AC 6=,以斜边AB 的中点D 为旋转中心,把这个三角形按逆时针方向旋转90得到Rt A'B'C',则旋转后两个直角三角形重叠部分的面积为( )A .6B .9C .D .二、填空题 13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E重合连接C D ,则∠B D C 的度数为_____度.14.在平面直角坐标系中,O为坐标原点,点A 的坐标为,1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A ,O,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A ,O,B ,P 四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标_____(写出1 个即可).16.如图,在△B D E中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .三、解答题17.如图,P是正ABC内的一点,若将PAC绕点A逆时针旋转到P'AB,(1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求PAB ∠的度数.18.如图,ABC 的顶点坐标分别为()A 2,2-,()B 4,4,()C 1,2.将ABC 绕坐标原点O 逆时针旋转90,得到A B C '''(A '、B '、C '分别为A 、B 、C 的对应点),在坐标系中画出A B C ''',并写出A '、B '、C '三点的坐标.19.如图1,ABC 中,C 90∠=,BC 3=,AC 4=,AB 5=,将ABC 绕着点B 旋转一定的角度,得到DEB .(1)若点F 为AB 边上中点,连接EF ,则线段EF 的范围为________.(2)如图2,当DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.22.如图①,在Rt ABC 中,90C ∠=.将ABC 绕点C 逆时针旋转得到''A B C ,旋转角为α,且0180α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,D E .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.24.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示. ()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.参考答案一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°[答案]B[解析][分析]由旋转的性质可知∠B =∠A B 1C 1,A B =A B 1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠B B 1A =∠A B 1C 1=40°,从而可求得∠B B 1C 1=80°.[详解]由旋转的性质可知:∠B =∠A B 1C 1,A B =A B 1,∠B A B 1=100°.∵A B =A B 1,∠B A B 1=100°,∴∠B =∠B B 1A =40°.∴∠A B 1C 1=40°.∴∠B B 1C 1=∠B B 1A +∠A B 1C 1=40°+40°=80°.故选:B .[点评]本题主要考查的是旋转的性质,由旋转的性质得到△A B B 1为等腰三角形是解题的关键.2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D .[点评]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .[答案]C[解析][分析]根据两三角形的位置关系确定几何变换类型,继而得出答案.[详解]A 、图形通过旋转得到;B 、图形通过旋转得到;C 、图形通过平移得到;D 、图形通过旋转得到;故选:C .[点评]本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.4.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为( )A .(-1, 1)B .(1, -1)C .(0, -)D .(-, 0)[答案]D[解析][分析]根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A 的对称图形A ′,求得OA 的长度,也就求得了OA ′的长度,可得所求点的坐标.[详解]如图:∵∴OA ′=O,∴A′0).故选:D .[点评]本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.ABCD A ()1,1ABCD O 135A5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个[答案]B[解析][分析] 根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.[详解]解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .[点评]此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )A .B .C .或D .或OABC OA OC x y ()5,3D AB C CDB △90︒D 'D ()2,10()2,0-()2,10()2,0-()10, 2()2,0-[答案]C[解析][分析]先根据正方形的性质求出B D 、B C 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.[详解]四边形OA B C 是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B 的对应点落在y 轴上,旋转后点D 的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B 的对应点与原点O 重合,旋转后点D 的对应点落在x 轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D 的对应点的坐标为或故选:C .(5,3)D 5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒CDB △90︒B 'D 2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴D (2,10)CDB △90︒B ''D ''2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴D ''(2,0)-D (2,10)(2,0)-[点评]本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键. 7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行 [答案]D[解析][分析]根据三种变换得到的图形都与原图形全等,进行分析.[详解]解:根据平移、旋转和轴对称的基本性质,知A . B . C 都是正确的;D . 在旋转中,对应线段不一定平行,故错误.故选D .[点评]本题主要考查几何变换的类型,熟悉掌握是关键.8.根据指令机器人在平面上能完成如下动作:先在原地顺时针旋转角度,再朝其面对的方向沿直线行走距离.现在机器人在平面直角坐标系的原点,且面对轴的负方向,为使其移动到点,应下的指令是( ) [],(0,0360)s A s A ≥≤<A s y ()3,0-A .B .C .D .[答案]A[解析][分析] 若顺时针旋转90°,则机器人面对x 轴负方向,根据向x 轴负半轴走3个单位可得相应坐标.[详解]解:根据点(0,0)到点(−3,0),即可知机器人先顺时针转动,再向左平移3个单位,于是应下指令为[3,].故选A .[点评]本题主要考查坐标与图形变化-旋转,熟悉掌握是关键.9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形[答案]C[解析][分析]直接利用等腰三角形的性质分别分析得出答案.[详解]A 、等腰三角形两底角相等,正确,不合题意;B 、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;3,90?⎡⎤⎣⎦ 90,3⎡⎤⎣⎦ 3,90⎡⎤-⎣⎦ 3,270⎡⎤⎣⎦9090C 、等腰三角形的三边相等,错误,符合题意;D 、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C .[点评]此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.10.如图,Rt△A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为()A .4B .6C .8D .10[答案]C[解析][分析]过点B '作B 'E⊥A C 于点E,由题意可证△A B C ≌△B 'A E,可得A C =B 'E=4,即可求△A B 'C 的面积.[详解]如图:过点B '作B 'E⊥A C 于点E∵旋转∴A B =A B ',∠B A B '=90°∴∠B A C +∠B 'A C =90°,且∠B 'A C +∠A B 'E =90°∴∠B A C =∠A B 'E ,且∠A EB '=∠A C B =90°,A B =A B '∴△A B C ≌△B 'A E (A A S )∴A C =B 'E =4∴S △A B 'C =×A C ×B 'E =×4×4=8 故选C .[点评]本题考查了旋转的性质,全等三角形的判定和性质,熟练运用旋转的性质是解决本题的关键. 11.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )AB .5C .8D .4[答案]A[解析][分析] 利用旋转的性质得出四边形A EC F 的面积等于正方形A B C D 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.[详解]把顺时针旋转的位置,1212ADE ABF四边形A EC F 的面积等于正方形A B C D 的面积等于25,,,中,故选A .[点评]此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 12.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )A .B .C .D .[答案]B[解析][分析] 如图,先计算出A B =2A C =12,根据中点定义则可得B D =6,根据旋转的性质可得 D =B D =6,在Rt △BD M 中,可求得D M 、B M 的长,从而可求得B ′M 的长,然后在Rt △B ′MN 中求出MN 的长,继而求得B N 的长,在Rt △B NG 中求出B N 的长,然后利用S 阴影=S △B NG -S △B MD 进行计算即可得.[详解]如图,∵∠C =90°,∠A =60°,A C =6,∴A B =2A C =12,∠B =30°,∵点D 为A B 的中点,∴AD DC 5∴==DE 3=Rt ADE ∴AE ==Rt ABC C 90∠=A 60∠=AC 6=AB D 90Rt A'B'C'69B'∴B D =6,∵△A B C 绕点D 按逆时针方向旋转得到, ∴ D =B D =6,在Rt △B D M 中,∠B =30°,∠B D M=90°, ∴B M=2D M ,B D 2+D M 2=B M 2,∴D M=∴B ′M=B ′D -D M=6-在Rt △B ′MN中,∠B ′=30°,∴MN= B ′M=3∴,在Rt△B NG 中,B G=2NG ,B G2=NG 2+B N 2, ∴∴S 阴影=S △B NG -S △B MD ==9, 故选B .[点评]本题考查了旋转的性质、含30度角的直角三角形的性质、勾股定理、三角形的面积等,熟练掌握旋90Rt A'B'C'B'12((1133622⨯+⨯+-⨯转的性质是解题的关键.二、填空题13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E 重合连接C D ,则∠B D C 的度数为_____度.[答案]15[解析][分析]根据△EB D 由△A B C 旋转而成,得到△A B C ≌△EB D ,则B C =B D ,∠EB D =∠A B C =30°,则有∠B D C =∠B C D ,∠D B C =180﹣30°=150°,化简计算即可得出.[详解]解:∵△EB D 由△A B C 旋转而成,∴△A B C ≌△EB D ,∴B C =B D ,∠EB D =∠A B C =30°,∴∠B D C =∠B C D ,∠D B C =180﹣30°=150°,∴; 故答案为:15.[点评]此题考查旋转的性质,即图形旋转后与原图形全等.14.在平面直角坐标系中,O 为坐标原点,点A 的坐标为1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____. 15BDC ∠=︒()1180150152BDC BCD ∠=∠=︒-︒=︒[答案](﹣1[解析][分析]根据旋转的性质可知△OC A ≌△OD B ,进而得即可解题.[详解]解:如下图,由旋转的性质可知,△OC A ≌△OD B , ∵A 的坐标为1),∴∴∴B 的坐标为(﹣1)[点评]本题考查了图形的旋转,属于简单题,熟悉概念是解题关键.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子 A ,O ,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子 P ,使 A ,O ,B ,P 四颗棋子成为一个中心对称图形,请写出棋子 P 的位置坐标_____(写出 1 个即可).[答案](0,1).[解析][分析]直接利用中心对称图形的性质得出答案.[详解]如图所示:点P(0,1)答案不唯一.故答案为:(0,1).[点评]此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.如图,在△B D E 中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E 旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .[答案](3,[解析][分析]根据旋转的性质,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD,过P 作PF ⊥x轴于F ,再根据点C 在B D 上确定出∠PD B =45°并求出PD 的长,然后求出∠PD O=60°,根据直角三角形两锐角互余求出∠D PF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得D F=PD ,利用勾股定理列式求出PF ,再求出OF ,即可得到点P ,即旋转中心的坐标.[详解]如图,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,∵点C 在B D 上,∴点P 到A B 、B D 的距离相等,都是 B D ,即× ∴∠PD B =45°,121212=4,∵∠B D O=15°,∴∠PD O=45°+15°=60°,∴∠D PF=30°,∴D F=PD =×4=2, ∵点D 的坐标是(5,0),∴OF=OD -D F=5-2=3,由勾股定理得,∴旋转中心的坐标为(3,. 故答案为:(3,.[点评]本题考查了坐标与图形变化-旋转,熟练掌握旋转的性质确定出旋转中心的位置并得到含有30°角的直角三角形是解题的关键.三、解答题17.如图,是正内的一点,若将绕点逆时针旋转到,(1)求的度数.(2)若,,,求的度数.[答案](1);(2).1212P ABC PAC A P'AB PAP'∠AP 3=BP 4=PC 5=PAB ∠PAP'60∠=APB 150∠=[解析][分析](1)根据旋转的性质,找出∠PA P′=∠B A C ,根据等边三角形的性质,即可解答;(2)连接PP′,根据旋转的性质及已知可得到△A PP′是等边三角形,△B PP′是直角三角形,从而求得答案.[详解]如图,根据旋转的性质得,,∵是等边三角形,∴,∴;如图,连接,由旋转可知:,所以,,又∵,∴,()1PAP'BAC ∠∠=ABC BAC 60∠=PAP'60∠=()2PP 'P AB PAC ≅'CAP BAP ∠∠'=AP AP 3='=CP BP 5='=CAP PAB 60∠∠+=P AP BAP BAP 60∠∠∠=+=''∴是等边三角形,∴,∴,∵,∴,∴是直角三角形,∴∴.[点评]本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.如图,的顶点坐标分别为,,.将绕坐标原点逆时针旋转,得到(、、分别为、、的对应点),在坐标系中画出,并写出、、三点的坐标.[答案],,,画图见解析.[解析][分析]根据点的坐标的特点可知,点A 在第四象限的平分线上,所以绕点O 逆时针旋转90°在第一象限的平分线上,点B 在第一象限的平分线上,所以绕点O 逆时针旋转90°后在第二象限的平分线上,分别求出点A ′,B ′的坐标,然后再找出点C 旋转后的点C ′,顺次连接即可.P AP 'AP AP PP 3=='='APP 60∠'=222345+=222P P PB P B '='+P PB 'P PB 90∠'=APB P PB APP 150∠∠∠=+=''ABC ()A 2,2-()B 4,4()C 1,2ABC O 90A B C '''A 'B 'C 'A B C A B C '''A 'B 'C'()A 2,2'()B 4,4'-()C 2,1'-[详解]∵,,,∴,,.画图[点评]本题考查旋转变换作图,做这类题的关键是按要求旋转后找对应点,然后顺次连接.19.如图,中,,,,,将绕着点旋转一定的角度,得到 .(1)若点为边上中点,连接,则线段的范围为________.(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.[答案](1);(2)A G+EG=D E ,理由见解析.[解析][分析](1)图1中,利用旋转的性质得B E=B C =3,再根据三角形三边的关系得B E-B F≤EF≤B E+B F(当且仅当B 、()A 2,2-()B 4,4()C 1,2()A 2,2'()B 4,4'-()C 2,1'-1ABC C 90∠=BC 3=AC 4=AB 5=ABC B DEB F AB EF EF 2DEB E AB DE AC G DE EGAG 0.5EF 5.5≤≤E 、F 共线时取等号),从而得到线段EF 的范围;(2)图2中,利用旋转的性质得B E=B C =3,B D =B A =5,D E=A C =4,∠A =∠D ,再判断△A GE ∽△D EB ,然后利用相似比计算出A G 、EG ,从而可得到线段D E 、EG 、A G 的数量关系.[详解](1)∵点F 为A B 边上中点,∴B F=2.5,∵△A B C 绕着点B 旋转一定的角度得到△D EB ,∴B E=B C =3,∵B E-B F≤EF≤B E+B F(当且仅当B 、E 、F 共线时取等号),∴0.5≤EF≤5.5,故答案为0.5≤EF≤5.5;(2).理由如下:∵绕着点旋转一定的角度得到,∴,,,,∴,∵,,∴,∴,即, ∴,,∴,AG EG DE +=ABC B DE BE BC 3==BD BA 5==DE AC 4==A D ∠∠=AE AB BE 2=-=A D ∠∠=AEG BED ∠∠=AGE DEB ∽AG EG AE BD BE DE ==AG EG 2534==AG 2.5=EG 1.5=AG EG 4+=∴.[点评]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.[答案](1)3;(2)B E =D F ,B E ⊥D F .[解析][分析](1)根据旋转的性质可得A E =A F ,A D =A B ,然后根据D E =A D ﹣A E 计算即可得解;(2)根据旋转可得△A B E 和△A D F 全等,根据全等三角形对应边相等可得B E =D F ,全等三角形对应角相等可得∠A B E =∠A D F ,然后求出∠A B E +∠F =90°,判断出B E ⊥D F .[详解]解:(1)∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴A E =A F =4,A D =A B =7,∴D E =A D ﹣A E =7﹣4=3;(2)B E 、D F 的关系为:B E =D F ,B E ⊥D F .理由如下:∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴△A B E ≌△A D F , AG EG DE +=∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点评]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.[答案](1)见解析;(2)见解析;(3)D (﹣3,﹣2),F(﹣2,3),垂直且相等[解析][分析](1)分别延长B O,A O到占D ,C ,使D O=B O,C O=A O,再顺次连接成△C OD 即可;(2)将A ,B 绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;(3)利用图象即可得出点的坐标,以及线段B F和D F的关系.[详解](1)如图所示:(2)如图所示:(3)结合图象即可得出:D (﹣3,﹣2),F (﹣2,3),线段B F 和D F 的关系是:垂直且相等.[点评]此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤. 22.如图①,在中,.将绕点逆时针旋转得到,旋转角为,且.在旋转过程中,点可以恰好落在的中点处,如图②.求的度数;当点到的距离等于的一半时,求的度数.[答案](1);(2).[解析][分析]Rt ABC 90C ∠=ABC C ''A B C α0180α<<'BAB ()1A ∠()2C 'AA AC α 30A ∠= 120α=(1)利用旋转的性质结合直角三角形的性质得出△C B B ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin ∠C A D =,即可得出∠C A D =30°,进而得出α的度数. [详解] 将绕点逆时针旋转得到,旋转角为,∴∵点可以恰好落在的中点处,∴点是的中点.∵,∴, ∴,即是等边三角形.∴.∵,∴;如图,过点作于点,点到的距离等于的一半,即. 在中,,, ∴,∵,12CD AC =()1ABC C ''A B C α'CB CB ='B AB 'B AB 90ACB ∠=1''2CB AB BB ==''CB CB BB =='CBB 60B ∠=90ACB ∠=30A ∠=()2C 'CD AA ⊥D C 'AA AC 12CD AC =Rt ADC 90ADC ∠=1sin 2CD CAD AC ∠==30CAD ∠='CA CA =∴.∴,即.[点评]考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质. 23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,DE .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.[答案](1)6+或[解析][分析](1)根据勾股定理得到 A C =6,根据全等三角形的性质得到A E=B D ,当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,于是得到结论;(2)当点D 在C F 的右侧,当点D 在C F 的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt △A B C 中,∠A C B =90°,'30A CAD ∠=∠='120ACA ∠=120α=∴A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E 与△BC D中, ,∴△A C E ≌△B C D (SA S),∴A E=B D ,∴△A D E 的周长=A E+A D +D E=AB +D E ,∴当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,当C D ⊥A B 时,C D 最短,等于3,此时∴△A D E 的周长的最小值是;(2)当点D 在C F 的右侧,∵C F= A B =3,C D =4, ∴∴A E=B D =B F ﹣D F=3;当点D 在C F 的左侧,同理可得=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩12综上所述:A E 的长度为3或.[点评]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24.两块等腰直角三角形纸片和按图所示放置,直角顶点重合在点处,,.保持纸片不动,将纸片绕点逆时针旋转角度,如图所示. 利用图证明且;当与在同一直线上(如图)时,求的长和的正弦值.[答案](1)详见解析;(2)7,. [解析][分析] (1)图形经过旋转以后明确没有变化的边长,证明,得出A C =B D ,延长B D 交A C 于E ,证明∠A EB =90,从而得到.(2) 如图3中,设A C =x ,在Rt △A B C 中,利用勾股定理求出x ,再根据sinα=sin ∠A B C =即可解决问题[详解] 证明:如图中,延长交于,交于.AOB COD 1O 25AB =17CD =AOB COD O (090)αα<<2()12AC BD =AC BD ⊥()2BD CD 3AC α725AOC BOD ≅︒BD AC ⊥AC AB()12BD OA G AC E∵,∴,在和中,,∴,∴,,∵,∵,∴,∴,∴.解:如图中,设,∵、在同一直线上,,∴是直角三角形,90AOB COD ∠=∠=AOC DOB ∠=∠AOC BOD OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩AOC BOD ≅AC BD =CAO DBO ∠=∠90DBO GOB ∠+∠=OGB AGE ∠=∠90CAO AGE ∠+∠=90AEG ∠=BD AC ⊥()23AC x=BD CD BD AC ⊥ABC∴,∴,解得,∵,,∴,∴. [点评]本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型. 222AC BC AB +=222(17)25x x ++=7x =45ODC DBO α∠=∠+∠=45ABC DBO ∠+∠=ABC α∠=∠7sin sin 25AC ABC AB α=∠==。

人教版五年级下册数学第五单元图形的运动《旋转》测试题

人教版五年级下册数学第五单元图形的运动《旋转》测试题

人教版五年级数学下册第五单元图形的运动《旋转》测试题一、填空(30分)1.图形旋转有三个关键要素,一是旋转的(),二是旋转的(),三是旋转的()。

2.图形(1)是以点()为中心旋转的;图形(2)是以点()为中心旋转的;图形(3)是以点()为中心旋转的。

3.如图,指针从A开始,顺时针旋转了90°到()点,逆时针旋转了90°到()点;要从A旋转到C,可以按()时针方向旋转()°,也可以按()时针方向旋转()°。

4.观察图形,填写空格。

①号图形是绕A点按()时针方向旋转了()°;②号图形是绕()点按顺时针方向旋转了()°;③号图形是绕()点按()时针方向旋转了90°;④号图形是绕()点按()时针方向旋转了()。

5.观察图形并填空。

(1)图1绕点“O”逆时针旋转90°到达图()的位置;(2)图1绕点“O”逆时针旋转180°到达图()的位置;(3)图1绕点“O”顺时针旋转()°到达图4的位置;(4)图2绕点“O”顺时针旋转()°到达图4的位置;(5)图2绕点“O”顺时针旋转90°到达图()的位置;(6)图4绕点“O”逆时针旋转90°到达图()的位置。

二、选择(30分)1.将下面的图案绕点“O”按顺时针方向旋转90°,得到的图案是()。

2.将下列图形绕着各自的中心点旋转120°后,不能与原来的图形重合的是()。

3.由图形(1)不能变为图形(2)的方法是()。

A.图形(1)绕“O”点逆时针方向旋转90°得到图形(2)B.图形(1)绕“O”点顺时针方向旋转90°得到图形(2)C.图形(1)绕“O”点逆时针方向旋转270°得到图形(2)D.以线段OP所在的直线为对称轴画图形(1)的轴对称图形得到图形(2)4.观察下图,是怎样从图形A得到图形B的()。

(完整版)图形的旋转测试题(含答案)

(完整版)图形的旋转测试题(含答案)

MB' A'C A B 图5 图4 《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是( )DA .①②③④B .①②③C .①③D .③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为( )度. CA 、30 oB 、45 oC 、60 oD 、90 o图1 图2 图33、如图2,边有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4, △DEF 是由△ABC 绕着某点旋转得到的, 则这点的坐标是( B )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。

5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______. 80(或.O A B C D E F x y2 3图6 A C BD三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点 A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.E DC BA B A C O ABC B C4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L ,M ,D 在AK 的同旁,连结BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系. C FEDB A,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。

图形旋转测试题及答案

图形旋转测试题及答案

图形旋转测试题及答案一、选择题1. 一个图形绕某点旋转了90°,下列说法正确的是:A. 图形的大小不变B. 图形的形状不变C. 图形的位置不变D. 以上说法都不正确答案:A、B2. 下列哪个图形旋转180°后与原图形完全重合?A. 正方形B. 圆形C. 长方形D. 三角形答案:B二、填空题3. 若一个图形绕中心点O旋转____度,可以得到与原图形关于点O对称的图形。

答案:1804. 一个等腰三角形绕底边的中点旋转____度,可以得到与原图形完全重合的图形。

答案:180三、简答题5. 描述一个正方形绕其一个顶点旋转90°后,图形的位置变化情况。

答案:正方形绕其一个顶点旋转90°后,其四个顶点的位置将分别移动到原来对角线的顶点位置。

具体来说,如果原正方形的顶点分别为A、B、C、D,且A为旋转中心,则旋转后,A点位置不变,B点移动到C点位置,C点移动到D点位置,D点移动到B点位置。

四、计算题6. 已知一个正六边形绕其中心点O旋转60°后,求旋转后顶点的新位置。

答案:正六边形的每个顶点绕中心点O旋转60°后,每个顶点的新位置将沿着正六边形的外接圆的圆周上移动,每个顶点相对于原来的位置旋转了60°的弧度。

五、论述题7. 论述图形旋转的性质及其在几何学中的应用。

答案:图形旋转是一种几何变换,它保持图形的大小和形状不变,只改变图形的位置。

旋转的性质包括旋转角度的可加性,即连续旋转两个角度相当于旋转这两个角度的和。

在几何学中,图形旋转常用于证明图形的对称性,解决几何构造问题,以及在变换几何中研究图形的不变性质等。

第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点B 、A 、B 1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180°10.如图,在△ABC 中,∠ACB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .B .C .4D .二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12.如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′=图11 B 'C 'C BA图1213.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,2),则点B 2016的坐标为 .14.如图,直线y=x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BA B1=180°,∴旋转角等于180°.故选D.10. 【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:又旋转角为90°,∴∠BAD=90°,∴在RT△ADB中,即:BD的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°,∵∠AC ′B ′=∠C=90°,∴B ′C ′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13. 【答案】∵AO=32,BO=2,∴AB=52, ∴OA +AB 1+B 1C 2=6,∴B 2的横坐标为:6,且B 2C 2=2,∴B 4的横坐标为:2×6=12,∴点B 2016的横坐标为:2016÷2×6=6048.∴点B 2016的纵坐标为:2.∴点B 2016的坐标为:(6048,2).故答案为:(6048,2).14. 【答案】令y=0x +2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴,OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO ′B ′,∴∠BAB ′=60°,∴∠OAB ′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°, ∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则BB ′(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【19. y =-3.∴x 1=-1,x 2=-2.∵点P 在第二象限,∴x 2+2x <0,∴x =-1,∴x +2y =-720. 【答案】(1)证明:在△AEB 与△ADC 中,AB=AC ,∠A=∠A ,AE=AD ;∴△AEB ≌△ADC ,∴∠B=∠C .(2)解:先将△ADC 绕点A 逆时针旋转50°,再将△ADC 沿直线AE 对折,即可得△ADC 与△AEB 重合.或先将△ADC 绕点A 顺时针旋转50°,再将△ADC 沿直线AB 对折,即可得△ADC 与△AEB 重合.21.【答案】(1)如图,点C 的坐标为(﹣2,4);(2)点B ′、A ′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A (2,3m ),∴关于原点的对称点坐标为(﹣2,﹣3m ),∵在第三象限,∴﹣3m <0,∴m >0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52; ②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34. 23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1);(2)OP '=(a )动点T 在原点左侧,当1T O OP '=P'TO 是等腰三角形,∴点1T ,0),(b )动点T 在原点右侧,①当T 2O=T 2P'时,△P'TO 是等腰三角形,得:2T (54,0), ②当T 3O=P'O 时,△P'TO 是等腰三角形,得:3T ,0),③当T 4P'=P'O 时,△P'TO 是等腰三角形,得:点T 4(4,0).综上所述,符合条件的t 的值为,54,4. 24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1y x O CBA∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA . ∵OB=AB ,BC⊥OA ,∴OC=CA=1.在Rt △OBC中,BC OC,∴B 的坐标为(1. (2)如图2所示: (A 1)图2yxO B 1CB A∵点B1与点A1的纵坐标相同,∴A 1B 1∥OA .①如图2所示:当a=300°时,点A 1与点B 1纵坐标相同. 如图3所示:A 1图3yxO B 1CBA当a=120°时,点A 1与点B 1纵坐标相同.∴当a=120°或a=300°时,点A 1与点B 1纵坐标相同.(3)如图2所示:由旋转的性质可知A 1B 1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B 1的坐标为(1. ∴点B1的坐标为(﹣11.。

初三旋转单元测试题及答案

初三旋转单元测试题及答案

初三旋转单元测试题及答案一、选择题(每题2分,共10分)1. 若点A(1,2)绕原点顺时针旋转90°后,其坐标变为:A. (2,1)B. (-2,1)C. (1,-2)D. (-2,-1)2. 一个正方形绕中心点旋转90°后,其形状:A. 变成圆形B. 变成长方形C. 保持不变D. 变成椭圆形3. 若一个图形绕某点旋转180°后,其形状和位置:A. 发生变化B. 形状不变,位置改变C. 形状和位置都不变D. 形状改变,位置不变4. 一个正六边形绕其中心点旋转多少度后,能与自身完全重合?A. 30°B. 45°C. 60°D. 90°5. 一个图形绕某点旋转后,其面积:A. 变大B. 变小C. 不变D. 无法确定二、填空题(每题2分,共10分)6. 若点P(-3,4)绕原点逆时针旋转180°后,其坐标变为______。

7. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状变为______。

8. 一个圆绕圆心旋转任意角度,其______不变。

9. 若一个图形绕某点旋转后,其对应点的连线都经过该点,并且对应点到旋转中心的距离相等,则该图形绕该点旋转的角度为______。

10. 一个图形绕某点旋转后,其对应线段的夹角等于旋转角,该性质称为______。

三、解答题(每题5分,共20分)11. 已知点A(2,3),点B(-1,-2),求点A绕点B顺时针旋转45°后的坐标。

12. 一个边长为4的正方形,绕其中心点顺时针旋转45°后,求正方形的一个顶点的新坐标。

13. 已知一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3),求三角形绕点A逆时针旋转60°后的顶点坐标。

14. 解释什么是旋转对称图形,并给出一个例子。

四、综合题(每题10分,共20分)15. 若一个图形绕某点旋转θ度后,其面积和周长都不变,试证明该图形为圆。

图形的平移与旋转 单元测试(能力提升)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)

 图形的平移与旋转 单元测试(能力提升)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)

第三章图形的平移与旋转单元测试(能力提升)一、单选题1.下面的每组图形中,平移左边图形可以得到右边图形的一组是()A.B.C.D.【答案】D【解析】分析:根据平移的性质,可以得到平移前后图形全等,由此可知选项A,B是否正确;由图可知选项C是翻折得到的,根据平移的定义,结合选项D的图形,可以确定答案.详解:A、左图与右图的形状不同,所以A选项错误;B、左图与右图的大小不同,所以B选项错误;C、左图通过翻折得到右图,所以C选项错误;D、左图通过平移可得到右图,所以D选项正确.故选D.点睛:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.2.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称B.轴对称和平移C.平移和旋转D.旋转和轴对称【答案】D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【解析】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D.【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.3.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【解析】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)【答案】A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD 经过点O,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5.如图,将等边三角形OAB 放在平面直角坐标系中,A 点坐标(1,0),将△OAB 绕点O 逆时针旋转60°,则旋转后点B 的对应点B '的坐标为()A.(12 ,2)B.(-1,12)C.(-322)D.(-2,12)【答案】A【分析】如图,作点B 作BH ⊥OA 于H ,设BB ′交y 轴于J .求出点B 的坐标,证明B ,B ′关于y 轴对称,即可解决问题.【解析】解:如图,故点B 作BH ⊥OA 于H ,设BB ′交y 轴于J .∵A(1,0),∴OA=1,∵△AOB是等边三角形,BH⊥OA,∴OH=AH=12OA=12,BH332∴B(1232,∵∠AOB=∠BOB′=60°,∠JOA=90°,∴∠BOJ=∠JOB′=30°,∵OB=OB′,∴BB′⊥OJ,∴BJ=JB′,∴B,B′关于y轴对称,∴B′(-1232,故选:A.【点睛】本题考查了坐标与图形的性质,旋转变换,轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6.我们知道,四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为()A.)B.()2,1C.(D.(【答案】D【分析】由已知条件得到2AD AD '==,1AO AB 12==,根据勾股定理得到OD '==于是得到结论.【解析】解:2AD AD '== ,1AO AB 12==,OD ∴'=,2C D ''= ,//C D AB '',C ∴',故选:D .【点睛】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.7.如图,点D 是等边△ABC 内一点,AD =3,BD =3,CD =ACE 是由△ABD 绕点A 逆时针旋转得到的,则∠ADC 的度数是()A.40°B.45°C.105°D.55°【答案】C【分析】连接DE ,由旋转的性质可证明ADE ∆是等边三角形,得60ADE ∠=︒,3,3DE AD CE BD ====,再由勾股定理的逆定理可证明DCE ∆是等腰直角三角形得出45CDE ∠=︒,从而可得出结论.【解析】解:连接DE ,如图:∵ABC ∆是等边三角形,∴AB =AC ,60BAC ∠=︒∴60BAD CAD ∠+∠=︒由旋转可得,BAD CAE∆≅∆∴,3,3CAE BAD AD AE CE BD ∠=∠====∴60CAE CAD ∠+∠=︒,即60DAE ∠=︒∴DAE ∆是等边三角形,∴DE =AD =3,60ADE ∠=︒∵DE =3,CE =3,CD =∴2229,9,18DE CE CD ===∴222DE CE CD +=∴CDE △是等腰直角三角形,∴45CDE ∠=︒∴6045105ADC ADE CDE ∠=∠+∠=︒+︒=︒故选:C【点睛】此题是旋转的性质,主要考查了等边三角形的性质和判定,勾股定理逆定理,解本题的关键是判断出△ADE 是等边三角形.8.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE ²的最小值为()A.1B.2C.3D.4【答案】B【分析】在AB 上截取AQ =AO =1,利用SAS 证明△AQD ≌△AOE ,推出QD =OE ,当QD ⊥BC 时,QD 的值最小,即线段OE ²有最小值,利用勾股定理即可求解.【解析】解:如图,在AB 上截取AQ =AO =1,连接DQ ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC =∠DAE =90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD =∠CAE ,在△AQD 和△AOE 中,AQ AO QAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE (SAS ),∴QD =OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE ²有最小值,∵△ABC 是等腰直角三角形,∴∠B =45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB =AC =3,AO =1,∴QB =2,∴由勾股定理得QD =22QB 2,∴线段OE ²有最小值为2,故选:B.【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.9.把一副三角板(如图甲)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB cm,DC =DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),这时AB 与CD 1相交于点O ,与D 1E 1相交于点F ,则线段AD 1的长为()cm D.【答案】D【分析】根据等腰直角三角形的性质求出AO =CO =12AB ,再求出OD 1,然后利用勾股定理AD 1=【解析】解:∵旋转角为15°,∴∠OCB =60°﹣15°=45°,∴∠COB =180°﹣45°﹣45°=90°,∴CD 1⊥AB ,又∵∠D =30°∴AO =CO =12AB =12cm ),∴OD 1=DC ﹣CO (cm ),在Rt△AD 1O 中,由勾股定理得,AD 1(cm );故选:D .【点睛】本题考查了旋转的性质,勾股定理,含30°角的直角三角形的性质,等腰直角三角形的性质,熟练掌握勾股定理是解题的关键.10.把一副三角板(如图甲)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB cm,DC cm,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),这时AB 与CD 1相交于点O ,与D 1E 1相交于点F .则线段AD 1的长为()cmC.5cm D.3cm【答案】B 【分析】先求出∠ACD =30°,再根据旋转角求出∠ACD 1=45°,然后判断出△ACO 是等腰直角三角形,再根据等腰直角三角形的性质求出AO 、CO ,AB ⊥CO ,再求出OD 1然后利用勾股定理列式计算即可得解.【解析】解:∵∠ACB =∠DEC =90°,∠D =30°,∴∠DCE =90°-30°=60°,∴∠ACD =90°-60°=30°,∵旋转角为15°,∴∠ACD 1=30°+15°=45°,又∵∠CAB =45°,∴△ACO 是等腰直角三角形,∴∠ACO =∠BCO =45°,∵CA =CB ,∴AO =CO =12AB =∵DC =,∴D 1C =DC =∴D 1O =,在Rt △AOD 1中,AD 1故选:B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB ⊥CO 是解题的关键,也是本题的难点.二、填空题11.点(2,-1)关于原点O 对称的点的坐标为__________.【答案】(-2,1)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解析】点(2,-1)关于原点O对称的点的坐标是(-2,1).故答案为(-2,1).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.如图,△A′B′C′是由△ABC沿射线AC方向平移得到的.已知∠A=55°,∠B=60°,则∠C′=________.【答案】65°【分析】先根据三角形内角和定理求出∠ACB的度数,再由图形平移的性质得出△ABC≌△A'B'C',根据全等三角形的性质即可得出结论.【解析】∵△ABC中,∠A=55°,∠B=60°,∴∠ACB=180°﹣60°﹣55°=65°.∵△A'B'C'是由△ABC沿射线AC方向平移得到,∴△ABC≌△A'B'C',∴∠C'=∠ACB=65°.故答案为65°.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.13.如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB=120°,则图中阴影部分的面积为__________.【答案】4cm 2【分析】根据旋转的性质和图形的特点解答.【解析】每个叶片的面积为4cm 2,因而图形的面积是12cm 2.∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120°,∴图形中阴影部分的面积是图形的面积的13,因而图中阴影部分的面积之和为4cm 2.故答案为4cm 2.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.14.如图,将等边ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD △,BC 的中点E 的对应点为F,则EAF ∠的度数是_______.【答案】60︒【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF 的度数.【解析】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD,BC 的中点E 的对应点为F,∴旋转角为60°,E,F 是对应点,则∠EAF 的度数为:60°.故答案为:60°.【点睛】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.15.如图,ABC 中,AB AC BC 12cm =,=,点D 在AC 上,DC=4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E F 、分别落在边AB、BC 上,则△EBF 的周长是cm.【答案】13.【解析】∵CD 沿CB 平移7cm 至EF//,7EF CD CF ∴=5,4,BF BC CF EF CD EFB C∴=-===∠=∠,AB AC B C=\Ð=Ð4EB EF ∴==44513EBF C EB EF BF ∴=++=++= 考点:平移的性质;等腰三角形的性质.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=_____.20.【答案】0【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.17.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为______.【答案】2【解析】解:∵将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,∴∠ECN =75°.∵∠ECD =45°,∴∠NCO =180°﹣75°﹣45°=60°.∵AO ⊥OB ,∴∠AOB =90°,∴∠ONC =30°.∵CE =4,∴CN =4,∴OC =2.故答案为2.点睛:本题考查了等腰直角三角形性质,勾股定理,含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但有一定的难度.18.如图,将Rt△ABC 沿着直角边CA 所在的直线向右平移得到Rt△DEF,已知BC=a,CA =b,FA=13b,则四边形DEBA 的面积等于__________.【答案】23ab 【分析】根据平移的性质得出AD 23=b ,再利用平行四边形的面积公式解答即可.【解析】由题意可得:FD =CA =b ,BC =EF =a ,∴1233AD FD FA b b b =-=-=,∴四边形DEBA 的面积等于AD •EF 23ab =.故答案为23 ab.【点睛】本题考查了平移的性质,关键是根据平移的性质得出AD23=b.19.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y 轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.1712π【解析】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=2290160211123602360ππ⨯⨯⨯⨯⨯+⨯+,计算即可得出答案.【解析】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°,∴cos60°=OAAB,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积:S=2290160211123602360ππ⨯⨯⨯⨯⨯+⨯+1712+π,1712π.【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.20.在平面直角坐标系xOy 中,直线23y x =-+分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45︒,得到射线AN .点D 为AM 上的动点,点B 为AN 上的动点,点C 在MAN ∠的内部.(1)BCD △周长的最小值是____________________;(2)当BCD △的周长取得最小值,且BD =BCD △的面积为__________.【答案】43【分析】(1)可作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.连接C 1C 2.利用两点之间线段最短,可得到当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.(2)根据(1)的作图可知四边形AC 1CC 2的对角互补,结合轴对称可得∠BCD =90°.利用勾股定理得到CB 2+CD 2=BD 2=(3)2,因为CB +CD ﹣3,可推出CB •CD 的值,进而求出三角形的面积.【解析】(1)∵直线y =23x -+与x 轴、y 轴分别交于C 、A 两点,把y =0代入,解得x把x =0代入,解得y =2,∴点C ,点A 的坐标为(0,2).∴AC =4.作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.由轴对称的性质,可知CD =C 1D ,CB =C 2B .∴CB +BD +CD =C 2B +BD +C 1D =C 1C 2连接AC 1、AC 2,可得∠C 1AD =∠CAD ,∠C 2AB =∠CAB ,AC 1=AC 2=AC =4.∵∠DAB =45°,∴∠C 1AC 2=90°.连接C 1C 2.12C C =,∵两点之间线段最短,∴当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.∴△BCD 的周长的最小值为(2)根据(1)的作图可知四边形AECF 的对角互补,其中∠DAB =45°,因此,∠C 2CC 1=135°.即∠BCC 2+∠DCC 1+∠BCD =135°,∴2∠BCC 2+2∠DCC 1+2∠BCD =270°①,∵∠BC 2C =∠BCC 2,∠DCC 1=∠DC 1C ,∠BC 2C +∠DC 1C +∠BCC 2+∠DCC 1+∠BCD =180°,∴2∠BCC 2+2∠DCC 1+∠BCD =180°②,①-②得,∠BCD =90°.∴CB 2+CD 2=BD 22=509,∵CB +CD 33=,(CB +CD )2=CB 2+CD 2+2CB •CD ,∴2CB •CD =(CB +CD )2-(CB 2+CD 2)=2725016()393-=∴1423S CB CD =⋅⋅=.故答案为:43【点睛】本题考查了最短路径和勾股定理及一次函数的性质,解题关键利用轴对称确定最短路径,结合勾股定理来解决问题.三、解答题21.在1010⨯的正方形网格中,小正方形的边长均为1个单位长度.(1)画出ABC 绕点O 逆时针旋转90°的111A B C △;(2)再画出ABC 关于点O 的中心对称图形222A B C △.【答案】(1)见解析(2)见解析【分析】(1)根据旋转的性质即可作图;(2)根据中心对称的性质即可作图.(1)如图所示;(2)如图所示△A 2B 2C 2即为所求.【点睛】本题主要考查了作图-旋转变换,熟练掌握旋转的性质是解题的关键.22.如图,平面直角坐标系中,已知点(3,3)-A ,(5,1)B -,(2,0)C -,(,)P a b 是ABC ∆的边AC 上任意一点,ABC ∆经过平移后得到△111A B C ,点P 的对应点为1(6,2)P a b +-.(1)直接写出点1A ,1B ,1C 的坐标.(2)在图中画出△111A B C .(3)连接1AA ,AO ,1AO ,求1ΔAOA的面积.(4)连接1BA ,若点Q 在y 轴上,且三角形1QBA 的面积为8,请直接写出点Q 的坐标.【答案】(1)1(3,1)A ,1(1,1)B -,1(4,2)C -(2)见解析(3)1ΔAOA 的面积=6(4)(0,1)-或(0,3)【分析】(1)利用P 点和P 1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A 1,B 1,C 1的坐标;(2)利用点A 1,B 1,C 1的坐标描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA 1的面积;(4)设Q (0,t ),利用三角形面积公式得到12×8×|t −1|=8,然后解方程求出t 得到Q 点的坐标.(1)解:1(3,1)A ,1(1,1)B -,1(4,2)C -;(2)解:如图,△111A B C 为所作;(3)解:1ΔAOA 的面积11163333162222=⨯-⨯⨯-⨯⨯-⨯⨯9318622=---,1812=-,6=;(4)解:设(0,)Q t ,()5,1B - ,1(3,1)A ,()1358BA ∴=--=,三角形1QBA 的面积为8,∴18182t ⨯⨯-=,解得1t =-或3t =,Q∴点的坐标为(0,1)-或(0,3).【点睛】本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上.请按要求在图①,图②,图③中画图:(1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.(2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上.(3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解.【解析】解:(1)如图①中,△ABC即为所求作(答案不唯一);(2)如图②中,平行四边形ABCD 即为所求作;(3)如图③中,△ABC 即为所求作(答案不唯一);∵AB =AG ,BC =CG ,∴AC ⊥BG ,∵△ABG 的面积为154102⨯⨯=,∴△ABC 的面积为5,且∠ACB =90°.【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向60 旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=2,BE=4,求AD的长.【答案】(1)23°;(2)【分析】(1)由旋转的性质可得AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,由三角形的内角和定理可求解;(2)连接DE,可证△AED是等边三角形,可得∠ADE=60°,AD=DE,由旋转的性质可得△ACD≌△ABE,可得CD=BE=4,由勾股定理可求解.【解析】解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°−97°−60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=4,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE=90°,∴DE2242-23BE BD-22∴AD=DE=23【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.的顶点25.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,ABC都在格点上,请解答下列问题:(1)作出ABC 向左平移4个单位长度后得到的111A B C △,并写出点1C 的坐标;(2)作出ABC 关于原点O 对称的222A B C △,并写出点2C 的坐标;222A B C △可看作111A B C △以点(________,________)为旋转中心,旋转________°得到的.(3)已知ABC 关于直线l 对称的333A B C △的顶点3A 的坐标为()4,2--,请直接写出直线l 的函数解析式________.【答案】(1)图见详解,C 1(-1,2);(2)图见详解,C 2(-3,-2),(-2,0),180;(3)y =-x【分析】(1)根据平移的性质即可画出ABC 向左平移4个单位后的111A B C △;(2)根据中心对称的性质即可作出ABC 关于原点O 对称的222A B C △,再根据旋转的性质即可得出结论;(3)根据轴对称的性质,可以知道直线必过点(-1,1),即可求出解析式.【解析】解:(1)如图所示,点C 1的坐标(-1,2);(2)如图所示,点C 2的坐标(-3,-2),222A B C △可看作111A B C △以点(-2,0)为旋转中心,旋转180°得到的;(3)因为A 的坐标为(2,4),A 3的坐标为(-4,-2),所以直线必过点(-1,1),所以直线的解析式为y =-x .【点睛】本题主要考查了平移,轴对称,中心对称的作图,熟练其概念准确的画出图形是解决本题的关键.26.新定义:如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB ∠的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,48AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为______;(直接写出答案)【解决问题】(3)如图②,已知50AOB ∠=︒,射线OM 从OA 出发,以每秒10°的速度绕O 点顺时针旋转,同时,射线ON 从OB 出发,以每秒15°的速度绕O 点顺时针旋转,设运动的时间为t 秒()05t <<.若OM 、ON 、OB 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t 的值.【实际运用】(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?【答案】(1)是;(2)16°或24°或32°;(3)2或207或54;(4)18011.【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走0.5︒,分针1分钟走6︒,可解答问题.【解析】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC =x ,则∠BOC =2x ,由题意得,x +2x =48°,解得x =16°,②设∠AOC =x ,则∠BOC =x ,由题意得,x +x =48°,解得x =24°,③设∠AOC =x ,则∠BOC =12x ,由题意得,x +12x =48°,解得x =32°,故答案为:16°或24°或32°;(3)OB 是射线OM 与ON 的幸运线,则∠BOM =12∠MON ,即50-10t =12(50-10t +15t ),解得t =2;∠BOM =13∠MON ,即50-10t =13(50-10t +15t ),解得t =207;∠BOM =23∠MON ,即50-10t =23(50-10t +15t ),解得t =54;故t 的值是2或207或54;(4)时针1分钟走300.560︒=︒,分针1分钟走360660︒=︒,设小丽帮妈妈取包裹用了x 分钟,则有0.5x +3×30=6x ,解得:x =18011.【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.27.如图,已知在ABC 中,AB AC =,D 、E 是BC 边上的点,将ABD △绕点A 旋转,得到ACD '△,连接D E '.(1)当120BAC ∠=︒时,60DAE ∠=︒时,求证:DE D E '=;(2)当DE D E '=时,DAE ∠与BAC ∠有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当90BAC ∠=︒,BD 与DE 满足怎样的数量关系时,D EC '△是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析;(2)∠DAE=12∠BAC,见解析;(3)DE2BD,见解析【分析】(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;(3)求出∠D′CE2倍可得D′E=2CD′,再根据旋转的性质解答即可.【解析】(1)证明:∵△ABD绕点A旋转得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC−∠DAE=120°−60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,AD AD DAE D AE AE AE '⎧⎪∠∠'⎨⎪⎩===,∴△ADE ≌△AD ′E (SAS ),∴DE =D ′E ;(2)解:∠DAE =12∠BAC .理由如下:在△ADE 和△AD ′E 中,AD AD AE AE DE D E '⎧⎪⎨⎪'⎩===,∴△ADE ≌△AD ′E (SSS ),∴∠DAE =∠D ′AE ,∴∠BAD +∠CAE =∠CAD ′+∠CAE =∠D ′AE =∠DAE ,∴∠DAE =12∠BAC ;(3)解:∵∠BAC =90°,AB =AC ,∴∠B =∠ACB =∠ACD ′=45°,∴∠D ′CE =45°+45°=90°,∵△D ′EC 是等腰直角三角形,∴D ′ECD ′,由(2)DE =D ′E ,∵△ABD 绕点A 旋转得到△ACD ′,∴BD =C ′D ,∴DEBD .【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.。

人教版九年级数学上册第23章《图形的旋转》整章测试题(含答案)

人教版九年级数学上册第23章《图形的旋转》整章测试题(含答案)

第二十三章《旋转》整章测试题附答案一、填空题:(每题 3 分)1.( 2009 年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是()甲乙甲乙甲乙甲乙A .B.C.D.2(. 2008 江苏省盐城市)已知如图 1 所示的四张牌,若将其中一张牌旋转180 °后得到图 2.则旋转的牌是()图 1图 2A B C D3.( 2008 湖北省宜昌市)如图,将三角尺ABC(其中∠ ABC=60°,∠ C= 90°)绕 B 点按顺时针方向转动一个角A 1度到 A1BC1的位置,使得点A,B,C1在同一条直线上,C那么这个角度等于().B C1AA .120 °B. 90°C.60°D. 30°(第9题)4.( 2009 年崇左)已知点A的坐标为(a,b),O为坐标原点,连结OA,将线段OA绕点O 按逆时针方向旋转90°得OA1,则点A1的坐标为().A ( a,b)B.(a,b)C.( b,a) D .(b,a)5.( 2009 年山东省日照市)在下图4× 4 的正方形网格中,△MNP 绕D N1 M1某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是A B P1CA.点 A B.点 B C.点 CD.点 D P6. ( 2009 年牡丹江市)△ABC在如图所示的平面直角坐标系中,将MN △ ABC 向右平移3个单位长度后得△ A1B1C1,再将△ A1B1C1绕点y O 旋转 180°后得到△A2B2C2,则下列说法正确的是()4AA .A1的坐标为31,B.S四边形ABB1A133BC21C.B2C 2 2D.AC2O 45°32 11 0 123 x237.( 2008 内蒙古自治区包头市)如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ ACB 绕点 C 按顺时针方向旋转到AA △ A CB 的位置,其中 AC 交直线 AD 于点F AE , A B 分别交直线 AD,AC 于点GE BF,G ,则旋转后的图中,全等三角形共有BC D C D()A.2 对B.3 对C.4 对D.5 对8. (2008 河北省)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图 -1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90 ,则完成一次变换.图-2,图 -3 分别表示第 1 次变换和第 2 次变换.按上述规则完成第9 次变换后,“众” 字位于转盘的位置是()第1次变换第2次变换众成志城成城志志城众成成众志城成众城志众图 -1图-2图 -3A .上B.下C.左D.右二、填空题:(每题 3 分)9. ( 2008 甘肃省白银九市)已知等腰三角形的一条腰长是5,底边长是 6,则它底边上的高为.10( 2008 吉林省长春市)如图,在平面内将Rt△ ABC 绕着直角顶点AC 逆时针旋转90 得到Rt△EFC.若 AB5, BC1,则线F段 BE 的长为.E BC11. (2008 辽宁省大连市, 3 分)如图, P 是正△ ABC 内的一点,若将△PAC 绕点 A 逆时针旋转到△ P′AB,则∠ PAP′的度数为.BA P AP′PPB C C CB BA C(第 12(第 13 题)(第 11 题)题)12.( 2008 江苏省扬州市)如图△ ABC 是等腰直角三角形,BC 是斜边, P 为△ ABC 内一点,将△ ABP 绕点 A 逆时针旋转后与△ACP′重合,如果 AP=3 ,那么线段PP的长等于 ____.13.( 2008 四川省宜宾市)将直角边长为5cm 的等腰直角△ABC绕点A逆时针旋转15后得到△ AB C ,则图中阴影部分的面积是cm 2.14.. ( 2008 福建省厦门市)如图,点G 是△ ABC 的重心, CG 的延C长线交 AB于D,GA5cm , GC4cm , GB3cm ,将△ADG绕点 D旋转180得到△ BDE ,则 DE cm,G B D△ ABC 的面积cm2.AE15.( 2007 湖南株洲课改)如图,将边长为 3 的正方形ABCD绕点A逆时针方向旋转30o后得到正方形AB C D ,则图中阴影部分的面积为____________平方单位.16. ( 2007 江苏泰州课改)如图,直角梯形ABCD 中, AD ∥ BC ,EAB BC,AD2,BC 3,BCD45 ,将腰CD以点D为A D中心逆时针旋转90至 ED ,连结 AE,CE ,则△ ADE 的面积B C是.答案:三、解答题:(共 52 分)A17.( 6 分)( 2008 云南省双柏市)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:( 1)作出关于直线AB 的轴对称图形;O( 2)将你画出的部分连同原图形绕点O 逆时针旋转;90°( 3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.B18.(9 分)( 2008 山西省)如图,在 4× 3 的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).( 1)(2)(3)19.( 12 分)(2008 江苏省徐州市)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点 B 的坐标为 (1,0) .(1)画出△ ABC 关于 x 轴对称的△ A1B1C1;(2)画出将△ ABC 绕原点 O 按逆时针方向旋转 90 所得的△ A2B2C2;(3)△ A1B1C1与△ A2B2C2成轴对称吗?若成轴对称,画出所有的对称轴;(4)△ A1B1C1与△ A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.解:yACO B x20.( 12 分)( 2008 山东省枣庄市)把一副三角板如图甲放置,其中∠ ACB ∠ DEC 90 ,∠ A 45 , ∠ D 30 ,斜边 AB6cm , DC 7cm .把三角板 DCE 绕点 C 顺时针旋转 15°得到△ D 1CE 1(如图乙).这时 AB 与 CD 1 相交于点 O ,与 D 1 E 1 相交于点 F .( 1)求 ∠ OFE 1 的度数; ( 2)求线段 AD 1 的长;( 3)若把三角形 D 1CE 1 绕着点 C 顺时针再旋转 30°得△ D 2CE 2,这时点 B 在△ D 2CE 2 的内部、外部、还是边上?说明理由.DD 1AAOFCEBCB(甲)(乙)E 121.( 13 分)(2009 年牡丹江)已知 Rt △ ABC 中, AC B C ,∠ C90 ,D 为 AB 边的中点,EDF 90°, EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于E 、F .当EDF 绕 D 点旋转到 DE AC 于 E 时(如图△△ 1 .1),易证S CEFS ABCS DEF2当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、 S △CEF 、 S △ ABC 又有怎样的数量关系?请写出你的猜想,不需证明.AAADE DDCECBFFBBCFE图 3图 1图 2参考答案一、选择题:1.C2.A3.A4.C5.B6.D7.C8.C二、填空题:9. 90 10. 311. 6012.3225313.14. 2, 1815. 33 16.16三、解答题:17. 答案:如图.三步各计 2 分,共 6 分.AOB 18.解:( 1)(2)(3)19解:(1)如图;(2)如图;(3)成轴对称,对称轴如图;1 1 (4)成中心对称,对称中心坐标( , ) .2 220.解:( 1)如图所示, 3 15,E190 ,AD1∴1275 .5又B45,O4F C3 21∴OFE 1B14575120 .B ( 2)OFE1120 ,∴∠D1FO=60°.E1 CD1 E130,∴490 .又 AC BC, AB 6,∴ OA OB 3.ACB90,∴ CO 1AB163.22又 CD17 ,∴ OD1CD1OC73 4 .在 Rt △ AD1O 中,AD1OA2OD123242 5 .( 3)点B在△D2CE2内部.理由如下:设BC (或延长线)交D2E2于点 P,则PCE2 15 30 45 .在 Rt △ PCE2中, CP2CE272,2CB 3272CP ,∴点 B 在△D2CE2内部.,即 CB221.解:图 2 成立;图 3 不成立.证明图 2:过点 D 作 DM AC,DN BC则DME DNF MDN90°再证MDE NDF ,DM DN有△ DME ≌△ DNFS△DME S△DNFS SDECF S△D EF△SC E F四边形DMCN四边形由信息可知 S四边形DMCN 1S△ABC12S△D EF△△SCEF2S ABC1S△ABC图 3 不成立,S△DEF 、S△CEF、S△ABC的关系是:S△DEF S△CEF2。

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

九年级旋转单元试卷【含答案】

九年级旋转单元试卷【含答案】

九年级旋转单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个图形旋转180度后与原图形重合?A. 正方形B. 等边三角形C. 长方形D. 直角三角形2. 一个点绕着一个定点旋转360度,它的位置______。

A. 改变B. 不变C. 无法确定D. 与定点有关3. 下列哪个选项不是旋转的性质?A. 大小不变B. 形状不变C. 方向不变D. 位置不变4. 一个图形绕着一个点旋转90度,它的面积______。

A. 倍增B. 减半C. 不变D. 与旋转点有关5. 下列哪个图形不能通过旋转得到另一个图形?A. 正方形B. 长方形C. 圆形D. 梯形二、判断题(每题1分,共5分)1. 旋转是一种图形的平移运动。

()2. 任何图形旋转360度后都会回到原来的位置。

()3. 旋转会改变图形的大小和形状。

()4. 一个图形旋转180度后,其中心和边长都不变。

()5. 旋转是一种轴对称的运动。

()三、填空题(每题1分,共5分)1. 一个图形绕着一个点旋转90度,它的每个点都绕着这个点旋转了______度。

2. 一个图形绕着一个点旋转180度,它的每个点都绕着这个点旋转了______度。

3. 旋转前后,图形的大小和形状都______。

4. 一个图形绕着一个点旋转,这个点叫做______。

5. 旋转是一种______运动。

四、简答题(每题2分,共10分)1. 简述旋转的定义。

2. 旋转的性质有哪些?3. 旋转前后,图形的大小和形状是否改变?为什么?4. 旋转和平移有什么区别?5. 如何确定一个图形绕着一个点旋转了多少度?五、应用题(每题2分,共10分)1. 一个正方形绕着它的中心旋转90度,画出旋转后的图形。

2. 一个等边三角形绕着它的重心旋转180度,画出旋转后的图形。

3. 一个长方形绕着它的一个顶点旋转270度,画出旋转后的图形。

4. 一个圆形绕着它的圆心旋转360度,画出旋转后的图形。

图形的旋转单元测试(含答案)

图形的旋转单元测试(含答案)

第二十三章旋转测试题一、选择题(请将答案写在答题卡上)(每小题4分,共40分)1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心( ).A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到3.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)4.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

A.5个 B.2个 C.3个 D.4个P关于原点对称的点的坐标是()5.在平面直角坐标系中,点()3,2-A.(2,3) B.(—2,3) C.(—2,—3) D.(—3,2)6.将图形按顺时针方向旋转900后的图形是( )A B C D7.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()A、顺时针方向 500B、逆时针方向 500C、顺时针方向 1900D、逆时针方向 19008.如图所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.l个B.2个C.3个D.4个9.如图1,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O作0︒~90︒的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()10.P 是等边△ABC 内部一点,APB ∠、BPC ∠、CPA ∠的大小之比是5:6:7,所以PA 、PB 、PC 的长为边的三角形的三个角的大小之比是( ) (A )2:3:4 (B )3:4:5 (C )4:5:6 (D )不能确定二、填空题(请将答案写在答题卡上)(每小题4分,共36分)11.一条线段绕其上一点旋转90°与原来的线段位置是 关系.12.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且EF DF BE =+,则=∠E A F _____________.13.如左下图,O 是等边△ABC 内一点,将△AOB 绕A 点逆时针旋转,使得B 、O 两点的对应点分别为C 、D ,则旋转角为_____________,图中除△ABC 外,还有等边三角形是_____________.B14.如右上图所示,在四边形ABCD 中,AD ∥BC ,AD BC >,B ∠与C ∠互余,将AB ,CD 分别平移到EF 和EG 的位置,则△EFG 为________三角形,若cm AD 2=,cm BC 8=,则=FG ____________。

《图形的旋转》练习题

《图形的旋转》练习题

《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。

()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。

()3、图形的旋转改变了图形的形状和大小。

()4、图形的旋转不改变图形的形状和大小。

()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。

()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。

()7、旋转对称图形是旋转对称的。

()8、旋转对称的图形是旋转对称的。

()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。

()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。

()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。

2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。

在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。

七年级数学《图形的旋转》单元测试题

七年级数学《图形的旋转》单元测试题

七年级数学《图形的旋转》单元测试题时间120分钟,总分120分姓名: 班级: 成绩: 一、选择题:(每题3分,共30分)1、在右边四个图形中,既是轴对称图形又是中心对称图形的是( )A .①②③④B .③C .①③D .①②③2、在图形旋转中,下列说法中错误的是( )A. 图形上的每一点到旋转中心的距离相等B. 图形上的每一点移动的角度相同C. 图形上可能存在不动点D. 图形上任意两点的连线与其对应两点的连线相等 3、平面直角坐标系内一点P 34-(,)关于原点对称点的坐标是( ) A 、34(,-) B 、34-(,-) C 、34(,) D 、43(,-) 4、如图1,将△ABC 绕点A 旋转后得到△ADE ,则旋转方式是( )A 、顺时针旋转45°B 、逆时针旋转45°C 、顺时针旋转90°D 、逆时针旋转90° 5、如图2是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的 度数至少为( )度.A 、30 oB 、45 oC 、60 oD 、90 o图1 图2 图3 6、如图3,把图形绕它的中心旋转一周和原来图形重合 ( ) A 、1次 B 、2次 C 、3次 D 、4次 7、如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )8、下列4张扑克牌中,是中心对称图形的是 ( ).第12题图(A ) (B ) (C ) (D ) 9、对右边这个图形的判断,正确的是( )(A )这是一个轴对称图形,它有一条对称轴; (B )这是一个轴对称图形,但不是中心对称图形; (C )这是一个中心对称图形,但不是轴对称图形;(D )这既是轴对称图形,也是中心对称图形. 9题图 10题图 10、右边有两个边长为4cm 的正方形,其中一个正方形的 顶点在另一个正方形的中心上,那么图中阴影部分的 面积是( ).(A)4cm 2 (B)8cm 2 (C)16cm 2(D)无法确定二、填空题(每题3分,共30分)11、正方形绕中心至少旋转 度后能与自身重合.五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_____________.12、如图,P 是正三角形 ABC 内的一点,且PA =3,PB =4,PC =5.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为_______,∠APB =______°. 13、若点a 4(,)与3b (,)关于原点对称,则a b += . 14、如图5,△ABC 是等边三角形,D 为BC 边上的点,∠BAD =15°,△ABD 经旋转后到达△ACE 的位置,那么旋转角的度数是 .15、如图6,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的旋转复习单元测试 Prepared on 22 November 2020
图形的旋转复习单元测试
一、选择题
1、(2009年泸州)如图1,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’BA ,则∠PBP’的度数是 ( ) A .45° B .60° C .90° D .120°
2、(2009年陕西省) 如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是( ) A .30° B .45° C .60° D .90°
3、(2009年桂林市、百色市)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为 ( ).
A .(3,1)
B .(3,2)
C .(2,3)
D .(1,3) 4、、(2009年甘肃白银)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形
5、(2009年台州市)单词NAME 的四个字母中,是中心对称图形的是 ( )
A .N
B .A C.M D .E
6、(2009年广西钦州)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )
x
y
1 2 4 3 0 -1
-2 -3 1
2 3
A
B
A .等腰三角形
B .正三角形
C .等腰梯形
D .菱形
7、(2009年锦州)下列图形中,既是轴对称图形,又是中心对称图形的是 ( )
A B C D
8、 (2009年四川省内江市)已知如图1所示的四张牌,若将其中一张牌旋转180O 后得到图2,则旋转的牌是 ( )
9、(2009成都)在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′,则点A ′在平面直角坐标系中的位置是在 ( )
(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限 10、(2009年崇左)已知点A 的坐标为()a b ,,O 为坐标原点,连结
OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标 是( ).
A .()a b -,
B .()a b -,
C .()b a -,
D .()b a -,
图1
图2
A .
B .
C .
D .
11、(2009年河南)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月
牙②,则点A 的对应点A ’的坐标为 ( )
A.(2,2)
B.(2,4)
C.(4,2)
D.(1,2)
12、(2009年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )
13、(2009年淄博市)如图,点A ,B ,C 的坐标分别为
(01)(02)(30)-,,,,,.从下面四个点(33)M ,,(33)N -,,(30)P -,,(31)Q -,中选择一个点,以A ,B ,C 与该点为顶点的四边形
不是中心对称,则这个点是( ) A .M B .N C .P D .Q
二、填空题
1、(2009肇庆)在平面直角坐标系中,点(23)P -,关于原点对称点P '的坐标是 .
2、(2009年湖北十堰市)如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA ′,则点A ′的坐标是 .
图2
O
甲 乙


A
B
C
D




3、(2009年淄博市)如图,四边形EFGH 是由四边形ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸上A 点的位置,用(1,2)表示B 点的位置,那么四边形ABCD 旋转得到四边形EFGH 时的旋转中心用有序数对表示是 .
.4、(2009年梅州市)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 5、(2009年衡阳市)点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135o 到点B ,那么点B 的坐标是 _________ .
6、 (2009年枣庄市)如图,直线4
43
y x =-+与x 轴、y 轴分别交
于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则
点B '的坐标是 .
7、(2009年抚顺市)如图所示,在平面直角坐标系中,OAB △三个顶点
的坐标是(00)3452O A B ,、(,)、(,).将OAB △绕原点O 按逆时针方向旋转90°后得到11OA B △,则点1A 的坐标是 .
8、(2009年云南省)在平面直角坐标系中,已知3个点的坐标分别为
1(11)A ,、2(02)A ,、3(11)A -,
. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到
A
B E
C D x

2
A 为对称中心的对称点2P ,第3次电子蛙由2P点跳到以3A为对称中
心的对称点
3
P
,…,按此规律,电子蛙分别以
1
A、2A、3A为对称中心
继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是
2009
P
(_______ ,_______).
三、解答题
1、(2009年绵阳)如图是由若干个边长为1的小正方形组成的网格,请在图中作出将“蘑菇”ABCDE绕A点逆时针旋转90 再向右平移2个单位的图形(其中C、D为所在小正方形边的中点).
2、(2009年娄底)如图9所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是 .
(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形
OA2B2C2.
3、(2009年潍坊)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).画出ABC △绕点O 逆时针旋转90°后的A B C '''△.
4、(2009年长春)图①、图②均为76⨯的正方形网格,点A B C 、、在格点上.
(1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形,使其为轴对称图形.(画一个即可)(3分)
(2)在图②中确定格点E ,并画出以A B C E 、、、为顶点的四边形,使其为中心对称图形.(画一个即可)(3分)
5、(2009年株洲市)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.
(1)线段1OA 的长是 , 1AOB ∠的度数是 ;
(2)连结1AA ,求证:四边形11OAA B 是平行四边形; (3)求四边形11OAA B 的面积.
6、(2009年河南)如图,在Rt △ABC 中,∠ACB=90°, ∠B =60°,BC=2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D.过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.
(1) ①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________;
②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________;
(2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.
图①
图②。

相关文档
最新文档