振动与波习题练习

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动与波习题练习The final revision was on November 23, 2020

第4章 振动与波动

一、选择题

1. 在下列所述的各种物体运动中, 可视为简谐振动的是

[ ] (A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放

(B) 将弹簧振子置于光滑斜面上, 让其振动

(C) 从光滑的半圆弧槽的边缘释放一个小滑块

(D) 拍皮球时球的运动

. 2.一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为

[ ] (A) T (B) 2T

(C) (D)

3. 三只相同的弹簧(质量忽略不计)都一端固定, 另一端连接质量为m 的物体, 但放置情况不同.如图4-1-3所

示,其中一个平放, 一个斜放, 另

一个竖直放.如果让它们振动起

来, 则三者的

[ ] (A) 周期和平衡位置都不相同

(B) 周期和平衡位置都相同

(C) 周期相同, 平衡位置不同

(D) 周期不同, 平衡位置相同

4. 如图4-1-4所示,升降机中有一个作谐振动的单摆, 当升降

机静止时, 其振动周期为2 s , 当升降机以加速度上升时, 升

降机中的观察者观察到其单摆的振动周期与原来的振动周期

相比,将

[ ] (A) 增大 (B) 不变

(C) 减小 (D) 不能确定 图4-1-3

图4-1-4

. 5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为

[ ] (A) π (B) π32 (C) π34 (D) π5

4 6 在简谐振动的速度和加速度表达式中,都有一个负号, 这是意味着

[ ] (A) 速度和加速度总是负值

(B) 速度的相位比位移的相位超前

π2

1, 加速度的相位与位移的相位相差π (C) 速度和加速度的方向总是相同

(D) 速度和加速度的方向总是相反

7一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A) 6T (B) 8T (C) 12T (D) T 12

7 8 一作简谐运动质点的振动方程为π)21π2cos(5+

=t x , 它从计时开始, 在运动一个周期后

[ ] (A) 相位为零 (B) 速度为零

(C) 加速度为零 (D) 振动能量为零

9 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2

A x =

处向x 轴正方向运动, 则其运动方程可表示为 [ ] (A) )21cos(t A x ω= (B) )cos(2

t A x ω= (C) )3π2sin(--=T t A x π (D) )3π2cos(-=T t A x π 10. 当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为

[ ] (A) ν4 (B) ν2 (C) ν (D) 2

ν 11. 已知一简谐振动系统的振幅为A , 该简谐振动动能为其最大值一半的位置是 [ ] (A) 12

A (B) 22A (C) 32A (D) A 12. 一弹簧振子作简谐振动, 当其偏离平衡位置的位移大小为振幅的1/4时, 其动能为振动总能量的 [ ] (A) 167 (B) 16

15 (C) 169 (D) 1613 13 一轻质弹簧, 上端固定, 下端挂有质量为m 的重物, 其自由端振动的周期为T . 已知振子离开平衡位置为x 时其振动速度为v ,加速度为a ,且其动能与势能相等.试判断下列计算该振子劲度系数的表达式中哪个是错误的 [ ] (A) a mg k = (B) 22x

m k v = (C) x ma k = (D) 22π4T

m k = 14. 设卫星绕地球作匀速圆周运动.若卫星中有一单摆, 下述哪个说法是对的

[ ] (A) 它仍作简谐振动, 周期比在地面时大

(B) 它仍作简谐振动, 周期比在地面时小

(C) 它不会再作简谐振动

(D) 要视卫星运动速度决定其周期的大小

15. 弹簧振子在光滑水平面上作谐振动时, 弹性力在半个周期内所做的功为

[ ] (A) 2kA (B) 221kA (C) 24

1kA (D) 0 16 如果两个同方向同频率简谐振动的振动方程分别为

π)433cos(73.11+

=t x (cm)和 π)4

13cos(2+=t x (cm),则它们的合振动方程为 [ ] (A) π)433cos(73.0+=t x (cm) (B) π)413cos(73.0+=t x (cm)

(C) π)1273cos(2+=t x (cm) (D) π)12

53cos(2+=t x (cm) 17. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为 [ ] (A) 2π (B) 3π2 (C) 4

π (D) π 18. 关于振动和波, 下面几句叙述中正确的是

[ ] (A) 有机械振动就一定有机械波

(B) 机械波的频率与波源的振动频率相同

(C) 机械波的波速与波源的振动速度相同

(D) 机械波的波速与波源的振动速度总是不相等的

19. 按照定义,振动状态在一个周期内传播的距离就是波长.下列计算波长的方法中错误的是

[ ] (A) 用波速除以波的频率

(B) 用振动状态传播过的距离除以这段距离内的波数

(C) 测量相邻两个波峰的距离

(D) 测量波线上相邻两个静止质点的距离

20. 当x 为某一定值时, 波动方程)π(2cos λ

x T t A x -=所反映的物理意义是 [ ] (A) 表示出某时刻的波形 (B) 说明能量的传播

(C) 表示出x 处质点的振动规律 (D) 表示出各质点振动状态的分布

21. 已知一波源位于x = 5 m 处, 其振动方程为: )cos(ϕω+=t A y (m).当这波源产生的平面简谐波以波速u 沿x 轴正向传播时, 其波动方程为 [ ] (A) )(cos u x t A y -=ω (B) ])(cos[ϕω+-=u

x t A y (C) ])5(cos[ϕω++-=u x t A y (D) ])5(cos[ϕω+--=u

x t A y

相关文档
最新文档