蛋白质的定量测定实验报告

合集下载

蛋白质检验实验报告

蛋白质检验实验报告

一、实验目的1. 掌握蛋白质的定性检验方法。

2. 学习使用双缩脲试剂进行蛋白质的定量分析。

3. 了解蛋白质在生物体中的重要功能及其检测的意义。

二、实验原理蛋白质是由氨基酸通过肽键连接而成的大分子化合物,具有复杂的空间结构和多样的生物活性。

蛋白质的检验方法主要包括定性检验和定量分析。

1. 定性检验:通过观察蛋白质与特定试剂反应产生的颜色变化,判断蛋白质的存在与否。

2. 定量分析:利用双缩脲试剂与蛋白质中的肽键反应,生成紫色络合物,根据颜色深浅测定蛋白质的含量。

三、实验材料与试剂1. 实验材料:鸡蛋清、牛奶、豆浆、大豆粉、玉米粉、牛肉、鸡肉、猪肉、鱼、虾、蛋壳、鱼鳞、羽毛等。

2. 试剂:双缩脲试剂A(硫酸铜溶液)、双缩脲试剂B(氢氧化钠溶液)、无水乙醇、蒸馏水、标准蛋白质溶液(如牛血清白蛋白)等。

四、实验步骤1. 蛋白质定性检验- 取少量待测样品,加入双缩脲试剂A,振荡均匀。

- 加入双缩脲试剂B,振荡均匀。

- 观察溶液颜色变化,与标准蛋白质溶液颜色对比,判断蛋白质的存在与否。

2. 蛋白质定量分析- 准备一系列已知浓度的标准蛋白质溶液。

- 分别吸取一定量的标准蛋白质溶液和待测样品,加入双缩脲试剂A和B。

- 在相同条件下,测定溶液的吸光度。

- 以标准蛋白质溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

- 根据待测样品的吸光度,从标准曲线中查得蛋白质浓度。

五、实验结果与分析1. 蛋白质定性检验结果- 鸡蛋清、牛奶、豆浆、大豆粉、牛肉、鸡肉、猪肉、鱼、虾等样品均呈阳性反应,说明这些样品中含有蛋白质。

- 蛋壳、鱼鳞、羽毛等样品呈阴性反应,说明这些样品中蛋白质含量较低或不含蛋白质。

2. 蛋白质定量分析结果- 通过绘制标准曲线,可以计算出待测样品中蛋白质的浓度。

六、实验讨论1. 本实验采用双缩脲试剂进行蛋白质的检验,操作简便,结果可靠。

2. 蛋白质在生物体中具有重要的生理功能,如构成细胞结构、运输营养物质、调节生理活动等。

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告

1. 熟悉蛋白质定量测定原理和方法。

2. 学会使用双缩脲法测定蛋白质含量。

3. 提高实验操作技能和数据处理能力。

二、实验原理蛋白质在碱性条件下与硫酸铜反应,生成紫色络合物。

在一定浓度范围内,蛋白质浓度与络合物颜色深浅成正比。

通过比色法测定蛋白质溶液的吸光度,即可计算出蛋白质的含量。

三、实验材料与仪器1. 实验材料:- 蛋白质标准溶液- 未知蛋白质溶液- 碱性铜溶液- 稀释液- 10%氢氧化钠溶液- 1%硫酸铜溶液- 比色管- 移液器- 分光光度计2. 实验仪器:- 电子天平- 磁力搅拌器- 移液管- 试管1. 标准曲线的制作:- 准备6个比色管,分别加入0、0.5、1.0、2.0、3.0、4.0 mL蛋白质标准溶液。

- 向每个比色管中加入5 mL碱性铜溶液,混匀。

- 在室温下放置10分钟,使溶液颜色稳定。

- 用移液器取适量溶液于比色管中,加入10%氢氧化钠溶液至刻度线。

- 在540 nm波长下,用分光光度计测定吸光度,以蛋白质浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 未知蛋白质含量的测定:- 取适量未知蛋白质溶液于比色管中,重复上述操作。

- 在540 nm波长下,测定吸光度。

- 根据标准曲线,计算出未知蛋白质溶液的蛋白质含量。

五、实验结果与分析1. 标准曲线:- 标准曲线线性良好,相关系数R²=0.998。

2. 未知蛋白质含量的测定:- 标准曲线在0-4 mg/mL范围内线性良好。

- 未知蛋白质溶液的蛋白质含量为3.2 mg/mL。

六、实验讨论1. 本实验采用双缩脲法测定蛋白质含量,操作简便、快速,准确度较高。

2. 在实验过程中,应注意以下几点:- 标准曲线的制作要严格控制溶液浓度和反应时间。

- 未知蛋白质溶液的测定要确保溶液的准确量取。

- 实验过程中要避免杂质的干扰,保证实验结果的准确性。

七、结论本实验通过双缩脲法成功测定了未知蛋白质溶液的蛋白质含量,结果表明该方法具有操作简便、快速、准确的特点,适用于蛋白质定量测定。

蛋白定量的实验报告

蛋白定量的实验报告

蛋白定量的实验报告本实验旨在利用免疫印迹(Western blot)技术进行蛋白定量,了解不同浓度蛋白样品的定量方法及其应用,为今后实验设计提供参考。

实验原理:免疫印迹是一种常用的蛋白分析技术,通过在蛋白印迹膜上利用特异性抗体与目标蛋白相互作用,从而检测和定量目标蛋白的存在量。

免疫印迹技术的基本步骤包括:电泳分离蛋白样品、将蛋白转移至膜上、与抗体结合、信号发光和检测。

实验步骤:1. 准备蛋白样品:将待测蛋白样品依次制备成不同浓度的标准品,分别为25 μg/mL、50 μg/mL、75 μg/mL和100 μg/mL。

2. SDS-PAGE电泳:将不同浓度的蛋白样品加入蛋白电泳缓冲液,按照分子量大小进行电泳分离。

3. 蛋白转移:将电泳分离后的蛋白转移到聚丙烯酰胺膜上,可以使用湿式转印法或半湿式转印法。

4. 阻断与孵育:用5%非脂乳糖或3%牛血清蛋白阻断膜上的非特异性结合位点,防止非特异性结合。

5. 一抗孵育:将目标蛋白的一抗加入阻断液中,孵育膜,使抗体与目标蛋白特异性结合。

6. 二抗孵育:将与目标蛋白一抗结合的二抗加入孵育液中,孵育膜,二抗一般会携带荧光物质或酶标记,在可见光或紫外线下观察或进一步检测。

7. 发光与显影:通过添加发光底物或显色剂,观察蛋白在膜上的相对强度并进行定量分析。

结果与讨论:在本次实验中,我们成功制备了不同浓度的标准品,并进行了免疫印迹实验,通过观察膜上的发光信号强度来定量目标蛋白的含量。

从实验结果中我们可以看出,随着标准品蛋白浓度的增加,免疫印迹膜上的发光信号强度也呈现出增加的趋势。

这是因为在免疫印迹技术中,标准品的蛋白浓度与免疫印迹膜上的发光信号强度成正相关关系。

因此,通过在实验中测量标准品的发光信号强度,可以根据标准曲线来计算待测样品中目标蛋白的含量。

需要注意的是,在进行免疫印迹实验时,关键的环节是选择合适的抗体。

抗体的特异性与亲和力会直接影响免疫印迹结果的准确性。

因此,在实验设计中,需要充分考虑抗体的选择,并进行合适的预实验来验证抗体的特异性和性能。

最新原创蛋白质的定量测定实验报告

最新原创蛋白质的定量测定实验报告

蛋白质的定量测定(BCA试剂盒法)实验报告一、实验目的:掌握BCA法测定蛋白质浓度的方法及原理。

二、实验原理:在碱性的环境下蛋白质与Cu2+络合并将Cu2+还原成Cu1+。

BCA法与Cu1+结合形成稳定的蓝紫色复合物,在562nm处有高的光吸收值并与蛋白质浓度成正比,据此可测定蛋白质浓度。

三、实验材料:实验药品和试剂:BCA Reagent 100 ml (普利莱基因技术有限公司)Cu Reagent 2.5ml (普利莱基因技术有限公司)BSA standard 4mg/ml 1 ml 待测溶液。

仪器:96孔板酶标分析仪(DNM-9602 北京普朗新技术有限公司)移液枪试管EP管恒温水浴箱。

四、实验方法与步骤:(1)工作溶液配置:将5ml的BCA Reagent与100μl的Cu Reagent混合为WR工作试剂。

(2)标准蛋白溶液的配置:用上节课已配置好的0.1M的PBS缓冲液进行配比稀释:40μl 4000μg/ml BSA+60μl 0.1M的PBS=100μl(BSA=1600μg/ml)。

(3)倍比稀释:为减小误差,将标准蛋白和待测样本分为三个相同组,每个孔加25μl,浓度从上到下依次增加,H行为待测溶液。

从配置好的100μl标准蛋白溶液中取出75μl(浓度为1600μg/ml),再将75μl标准蛋白溶液取出一半到EP管中,将37.5μl的PBS缓冲液加入取出的蛋白溶液中(浓度为800μg/ml),在EP管上做好浓度标记,依次倍比稀释,得到BSA标准溶液1600,800,400,200,100,50,25μg/ml,各75μl。

省略1600μg/ml标准管直接从800μg/ml开始。

(4)标准测定:在每孔25μl标准品或待测样品中,各加入200μl WR 工作液轻摇混合。

表1 微板测定方案的加样量和比例(5)反应:将配好溶液的96孔板37℃恒温水浴箱放置30min。

(6)测定:30min后将96孔板放进酶标分析仪中进行结果的检测,以A1做参比,在562nm波长下比色,记录吸光值。

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告一、实验目的。

本实验旨在通过比色法和BCA法两种方法,对蛋白质的定量测定进行实验,以便了解蛋白质含量的测定原理和方法。

二、实验原理。

1. 比色法,比色法是通过测定蛋白质与试剂发生的化学反应后产生的色素溶液的吸光度,从而计算出蛋白质的含量。

常用的试剂有布拉德福试剂和Lowry试剂。

2. BCA法,BCA法是通过测定蛋白质与BCA试剂在碱性条件下发生的紫色螯合物的吸光度,从而计算出蛋白质的含量。

三、实验材料和仪器。

1. 实验材料,蛋白质标准品、蛋白质样品、比色法试剂(布拉德福试剂或Lowry试剂)、BCA试剂、离心管、比色皿等。

2. 实验仪器,分光光度计、离心机、移液器、比色皿架等。

四、实验步骤。

1. 比色法实验步骤:a. 取适量蛋白质标准品和待测样品,分别加入布拉德福试剂或Lowry试剂。

b. 在室温下反应一定时间后,用分光光度计分别测定吸光度。

c. 根据标准曲线,计算出待测样品中蛋白质的含量。

2. BCA法实验步骤:a. 取适量蛋白质标准品和待测样品,分别加入BCA试剂。

b. 在室温下反应一定时间后,用分光光度计测定吸光度。

c. 根据标准曲线,计算出待测样品中蛋白质的含量。

五、实验结果与分析。

通过比色法和BCA法两种方法测定了蛋白质的含量,得到了相应的实验数据。

经过对实验数据的分析,可以得出蛋白质含量的定量结果。

六、实验结论。

根据实验结果,比色法和BCA法都可以用于蛋白质的定量测定,但在实际应用中需要根据具体情况选择合适的方法。

同时,实验结果也验证了蛋白质定量测定方法的准确性和可靠性。

七、实验总结。

本实验通过比色法和BCA法两种方法,对蛋白质的定量测定进行了实验,深化了对蛋白质含量测定原理和方法的理解,提高了实验操作技能和数据处理能力。

八、参考文献。

1. 《生物化学实验技术手册》。

2. Smith, P. K., et al. (1985). "Measurement of protein using bicinchoninic acid." Analytical Biochemistry 150(1): 76-85.以上就是本次蛋白质的定量测定实验报告的全部内容。

蛋白质含量测定实验报告

蛋白质含量测定实验报告

蛋白质含量测定实验报告
实验目的:测定样品中蛋白质的含量。

实验原理:
蛋白质是生物体中重要的营养成分,其含量的测定对于食品、生物化学研究等都具有重要意义。

本实验采用双氧水法测定蛋白质的含量。

双氧水法原理是将双氧水与被测物中的蛋白质发生氧化反应,生成到氨基酸的过氧化氢,过氧化氢再与钼酸铵生成深蓝色化合物。

根据形成的深蓝色化合物的吸光度与蛋白质的含量成正比关系,可以通过比色法测定样品中蛋白质的含量。

实验步骤:
1. 将待测样品和标准蛋白质溶液分别取1ml到不同的试管中。

2. 加入4ml双氧水试剂,混匀。

3. 在室温下放置20分钟。

4. 加入适量的硫酸试剂,混匀。

5. 在60℃水浴锅中恒温加热10分钟。

6. 冷却至室温。

7. 分别将标准蛋白质溶液和待测样品溶液吸取1ml到比色皿中。

8. 用比色皿中的溶液分别测定吸光度,以比色皿中双氧水试剂为参比。

9. 根据标准曲线计算待测样品中蛋白质的含量。

实验结果:
根据吸光度测定值和标准曲线得到待测样品中蛋白质的含量为X mg/ml。

实验讨论:
蛋白质的含量测定是一项常见的实验,通过双氧水法可以快速准确地测定样品中蛋白质的含量。

在实验过程中,应注意操作的准确性和实验条件的控制,避免测定误差的产生。

此外,标准曲线的制备和测定结果的分析也是关键步骤,应进行仔细的处理和验证。

实验结论:
经过测定,得到待测样品中蛋白质的含量为X mg/ml。

蛋白质测定的实验报告

蛋白质测定的实验报告

蛋白质测定的实验报告蛋白质测定的实验报告引言:蛋白质是生命体内重要的组成部分,对于维持生命活动起着重要作用。

因此,准确测定蛋白质的含量对于生物学研究和医学诊断具有重要意义。

本实验旨在通过两种常用的蛋白质测定方法——布拉德福法和BCA法,来测定未知蛋白质溶液的含量,并比较两种方法的优缺点。

实验材料和方法:实验所需材料包括:布拉德福试剂盒、BCA试剂盒、未知蛋白质溶液、标准蛋白质溶液、比色皿、吸光度计等。

实验步骤如下:1. 准备工作:将布拉德福试剂盒和BCA试剂盒从冰箱中取出,恢复至室温。

2. 制备标准曲线:分别取不同浓度的标准蛋白质溶液,加入相应的试管中,然后按照试剂盒说明书的方法进行反应,最后测定吸光度。

3. 测定未知样品:将未知蛋白质溶液加入比色皿中,然后按照试剂盒说明书的方法进行反应,最后测定吸光度。

4. 计算蛋白质浓度:根据标准曲线上的吸光度值,通过线性回归计算未知蛋白质溶液的浓度。

实验结果:经过实验测定,我们得到了未知蛋白质溶液的浓度。

使用布拉德福法测定的结果为X g/L,而使用BCA法测定的结果为Y g/L。

讨论:布拉德福法和BCA法是常用的蛋白质测定方法,它们各自有着优缺点。

布拉德福法是一种基于蛋白质与染料结合的方法。

其优点是操作简单,结果稳定可靠。

然而,布拉德福法对于某些蛋白质可能存在的干扰物敏感,因此在选择试剂盒时需要根据具体样品的特点进行选择。

此外,布拉德福法对于低浓度的蛋白质测定不够敏感,因此在测定低浓度样品时需要进行稀释。

BCA法是一种基于蛋白质与铜离子的还原反应的方法。

其优点是对于大部分蛋白质都具有较好的灵敏度和特异性。

此外,BCA法在测定低浓度样品时表现出较好的线性关系,因此在测定低浓度样品时更为适用。

然而,BCA法对于一些干扰物,如还原剂和某些金属离子,也较为敏感,因此在实验操作时需要注意。

综上所述,布拉德福法和BCA法都是常用的蛋白质测定方法,它们各有优劣。

在实际应用中,我们需要根据具体样品的特点和测定的目的选择合适的方法。

蛋白质含量测定实验报告

蛋白质含量测定实验报告

一、实验目的1. 理解并掌握考马斯亮蓝法测定蛋白质含量的原理和操作步骤。

2. 学习使用分光光度计进行比色分析。

3. 通过实验,掌握蛋白质含量测定的实际操作,提高实验技能。

二、实验原理考马斯亮蓝法是一种快速、简便的蛋白质定量方法。

该法基于蛋白质与考马斯亮蓝G-250染料的结合,蛋白质含量与染料结合程度呈线性关系。

通过测定溶液在特定波长下的吸光度,可以计算出蛋白质的含量。

实验原理:蛋白质分子中的肽键在碱性条件下能与考马斯亮蓝G-250染料发生结合,形成有色的复合物。

该复合物在特定波长下有特征性吸收峰,其吸光度与蛋白质含量呈线性关系。

三、实验材料1. 蛋白质标准品(如牛血清白蛋白)。

2. 考马斯亮蓝G-250染料。

3. 6.0mol/L NaOH溶液。

4. 双蒸水。

5. 分光光度计。

6. 试管、移液器、吸管等实验器材。

四、实验步骤1. 标准曲线制作:将不同浓度的蛋白质标准品配制成溶液,分别加入考马斯亮蓝G-250染料,在特定波长下测定吸光度,绘制标准曲线。

2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。

3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。

五、实验结果与分析1. 标准曲线制作:根据实验数据,绘制标准曲线,得出线性方程。

2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。

3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。

实验结果显示,待测样品中的蛋白质含量为XX g/L。

六、实验讨论1. 实验过程中,应注意操作规范,避免污染和误差。

2. 在制作标准曲线时,应选择合适的浓度范围,保证线性关系良好。

3. 待测样品的稀释倍数应根据实际浓度选择,以保证在检测范围内。

4. 在测定吸光度时,应注意仪器校准和操作,避免误差。

七、实验总结本次实验通过考马斯亮蓝法测定了待测样品中的蛋白质含量,实验结果准确可靠。

蛋白含量测定实验报告

蛋白含量测定实验报告

一、实验目的1. 掌握双缩脲试剂法测定蛋白质含量的原理和方法;2. 熟悉实验操作步骤,提高实验技能;3. 了解蛋白质含量测定的意义和实际应用。

二、实验原理双缩脲试剂法是一种常用的蛋白质定量方法,其原理是蛋白质分子中的肽键在碱性条件下与铜离子反应,生成紫红色络合物。

紫红色络合物的吸光度与蛋白质含量在一定范围内呈线性关系,通过测定吸光度,可以计算出蛋白质的含量。

三、实验材料与仪器1. 实验材料:- 蛋白质标准品- 双缩脲试剂A:硫酸铜溶液- 双缩脲试剂B:酒石酸钾钠溶液- 0.1mol/L氢氧化钠溶液- 0.9%氯化钠溶液- 试管、移液器、分光光度计、天平等2. 实验仪器:- 双缩脲试剂瓶- 磁力搅拌器- 水浴锅- 721型分光光度计四、实验步骤1. 配制标准蛋白质溶液:准确称取一定量的蛋白质标准品,用0.1mol/L氢氧化钠溶液溶解,配制成一定浓度的标准蛋白质溶液。

2. 混合试剂:将双缩脲试剂A和双缩脲试剂B按照一定比例混合,配制成双缩脲试剂。

3. 设置实验组:取若干支试管,分别加入不同浓度的标准蛋白质溶液、待测蛋白质溶液和0.9%氯化钠溶液。

4. 添加试剂:向每组试管中加入适量的双缩脲试剂,混匀。

5. 水浴加热:将试管放入水浴锅中,加热至60℃,保持10分钟。

6. 冷却:取出试管,置于室温下冷却。

7. 测定吸光度:用721型分光光度计在540nm波长下测定吸光度。

8. 绘制标准曲线:以标准蛋白质溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

9. 计算待测蛋白质含量:根据待测蛋白质溶液的吸光度,从标准曲线上查得相应的蛋白质浓度,计算待测蛋白质含量。

五、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制标准曲线。

2. 待测蛋白质含量计算:根据待测蛋白质溶液的吸光度,从标准曲线上查得相应的蛋白质浓度,计算待测蛋白质含量。

六、讨论与心得1. 实验过程中,要注意实验操作的准确性,避免误差产生。

2. 双缩脲试剂法测定蛋白质含量具有操作简便、快速、灵敏等优点,但在实际应用中,要注意选择合适的试剂和仪器,以保证实验结果的准确性。

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告实验目的:1.掌握蛋白质的定量测定方法;2.熟悉实验中所使用的试剂和仪器设备的操作;3.学习实验数据的处理与分析。

实验原理:本实验采用布拉德福法测定蛋白质的浓度。

该方法基于蛋白质与底物组成的复合物在碱性条件下,与染料结合从而使溶液颜色发生变化的原理,通过比色法确定蛋白质的浓度。

实验步骤:1.准备样品溶液:将待测蛋白质溶解在透明的蛋白质溶解缓冲液中,并振荡使其充分溶解。

2.制备标准曲线:将一系列蛋白质标准溶液分别取0.1mL放入不同的离心管中,加入相同体积的蛋白质溶解缓冲液,并与待测样品保持相同的操作时间和温度。

然后,加入一定体积的布拉德福试剂,振荡混匀,置于室温反应一定时间。

3.测定吸光度:利用分光光度计设置在布拉德福试剂的最大吸收波长下,测定待测样品及标准品溶液的吸光度。

4.绘制标准曲线:将各标准溶液的吸光度与其对应的蛋白质质量浓度制成曲线,确定直线方程。

5.计算待测样品中蛋白质浓度:根据待测样品的吸光度,利用标准曲线方程计算出蛋白质的浓度。

实验结果与分析:根据实验测得的数据,绘制标准曲线图,并通过线性回归得到直线方程。

利用该方程计算得到待测样品中蛋白质的浓度为X mg/mL。

实验讨论与改进:1.在实验过程中,确保各个试剂、仪器设备的操作准确无误。

2.实验中的温度和时间对于结果的准确性有一定的影响,可以进一步优化温度和反应时间的选择。

结论:本实验通过布拉德福法测定蛋白质的浓度,利用标准曲线确定了待测样品中蛋白质的浓度为X mg/mL。

该方法简单易行,测定结果可靠,适用于蛋白质浓度的定量测定。

蛋白质的测定实验报告

蛋白质的测定实验报告

蛋白质的测定实验报告蛋白质的测定实验报告引言:蛋白质是生命体内最重要的有机物之一,它在细胞结构、酶催化、免疫功能等方面起着关键作用。

因此,准确测定蛋白质的含量对于生物学研究和临床诊断具有重要意义。

本实验旨在通过测定蛋白质的含量,了解其在生物体内的分布和功能。

实验材料与方法:1. 实验材料:蛋白质标准品、样品、二硫苏糖溶液、布鲁斯基试剂、NaOH溶液、硫酸、显色剂。

2. 实验仪器:分光光度计、离心机、比色皿、移液管等。

3. 实验步骤:a. 制备标准曲线:取不同浓度的蛋白质标准品,分别加入二硫苏糖溶液和布鲁斯基试剂,使其发生显色反应。

使用分光光度计测定吸光度,并绘制标准曲线。

b. 测定样品:取待测样品,加入二硫苏糖溶液和布鲁斯基试剂,使其发生显色反应。

使用分光光度计测定吸光度,并根据标准曲线计算样品中蛋白质的含量。

结果与讨论:经过实验测定,得到了蛋白质标准曲线,并通过该曲线计算了待测样品中蛋白质的含量。

实验结果显示,样品A中蛋白质含量为10mg/mL,样品B中蛋白质含量为15mg/mL。

蛋白质的测定实验是基于布鲁斯基法的原理进行的。

布鲁斯基试剂与蛋白质中的酪氨酸残基发生酸性条件下的酮醇互变反应,生成紫色化合物。

该化合物在特定波长下具有最大吸光度,通过测定吸光度可以间接测定蛋白质的含量。

实验中使用的二硫苏糖溶液起到还原剂的作用,将蛋白质中的二硫键还原为巯基,使其能够与布鲁斯基试剂反应。

NaOH溶液用于调节反应体系的酸碱度,保证反应能够顺利进行。

实验中的离心机起到了样品与试剂的混合作用,使反应能够充分进行。

比色皿则用于容纳反应液体,方便使用分光光度计测定吸光度。

蛋白质的测定实验中需要注意的是,样品的选择和处理。

样品的选择应该具有代表性,并且需要根据实际需要进行适当的稀释或浓缩。

同时,样品的处理过程中要避免蛋白质的降解和损失,以保证测定结果的准确性。

本实验中使用的蛋白质标准品是已知浓度的蛋白质溶液,通过与样品一同进行测定,可以得到样品中蛋白质的含量。

蛋白质测定实验报告

蛋白质测定实验报告

一、实验目的1. 理解蛋白质测定的原理和方法。

2. 掌握双缩脲试剂法测定蛋白质含量的基本操作步骤。

3. 学会使用分光光度计进行蛋白质定量分析。

二、实验原理蛋白质是由氨基酸通过肽键连接而成的大分子有机化合物,具有重要的生物学功能。

蛋白质含量是生物样品中的重要指标之一。

本实验采用双缩脲试剂法测定蛋白质含量,该法基于蛋白质分子中的肽键在碱性条件下与铜离子发生反应,生成紫红色络合物,其吸光度与蛋白质含量成正比。

三、实验材料与试剂1. 实验材料:鸡蛋清、牛血清白蛋白、牛血清、双缩脲试剂A、双缩脲试剂B、蒸馏水、分光光度计等。

2. 试剂:(1)双缩脲试剂A:称取硫酸铜0.1g,溶于50mL蒸馏水中;(2)双缩脲试剂B:称取酒石酸钾钠0.5g、碘化钾0.1g,溶于50mL蒸馏水中;(3)蛋白质标准溶液:配制浓度为0.1mg/mL的蛋白质标准溶液。

四、实验步骤1. 标准曲线绘制(1)取6支10mL具塞试管,分别加入0.0、0.1、0.2、0.3、0.4、0.5mL蛋白质标准溶液;(2)向各试管中加入1.5mL双缩脲试剂A;(3)混匀,室温放置10分钟;(4)加入5mL双缩脲试剂B;(5)混匀,室温放置10分钟;(6)以蒸馏水为空白,用分光光度计在540nm波长处测定吸光度;(7)以蛋白质浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 样品测定(1)取6支10mL具塞试管,分别加入0.0、0.1、0.2、0.3、0.4、0.5mL待测样品;(2)同标准曲线绘制步骤,测定吸光度;(3)根据标准曲线,计算样品蛋白质含量。

五、实验结果与分析1. 标准曲线绘制以蛋白质浓度为横坐标,吸光度为纵坐标,绘制标准曲线,得到线性方程为:y = 0.0019x + 0.0032,相关系数R² = 0.9986。

2. 样品测定根据标准曲线,计算各样品蛋白质含量如下:(1)鸡蛋清:0.5mg/mL;(2)牛血清:0.4mg/mL。

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告实验目的:本实验旨在学习如何通过定量分析方法来测定蛋白质的含量,并了解其原理与步骤,掌握实验技能。

实验原理:本实验采用了伯威尔法来测定蛋白质的含量,其原理是使用布莱德福试剂与蛋白质反应,得到紫色化合物,再通过光度计量测光密度,最后根据光密度与标准曲线得出蛋白质含量。

实验步骤:1. 制备标准蛋白质溶液:取不同浓度的酪蛋白标准品称取相应的质量,加入去离子水中定容制成相应浓度的标准蛋白质溶液。

2. 取待测样品加入少许的生理盐水加以均匀悬浮后,以PBS (Phosphate Buffer Saline)定容到一定的浓度。

3. 取10ml的试管,依次加入不同浓度的标准蛋白质溶液分别制成标准曲线,其中最高的浓度为2mg/ml。

4. 在本次实验中样品大部分成分已知,加入生理盐水的原因是为了将待测浓度控制在标准曲线范围内,以保证准确度,同样的超出标准曲线的部分需要稀释。

5. 向标准曲线上各试管加入1ml的布莱德福试剂,摇晃后静置5分钟。

6. 在550nm波长下使用光度计测光密度。

7. 记录测得的各标准点吸光值,并作图得到标准曲线。

8. 根据待测样品的吸光值和标准曲线,计算出样品中的蛋白质浓度。

实验结果:根据标准曲线,以及不同待测样品的吸光值,我们成功计算并得出各样品中蛋白质的浓度如下:样品编号蛋白质浓度(mg/ml)1 0.82 1.23 0.54 0.65 0.9实验结论:通过以上实验步骤,我们成功运用伯威尔法测定出了待测样品中蛋白质的含量。

实验结果表明,实验仪器操作规范,数据准确可靠。

蛋白质是生命体中重要的物质,其定量测定对于生物化学研究至关重要。

此次实验,我们不仅掌握了具体测定方法,而且也深化了我们对蛋白质含量分析的理解和认识。

蛋白质的定性实验报告

蛋白质的定性实验报告

一、实验目的1. 了解蛋白质的基本性质和鉴定方法。

2. 掌握使用化学试剂对蛋白质进行定性的基本操作步骤。

3. 熟悉蛋白质与某些特定试剂反应的颜色变化,提高对蛋白质的识别能力。

二、实验原理蛋白质是生物体内重要的有机化合物,由氨基酸组成。

蛋白质具有多种功能,如构成细胞结构、催化化学反应、传递信息等。

蛋白质的定性实验主要利用其与特定试剂反应产生的颜色变化来识别和鉴定。

三、实验材料与试剂1. 实验材料:鸡蛋清、鸡蛋黄、牛奶、大豆蛋白等。

2. 试剂:双缩脲试剂、浓硝酸、氢氧化钠溶液、三氯乙酸、苯酚等。

3. 仪器:试管、烧杯、滴管、酒精灯、显微镜等。

四、实验步骤1. 蛋白质鉴定实验(1)取鸡蛋清、鸡蛋黄、牛奶、大豆蛋白等样品,分别加入试管中。

(2)向每个试管中加入适量的双缩脲试剂,观察颜色变化。

(3)向每个试管中加入浓硝酸,观察颜色变化。

(4)向每个试管中加入氢氧化钠溶液,观察颜色变化。

2. 蛋白质溶解性实验(1)取鸡蛋清、鸡蛋黄、牛奶、大豆蛋白等样品,分别加入试管中。

(2)向每个试管中加入适量的三氯乙酸,观察蛋白质的溶解性。

(3)向每个试管中加入适量的苯酚,观察蛋白质的溶解性。

3. 蛋白质分子量测定实验(1)取鸡蛋清、鸡蛋黄、牛奶、大豆蛋白等样品,分别加入试管中。

(2)向每个试管中加入适量的双缩脲试剂,观察颜色变化。

(3)将每个试管中的溶液用显微镜观察,计算蛋白质分子量。

五、实验结果与分析1. 蛋白质鉴定实验(1)双缩脲试剂与蛋白质反应,产生紫色复合物,表明样品中含有蛋白质。

(2)浓硝酸与蛋白质反应,产生黄色复合物,表明样品中含有蛋白质。

(3)氢氧化钠溶液与蛋白质反应,产生红色复合物,表明样品中含有蛋白质。

2. 蛋白质溶解性实验(1)三氯乙酸与蛋白质反应,蛋白质溶解性降低,表明样品中含有蛋白质。

(2)苯酚与蛋白质反应,蛋白质溶解性降低,表明样品中含有蛋白质。

3. 蛋白质分子量测定实验通过显微镜观察,根据蛋白质颜色深浅和大小,计算出蛋白质分子量。

生化实验 蛋白定量分析实验报告

生化实验 蛋白定量分析实验报告

蛋白定量分析实验实验一双缩脲法测定蛋白质含量一.实验目的掌握双缩脲法定量测定蛋白质含量的原理和标准曲线的绘制。

二.实验原理在碱性溶液中,具有两个或两个以上肽键的化合物(如蛋白质)可与Cu2+结合生成紫色化合物(双缩脲反应),颜色深浅与蛋白质浓度成正比,故可用比色法测定蛋白质的浓度。

在一定条件下,未知样品的溶液与标准蛋白质溶液同时反应,并于520nm下比色,可以通过标准蛋白质的标准曲线求出未知样品的蛋白质浓度。

三.实验仪器及试剂容量瓶、试管、试管架、恒温水浴槽、吸量管、分光光度计、比色皿试剂:①标准酪蛋白溶液10mg/ml②双缩脲试剂: 溶解2.5g CuSO4·5H2O于100ml水中,加热溶解,取酒石酸钠10g、碘化钾5g,溶于500ml水中,再加5mol/L NaOH溶液300ml混合,倒入硫酸铜溶液,加水至1000ml③小鼠肝脏蛋白原浆四.实验内容(1)取小试管7支,编号,按下表注入溶液(2)混匀后,于37℃水浴中保温15min,在520nm波长下比色,以第6管调零点,测得各管的吸光度值为纵坐标,蛋白质的克数为横坐标,绘成曲线。

(3)按表中第七管的数据加入溶液,在37℃水浴中放置15min,测其吸光度,根据吸光度值查标准曲线即得出每100ml小鼠肝脏蛋白原浆溶液中蛋白质的克数。

五.实验数据记录及结果分析绘制曲线如下:由图可知,当吸光度为0.107时,相对应的蛋白质克数为1.38 mg,则100ml 小鼠肝脏蛋白原浆液中蛋白质克数为1.38 g。

实验二考马斯亮蓝法测定蛋白质含量一.实验目的掌握考马斯亮蓝法定量测定蛋白质含量的原理和方法;熟悉紫外分光光度计的使用。

二.实验原理考马斯亮蓝在游离状态下呈红色,当它与蛋白质结合后变为蓝色,在一定蛋白质浓度范围内,结合物在595 nm波长下有最大吸收峰,测其光的吸收量即可得结合蛋白质的量。

三.实验仪器及试剂仪器:分光光度计,试管,吸量管,比色皿试剂:①考马斯亮蓝试剂: 考马斯亮蓝G-250 100mg溶于50 ml 95%乙醇中,加入100ml 85%磷酸,用蒸馏水稀释至1000 ml。

蛋白质的测定实验报告

蛋白质的测定实验报告

一、实验目的1. 掌握蛋白质的测定原理和方法;2. 学会使用双缩脲试剂和凯氏定氮法测定蛋白质含量;3. 了解蛋白质在生物体中的重要作用。

二、实验原理蛋白质是由氨基酸通过肽键连接而成的大分子化合物,是生物体的重要组成部分。

蛋白质的测定方法有很多,本实验主要介绍双缩脲试剂法和凯氏定氮法。

1. 双缩脲试剂法:蛋白质分子中的肽键在碱性条件下与铜离子反应,生成紫红色络合物。

根据络合物颜色的深浅,可以测定蛋白质的含量。

2. 凯氏定氮法:蛋白质分子中的氮含量相对稳定,约为16%。

通过测定样品中的氮含量,可以计算出蛋白质的含量。

三、实验材料与仪器1. 实验材料:鸡蛋清、硫酸铵、氯化钠、双缩脲试剂、凯氏定氮试剂、蒸馏水、滴定管、试管、烧杯、电炉、天平等。

2. 仪器:双缩脲比色计、凯氏定氮仪、分析天平、移液管、滴定管、酒精灯等。

四、实验步骤1. 双缩脲试剂法测定蛋白质含量(1)取一定量的鸡蛋清溶液,加入双缩脲试剂,观察颜色变化。

(2)用双缩脲比色计测定吸光度。

(3)根据标准曲线计算蛋白质含量。

2. 凯氏定氮法测定蛋白质含量(1)取一定量的鸡蛋清溶液,加入硫酸铵和氯化钠,混匀。

(2)将混合液转移到凯氏烧瓶中,加入硫酸和硫酸铜,加热消化。

(3)将消化液转移到蒸馏瓶中,加入过氧化氢和氢氧化钠,进行蒸馏。

(4)收集蒸馏液,用滴定管滴定剩余的酸液。

(5)根据滴定结果计算氮含量,进而计算出蛋白质含量。

五、实验结果与分析1. 双缩脲试剂法测定蛋白质含量通过双缩脲比色计测定吸光度,得到蛋白质含量为x g/L。

2. 凯氏定氮法测定蛋白质含量通过滴定计算,得到氮含量为y g/L,进而计算出蛋白质含量为z g/L。

六、实验结论1. 通过双缩脲试剂法和凯氏定氮法,可以测定蛋白质含量。

2. 蛋白质在生物体中具有重要作用,是生命活动的基础。

3. 本实验操作简便,结果可靠,为蛋白质的测定提供了有效方法。

七、注意事项1. 在进行双缩脲试剂法测定时,应确保试剂的准确性,避免误差。

蛋白质测定实验报告

蛋白质测定实验报告

蛋白质测定方法——化学报告蛋白质的检测酚试剂法灵敏度较高20~250mg 费时蛋白质在碱性溶液中其肽键与Cu2+螯合,形成蛋白质一铜复合物,此复合物使酚试剂的磷钼酸还原,产生蓝色化合物酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:1 材料与方法1.1 仪器材料(1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。

(2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0.050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。

1.2 实验方法(1)凯氏定氮法测定蛋白质含量将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。

为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。

消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。

每个样品做三次重复测定,取平均值。

(2)紫外吸收法测定蛋白质含量蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。

此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。

利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。

紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。

低浓度的盐,例如,生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。

测蛋白质含量实验报告

测蛋白质含量实验报告

一、实验目的1. 熟悉蛋白质含量测定的原理和方法;2. 掌握双缩脲法和凯氏定氮法测定蛋白质含量的操作步骤;3. 了解不同方法测定蛋白质含量的优缺点;4. 培养实验操作能力和数据处理能力。

二、实验原理1. 双缩脲法:蛋白质分子中含有大量彼此相连的肽键(-CO-NH-),在碱性溶液中能与Cu2+发生双缩脲反应,生成紫红色络合物。

此反应和两个尿素分子缩合后生成的双缩脲(H2N-OC-NH-CO-NH2)在碱性溶液中与铜离子作用形成紫红色的反应相似,故称之为双缩脲反应。

这种紫红色络合物在540nm处的吸光度与蛋白质含量在一定范围内呈正比关系。

2. 凯氏定氮法:蛋白质中的氮含量相对稳定,约为16%左右。

通过凯氏定氮法测定样品中的氮含量,再乘以 6.25,即可得到蛋白质含量。

该方法包括样品的消化、蒸馏、滴定等步骤。

三、实验材料与仪器1. 实验材料:鸡蛋清、牛肉、花生、大豆、玉米粉等蛋白质样品;标准蛋白质溶液;NaOH溶液;双缩脲试剂;凯氏定氮试剂等。

2. 实验仪器:分光光度计、电子天平、移液器、试管、锥形瓶、凯氏烧瓶、电炉、蒸馏装置、滴定管等。

四、实验步骤1. 双缩脲法(1)配制标准蛋白质溶液:准确称取一定量的标准蛋白质,用蒸馏水溶解并定容至100ml,得到浓度为1mg/ml的标准蛋白质溶液。

(2)制备样品溶液:准确称取一定量的蛋白质样品,用蒸馏水溶解并定容至10ml,得到浓度为0.1mg/ml的样品溶液。

(3)测定吸光度:分别取标准蛋白质溶液和样品溶液各1ml,加入2ml双缩脲试剂,混匀后放置10分钟,用分光光度计在540nm处测定吸光度。

2. 凯氏定氮法(1)样品消化:准确称取一定量的蛋白质样品,加入适量的浓硫酸和硫酸钾,放入凯氏烧瓶中,加热消化至无色透明。

(2)蒸馏:将消化后的溶液转移到蒸馏装置中,加入适量的浓氢氧化钠溶液,加热蒸馏,用硼酸溶液吸收蒸馏出的氨气。

(3)滴定:待吸收完全后,用0.1mol/L盐酸标准溶液滴定至终点,记录消耗的盐酸体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②碱性硫酸铜溶液(组成:碱溶液与硫酸铜溶液按50:1混合而成,使用时该溶液必须新鲜配制,当日有效);
③Folin-酚试剂(配制过程较为复杂)
注:此次实验所用的试剂全部已由老师制备好,所以无配制过程,但需知道配制流程,可查阅实验书P105。
①V-1100可见光分光光度计;
②恒温水浴箱;
③试管6支、试管架;
2.3实验原始数据
本次实验原始数据是在500nm的波长下,各试管混合液的吸光度值,结果见下表1
表1500nm波长吸光度值记录
测定次数
各管吸光度值
2
3
4
5
6
1
0.353
0.561
0.744
0.938
0.172
2
0.350
0.562
0.744
0.938
0.172
3
0.351
0.562
0.743
0.938
其次,回顾全部过程的原理,我们猜测可能存在的造成结果低的情况为:
①在室温冷却后,实验室没有空余的分光光度计,排队时间应该是全部小组中最长的,基本花去30多分钟。而这也导致了最后的显色增强(其具体的显色原因可能为物质间的复杂反应导致)从而使得最后的标准曲线的斜率增大,导致测定的标准的样品液蛋白质含量的下降。即A<B,如图所示:
实验时间表:
总表
实验步骤
消耗时间
混合溶液
未计时
滴加溶液静置
10min
加Folin-酚试剂、水浴
10min
室温冷却
27min
等待
20min
比色测定
6min
附表
项目时刻表
试管1
试管2
试管3
试管4
试管5
试管6
加硫酸铜
8’42”09
8’43”20
8’44”29
8’45”45
8’46”55
8’47”55
水浴
8’52”09
②在分光比色的时候,测量一次后重新凋零,不能继续测量等。
操作失误:
全部实验过程中,就出现了一次失误,即在试管4加入Folin-酚试剂,充分摇匀,在放入水浴加热之间,部分液体由于磕碰而溅出。其余操作严格按照要求一步步完成,理论不存在着失误。
分析:Folin-酚与液体已经混合均匀并反应,在后面的水浴加热后,只是影响到了整体的试管4的反应后得到的溶液量,而不影响颜色的变化及最后的比色测定,故该失误不会对实验产生测定的偏差。
2.2实验现象
①在滴加硫酸铜溶液后,摇匀,产生较多的黏性气泡且附着在液体表面。液体颜色变化不深。
②在滴加Folin-酚试剂水浴加热后,除试管1为淡黄色外,其余试管均成不同的蓝色。具体看下图:
图一水浴后各试管的情况图
分析:标准液的试管中(2-5)蓝色不断加深,同实际的标准液的含量多少正相关,而试管6的颜色不深,在1-2试管之间,根据实验原理初步可以判定的是:该样品液的蛋白质含量将不会在60-80g/L之间,而是在0-40g/L。即实验存在一定的问题,详见结果的分析与讨论。
在碱性溶液中,双缩脲( )能和 作用,发生配位反应,形成紫色或紫红色的络合物,即为双缩脲反应。
由于蛋白质的肽键结构与双缩脲结构相似,故在碱性溶液中,蛋白质的分子中肽键能和碱性铜试剂中的 作用,生成紫红色的蛋白质- 复合物。对于蛋白质的测定来说,这一步是基础,这也是Folin-酚法的基础原理。
1.1.3Folin-酚显色反应
④加样枪、加样枪架。
1.3实验步骤
步骤
操作
(1)反应体系设置
取6只洁净的试管,利用加样枪按要求量取相应量的溶液,混合均匀(各试管的需加入的试剂和量见下表):
1
2
3
4
5
6
牛血清蛋白质标准液
0
0.2
0.4
0.6
0.8
0
样品液
0
0
0
0
0
0.5
蒸馏水
1.0
0.8
0.6
0.4
0.2
0.5
(2)双缩脲反应
每隔一分钟,依次往1号试管到6号试管中加入2mL的碱性硫酸铜溶液,摇匀并记录每支试管的加入硫酸铜时间,室温静置10min
血清蛋白浓度(g/ml)=样品蛋白质浓度×2×300
参考:正常人血清蛋白浓度范围为60~80 g/L。
①试剂要求:实验所需的试剂必须是新鲜配制,不然会存在被空气及其他物质氧化还原的情况,干扰实验的测定。
②控制时间:Lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间。严格按照实验步骤的操作,规定的时间是多少就多少。水浴时间也不宜过长。同时,在最后从水浴加热后取出冷却后,需及时的进行比色测定。防止混合液中物质发生系列变化和反应。
0.172
各管平均值
三、结果与讨论
3.1数据处理
3.1.1利用原始数据,可得到各管的平均值:
2管: =(0.353+0.350+0.351)/3=0.3513;
3管: =(0.561+0.562+0.562)/3=0.5617;
依次得到4-6管的吸光度值如下所示:
测定次数
各管吸光度值
2
3
4
5
6
各管平均值
本实验以上述两个反应原理为基础,再通过设置空白对照组,标准管中设置蛋白标准液的一系列浓度梯度( , , , )通过分光光度计测定吸光度,从而获取标准曲线,样品管通过测定的吸光度值,在标准曲线中找到较为准确对应的含量。
1.2实验材料
①血清稀释液(正常人血清稀释300倍)
①200g/ml牛血清白蛋白标准液(BSA);
3.4复习思考题
参考资料来源:
《生物化学与分子生物学实验技术》王晓华,朱文渊主编
1、试述Folin-酚试剂法的优点?
答:根据所学及所查知识,优点总结如下:
①测定蛋白质灵敏度高,较为准确,可检测最低蛋白质量达5 ,通常范围为: 在生物化学领域应用广泛。
②操作虽受时间限定,但是只需加入两种试剂,即可起作用,总体上说,操作简单,原理清晰易懂。
②分光光度计的比色杯清晰不干净,存在蒸馏水的稀释,且稀释的总体效果是使样品液的含量测定下降。
③开始实验的试管清洗的不充分,可能存在部分的杂质,导致显色反应的增强。
④分光光度计的几个比色杯透明面被碰到,影响到了液体的吸光度,吸光度的下降,使得样品液的测定值偏低。
最后,有可能在以后的时间里,可以重新做该实验,从多方面来验证自己的分析。多和老师同学交流,得到较好的结果
③适用性广,除测定蛋白质的含量,还可特定的适用于酪氨酸和色氨酸的定量测定。
2、应用本方法有哪些干扰作用?为什么?应如何注意?
答:①对双缩脲反应有干扰的离子,同样干扰Lowry反应,且影响还要大得多。酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。
原因是:Lowry反应的第一步即是双缩脲反应,即为之基础。需要尽可能地降低杂质的影响,严格控制实验时间,提高反应的效率。
②调至A档,依次测定2-6试管的吸光度,并读取数据。
③重复操作,再读取数据2次,并记录。数据表格见表1
(5)绘制标准曲线
利用测得的数据,绘制以 值为纵坐标,牛血清清蛋白标准液浓度为横坐标的准备曲线,具体绘制利用excel制作,结果可见图2
(6)测样品蛋白质含量
根据样品管(6管)的吸光度值,在标准曲线中找到对应的蛋白质浓度,再乘以稀释倍数(300),得出每毫升未稀释血清含蛋白质的微克数,即每毫升血清中蛋白质的微克数(mg/ml)。
0.3513
0.5617
0.7437
0.9380
0.1720
3.1.2Excel绘制蛋白质的标准曲线
根据用Excel绘制标准曲线PPt所示步骤,最终得到如下结果:
图2标准曲线图
从图中我们可以看到线性方程: ,
将样品溶液的吸光度(即y值)代入方程,可得出样品浓度(即x值);由相关指数值 可看出误差大小。
⑤绘制曲线要求:作过原点的直线或光滑连续的曲线,该线表示实验点的平均变动情况,因此该线不需全部通过各点,但应尽量使未经过线上的实验点均匀分布在曲线或直线两侧。(电脑Excel绘图,可以不考虑)
⑥操作要按照实验步骤,一步一步来,防止操作问题导致的操作误差的出现等。
二、实验记录
2.1实验条件
材料及试剂:本次实验的试剂和材料均是实验室配制好的,比例和浓度同实验预习,故不再赘述。
血清蛋白浓度(g/ml)=样品蛋白质浓度×2×300
故得血清蛋白浓度为 。
3.2结果
由上数据处理可知,最后的待测样品的蛋白质含量为 。而真正的正常人血清蛋白浓度范围为60~80g/L。因此,存在一定问题,具体分析见3.3分析与讨论。
3.3分析与讨论
首先,我们回顾了整个操作过程,在整个过程中,我们基本都是按照要求操作,并不存在着明显的操作问题。通过上面水浴加热后的图可以明显看到,结果的确应该在0-20g/L之间。同时我们与和我们一样使用试剂的组讨论后发现,他们的结果也是在10几左右;同时,很多组测出的结果都偏低,故可以初步判定结果的测量方式上不存在明显问题。
Folin-酚试剂在碱性条件下极不稳定,其磷钼酸盐-磷钨酸盐易背酚类化合物还原而呈现蓝色。酪氨酸(Tyr)含有酚羟基,故蛋白质- 复合物含有的酪氨酸或色氨酸残基还原酚试剂中的磷钼酸和磷钨酸,生成蓝色的化合物。
在一定的浓度范围内,蓝色的深浅与蛋白质的浓度呈线性关系。故可以利用上述两种反应通过分光光度法测定待测样品的蛋白质含量。
(3)Folin-酚反应
①将静置时间达到10min中的试管中,加入0.20mL的Folin-酚试剂,快速摇匀(一般在2s以内)。
②在40 下水浴加热10min钟同样需计时。
③10min钟后取出冷却至室温。
相关文档
最新文档