法拉第电磁感应定律及应用

合集下载

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用电磁感应是一种重要的物理现象,它是基于法拉第电磁感应定律而产生的。

法拉第电磁感应定律表明,当导体中的磁通量变化时,导体两端会产生感应电动势,从而产生感应电流。

这一定律被广泛应用于各个领域,包括能源、工业和科学研究等。

在本文中,我们将探讨利用法拉第电磁感应定律解释电磁感应现象的现实应用。

1. 电力发电电力发电是法拉第电磁感应定律的一个典型应用。

发电机利用磁场与导体之间的相互作用来产生电动势。

当转子在磁场中旋转时,导线回路中的磁通量随之变化,从而产生感应电动势。

这个电动势可以被引导出来,用来驱动发电机产生电流。

电力发电是利用法拉第电磁感应定律进行实现的重要方法。

2. 变压器的工作原理变压器是电力系统中常见的设备,也是利用法拉第电磁感应定律的应用之一。

变压器通过改变电流的电压大小来实现能量的传输和转换。

它由两个线圈组成,一个是高压线圈,另一个是低压线圈。

当高压线圈中的电流变化时,会产生变化的磁场,从而在低压线圈中感应出电动势,实现电能的转换。

3. 感应加热感应加热是利用法拉第电磁感应定律来实现的一种加热方法。

通过在导体周围产生变化的磁场,可以感应出导体中的涡流,从而产生热量。

这种加热方法在工业生产中被广泛应用,特别是在金属加热和熔化的过程中。

4. 感应传感器和电磁测量利用法拉第电磁感应定律,我们可以设计出各种感应传感器和用于电磁测量的设备。

例如,感应传感器可以用于检测磁场、电流、位移和速度等物理量。

通过测量感应电动势或感应电流的大小,我们可以获取到所需的数据信息。

5. 磁悬浮列车技术磁悬浮列车技术是一项先进的交通运输技术,也是法拉第电磁感应定律的应用之一。

磁悬浮列车利用电磁感应产生的力来实现悬浮和推进。

当列车通过轨道时,轨道中的线圈会产生变化的磁场,从而引起列车上的磁体感应出电动势。

利用这种电动势产生的力,使列车浮在轨道上并推进。

总结:法拉第电磁感应定律作为一项重要的物理定律,具有广泛的应用领域。

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。

该定律描述了磁场变化引起的感应电动势,并成为电磁学的基石之一。

本文将对法拉第电磁感应定律的原理进行简要介绍,并探讨其在实际应用中的作用。

法拉第电磁感应定律的表达式为:在闭合电路中,感应电动势的大小与磁场变化率成正比。

具体地说,当磁场通过一个线圈发生变化时,感应电动势会在线圈中产生。

这个电动势的大小取决于磁场变化的速率以及线圈的匝数。

根据法拉第电磁感应定律的原理,人们发明了许多基于磁感应原理的设备和技术。

下面,我们将介绍其中几个重要的应用。

1.发电机:发电机是一种利用法拉第电磁感应定律产生电能的装置。

它的基本原理是通过旋转磁场产生的感应电动势使电流产生,从而输出电能。

发电机广泛应用于电力、交通等领域,成为现代社会不可或缺的设备。

2.变压器:变压器也是利用法拉第电磁感应定律的重要应用之一。

它是将交流电压通过电磁感应原理转换为合适的电压,以便在输电和配电中使用。

变压器有助于提高电力传输的效率,同时也保证了电力系统的安全性。

3.感应炉:感应炉是利用法拉第电磁感应定律的热处理设备。

它利用高频交变磁场在导体中产生涡流,通过融化、加热和焊接等过程实现热处理的目标。

感应炉广泛应用于金属加工和冶炼等工艺中,为工业生产提供了高效、环保的解决方案。

4.电磁感应测量仪器:电磁感应定律的应用还包括各种测量技术。

例如,电磁感应测量仪器可以通过测量变化的磁场来确定物体的磁性、密度和位置等参数。

这些测量仪器在物理实验、地球物理勘探和医学设备中发挥着重要作用。

总之,法拉第电磁感应定律是电磁学研究的基础,其应用广泛涉及各个领域。

通过理解和应用这一定律,我们能够更好地利用磁场变化来产生电能、进行能量转换以及实现各种测量和热处理等过程。

在未来的发展中,法拉第电磁感应定律将继续发挥重要作用,并促进科学技术的进步。

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用引言:法拉第电磁感应定律是电磁学的基本定律之一,它描述了导体中的电流随时间变化而产生的感应电动势。

本文将通过实验探索法拉第电磁感应定律,并阐述其在生活中的实际应用。

实验一:磁铁穿过线圈实验目的:验证法拉第电磁感应定律中的电磁感应现象。

实验原理:当磁铁穿过线圈时,由于磁感线的变化,线圈中的电流也发生了变化,从而产生了感应电动势。

实验步骤:1. 准备一根磁铁和一个线圈。

2. 将线圈接入一个示波器,调节示波器使其显示电压随时间的变化曲线。

3. 将磁铁快速穿过线圈的中心。

4. 观察示波器上电压随时间的变化曲线,并记录结果。

实验结果:在磁铁穿过线圈的瞬间,示波器上显示的电压出现了明显的变化,随后回归到零值。

实验分析:根据法拉第电磁感应定律,当磁场穿过线圈时,导体中的电流会随之产生。

因此,在磁铁穿过线圈的瞬间,线圈中会产生瞬时电流,进而产生感应电动势。

实验二:电磁感应的应用——发电机实验目的:探究法拉第电磁感应定律在发电机中的应用。

实验原理:发电机是利用导体在磁场中运动引起电磁感应的装置,通过转动磁铁和线圈的相对运动产生电能。

实验步骤:1. 准备一个磁铁和一个线圈。

2. 将线圈连接到一块电阻上,并将电阻接入电路中。

3. 保持磁铁静止,转动线圈。

4. 观察电路中电阻上的电压,并记录结果。

实验结果:当线圈转动时,电路中的电压明显升高,电阻上出现了电流。

实验分析:在发电机中,当磁铁通过线圈时,线圈会受到磁通量的变化,从而产生感应电动势。

将线圈连接到电路中,电流便会通过电阻产生功率,从而发电。

实际应用:1. 发电机:法拉第电磁感应定律的应用使得发电成为可能。

利用发电机,我们可以将机械能转化为电能,满足我们生活和工业上的用电需求。

2. 电磁感应传感器:电磁感应技术在温度计、压力传感器、位移传感器等多种传感器中广泛应用。

传感器中的线圈产生的感应电流和感应电压可以通过测量来得知温度、压力等物理量的变化。

法拉第电磁感应定律的公式及使用条件

法拉第电磁感应定律的公式及使用条件

法拉第电磁感应定律的公式及使用条件
法拉第电磁感应定律的公式为:ε = -dφ/dt,其中ε为感应电
动势,dφ/dt为磁通量随时间的变化率。

使用条件:
1.该定律适用于闭合导线回路中的电磁感应现象。

2.导线回路必须处于磁场中,并磁通量相对于导线回路的面积发
生改变。

拓展:
1.法拉第电磁感应定律是电磁学中的重要定律之一,描述了磁场
和导体之间相互作用的规律。

该定律为电磁感应现象提供了理论基础,广泛应用于电动机、变压器等电磁设备的设计与工作原理中。

2.根据法拉第电磁感应定律,当导体相对于磁场的运动速度增大时,感应电动势也会增大,这就是电磁感应发电机工作原理的基础。

3.除了法拉第电磁感应定律外,还有安培法则和洛伦兹力定律等电磁学定律,它们共同构成了电磁学的基础理论。

深入理解这些定律对于探索电磁现象的规律和应用具有重要意义。

高中物理精品课件:法拉第电磁感应定律及其应用

高中物理精品课件:法拉第电磁感应定律及其应用

H。
10-6
2.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这
种电流看起来像水的漩涡,所以叫涡流。
3.电磁阻尼
导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是
阻碍 导体的运动。
4.电磁驱动
如果磁场相对于导体转动,在导体中会产生
到安培力而运动起来。
感应电流
使导体受
第2节
法拉第电磁感应定律及其应用
一、法拉第电磁感应定律
1.法拉第电磁感应定律
(1)内容:感应电动势的大小跟穿过这一电路的 磁通量的变化率 成正比。
感应电动势与匝数有关
(2)公式:E=n

,其中n为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的
欧姆

定律,即I= + 。
2.导体切割磁感线的情形
场区内从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确
的有(
) 答案 AD
A.杆OP产生的感应电动势恒定
B.杆OP受到的安培力不变
C.杆MN做匀加速直线运动
D.杆MN中的电流逐渐减小
6.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应
强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以
B.金属框中电流的电功率之比为4∶1
C.金属框中产生的焦耳热之比为4∶1
D.金属框ab边受到的安培力方向相同
答案 B
素养点拨1.应用法拉第电磁感应定律解题的一般步骤
(1)分析穿过闭合电路的磁场方向及磁通量的变化情况;
(2)利用楞次定律确定感应电流的方向;
(3)灵活选择法拉第电磁感应定律的不同表达形式列方程求解。

电磁感应的法拉第定律详解

电磁感应的法拉第定律详解

电磁感应的法拉第定律详解电磁感应是电磁学中的重要概念,而法拉第定律则是描述电磁感应现象的基本规律。

本文将详细解释法拉第定律的原理和应用,并探讨其在现代科技中的重要性。

1. 法拉第定律的基本原理法拉第定律是由英国物理学家迈克尔·法拉第在19世纪提出的。

该定律表明,当一个导体中的磁通量发生变化时,会在导体中产生感应电动势,从而导致感应电流的产生。

这一定律可以用如下的数学表达式来表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,t代表时间。

负号表示感应电动势的方向与磁通量的变化方向相反。

2. 法拉第定律的应用法拉第定律的应用非常广泛,涵盖了许多重要的科学原理和技术领域。

以下是一些常见的应用示例:2.1 电磁感应现象法拉第定律的最基本应用就是解释电磁感应现象。

当一个导体在磁场中运动或者磁场发生变化时,导体中会产生感应电动势和感应电流。

这一现象被广泛应用于发电机、变压器等电力设备中。

2.2 感应电动势的测量法拉第定律可以用来测量感应电动势的大小。

通过将一个导体绕过待测电路,测量在导体两端产生的感应电动势,可以得到待测电路的电磁特性。

这一原理被广泛应用于电子设备的测试和测量中。

2.3 电磁感应的反向应用法拉第定律也可以被反向应用,即通过施加外加电动势来改变磁通量。

这一原理被应用于电磁铁、电磁炉等设备中,实现对磁场的控制。

3. 法拉第定律的重要性法拉第定律的提出对电磁学的发展产生了重要影响,并在现代科技中发挥着关键作用。

首先,法拉第定律为电磁感应现象提供了准确的数学描述,使得科学家们能够更深入地研究电磁现象的本质。

其次,法拉第定律为电力工程和电子技术的发展提供了理论基础。

发电机、变压器等电力设备的工作原理都基于电磁感应现象,而这些设备又是现代社会不可或缺的基础设施。

此外,法拉第定律的应用还涉及到许多其他领域,如电磁兼容性、无线通信、电磁传感等。

这些应用推动了现代科技的发展,为人们的生活带来了便利。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用一、感应电动势:(1)在电磁感应现象中产生的电动势叫感应电动势。

产生感应电动势的那部分导体相当于电源。

(2)当电路闭合时,回路中有感应电流;当电路断开时,没有感应电流,但感应电动势仍然存在。

(3)感应电动势的大小——法拉第电磁感应定律。

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

即.t E ∆∆Φ=说明:(a )若穿过线圈的磁通量发生变化,且线圈的匝数为n ,则电动势表示式为.tnE ∆∆Φ= (b )E 的单位是伏特(V ),且.s /Wb 1V 1=证明:.V 1CJ1s A m N 1s m m A N1s m T 1s Wb 122==⋅⋅=⋅⋅=⋅=(c )区分磁通量Φ、磁通量的变化量∆Φ、磁通量的变化率t∆∆Φ。

2、导体运动产生的感应电动势: (1)导体垂直切割磁感线如图1所示,导体棒ab 在间距为L 的两导轨上以速度v 垂直磁感线运动,磁场的磁感强度为B 。

试分析导体棒ab 运动时产生的感应电动势多大?这属于闭合电路面积的改变引起磁通量的变化,进而导致感应电动势的产生。

由法拉第电磁感应定律知,在时间t 内,BLv B tLvt B t S t E =⋅⋅=⋅∆∆=∆∆Φ=即.BLv E =说明:BLv E =通常用来计算瞬时感应电动势的大小。

(2)导体不垂直切割磁感线若导体不是垂直切割磁感线,即v 与B 有一夹角θ,如图2所示,此时可将导体的速度v 向垂直于磁感线和平行于磁感线两个方向分解,则分速度θ=cos v v 2不使导体切割磁感线,使导体切割磁感线的是分速度θ=sin v v 1,从而使导体产生的感应电动势为:.sin BLv BLv E 1θ==上式即为导体不垂直切割磁感线时,感应电动势大小的计算式。

说明:在公式BLv E =或θ=sin BLv E 中,L 是指有效长度。

在图3中,半径为r 的关圆形导体垂直切割磁感线时,感应电动势BLv E =,.Brv 2E ≠ 3、运用电磁感应定律的解题思路: (1)磁通量变化型法拉第电磁感应定律是本章的核心,它定性说明了电磁感应现象的原因,也定量给出了计算感应电动势的公式:t nE ∆∆Φ=。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是电磁学的基础定律之一,它描述了导体中感应电动势与导体上的磁场变化之间的关系。

该定律由英国物理学家迈克尔·法拉第于1831年提出,经过实验证实并被广泛应用。

本文将介绍法拉第电磁感应定律的原理、公式以及实际应用。

一、定律原理法拉第电磁感应定律是指当导体中的磁通量发生变化时,导体中会感应出电动势和感应电流。

磁通量是一个衡量磁场穿过一个给定表面的大小的物理量。

当磁通量改变时,导体中的自由电子会受到磁力的作用而发生运动,从而产生电流。

这种现象被称为电磁感应。

二、定律公式根据法拉第电磁感应定律,感应电动势(ε)与磁通量变化速率(dΦ/dt)成正比。

其数学表达式如下:ε = -dΦ/dt其中,ε表示感应电动势,单位为伏特(V);dΦ/dt表示磁通量的变化速率,单位为韦伯/秒(Wb/s)。

根据右手定则,可以确定感应电动势的方向。

当磁场的变化导致磁通量增加时,感应电动势的方向与变化的磁场方向垂直且遵循右手定则;当磁通量减少时,感应电动势的方向与变化的磁场方向相反。

三、应用举例1. 电磁感应产生的电动势可用于发电机的工作原理。

发电机通过转动磁场与线圈之间的磁通量变化来产生感应电动势,最终转化为电能供应给电器设备。

2. 感应电动势也可以应用于感应加热。

感应加热是通过变化的磁场产生的感应电流在导体中产生焦耳热,实现对物体进行加热的过程。

这种方法广泛用于工业领域中的加热处理、熔化金属等。

3. 感应电动势还可以实现非接触的测量。

例如,非接触式转速传感器利用感应电动势来实现对机械设备转速的测量。

四、实验验证1831年,法拉第进行了一系列实验来验证他提出的电磁感应定律。

其中最著名的实验是在一个充满磁铁的线圈中将另一个线圈移动。

当第一个线圈移动时,第二个线圈中就会感应出电流。

这一实验结果验证了法拉第的理论,为电磁感应定律的确认提供了强有力的证据。

五、应用发展法拉第电磁感应定律为电磁学的发展奠定了基础。

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用电磁感应是电磁学中的一个基本现象,法拉第电磁感应定律是描述这一现象的重要定律之一。

本文将介绍法拉第电磁感应定律的基本原理及其应用。

法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的,他的实验成果在电磁学的发展中起到了重要的作用。

该定律阐述了电磁感应的原理,即当磁场的磁通量变化时,会在电路中产生感应电动势,并产生感应电流。

根据法拉第电磁感应定律,当磁场的磁通量发生变化时,电路中会产生感应电动势。

这个感应电动势的大小与磁动势的变化率成正比。

如果电路是闭合的,感应电流将在电路中产生。

法拉第电磁感应定律的公式表示为:ε = -dφ/dt其中,ε表示感应电动势,φ表示磁通量,dt表示时间的微小变化。

负号表示感应电动势的方向与磁通量的变化方向相反。

法拉第电磁感应定律的应用非常广泛,以下将介绍一些常见的应用。

一、发电机发电机是利用法拉第电磁感应定律来产生电能的装置。

在一个发电机中,可以通过转动一个闭合线圈或者一个磁场来改变磁通量的大小,进而在线圈中激发感应电动势,产生电流。

这个电流可以用来供电。

发电机在电力工业中起着重要的作用,它们被广泛应用于发电站、风力发电和太阳能发电等领域。

通过转动发电机,机械能转化为电能,为人们的生活和工业生产提供可靠的电力。

二、电感电感是典型的使用法拉第电磁感应定律的设备之一。

电感是由线圈组成的电子元件,当电流通过线圈时,会在周围产生磁场。

如果线圈中的电流发生变化,磁场的磁通量也会发生变化。

根据法拉第电磁感应定律,这种变化会引发线圈中产生感应电动势。

因此,电感可以用来储存和释放能量。

电感在电路中起着重要的作用,可以用来稳定电流、滤除高频噪声和提供电源稳定性。

电感还被广泛应用于无线通信、电源供应和电子设备制造等领域。

三、变压器变压器是利用法拉第电磁感应定律来调节电压的电子设备。

变压器通常由两个线圈组成,一个是输入线圈(即初级线圈),另一个是输出线圈(即次级线圈)。

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应一、法拉第电磁感应定律的概念理解内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

111人线框出磁场时:12W W =则从线框开始进入磁场到完全离开磁场过程中人对线框作用力所做的功:R v l l B W W W /2122221=+=答案:22212/B l l v R二、法拉第电磁感应中的力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用。

因此电磁感应问题经常与力学联系在一起,解决这一类问题不仅要用到电磁学中的相关定律,如楞次定律、左右手定则等,还应该考虑力学当中的相关规律,如牛二定律、动量定理、动能定理、动量守恒定律等。

例题2:如图所示,在磁感应强度大小为B 、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m 的故杆在磁场中运动的最大电流r H g s v B Lr E I m 42201⎪⎪⎭⎫⎝⎛+==(2)两金属杆在磁场中运动始终满足动量守恒,设两杆最终速度为v ',则v m mv '=22感应电流产生的最多热量22222121v m mv Q '-=代入2v 和v '计算得22161⎪⎪⎭⎫⎝⎛+=H gs v m Q (3)设杆2A 和杆1A 的速度大小为v ∶3v ,则依动量守恒v m mv mv 32+= 由法拉第感应定律和右手定则得此时回路的总感应电动势为()v v BL E -=32度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。

(1)求初始时刻导体棒受到的安培力(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为E p ,则这一过程中安培力所做的功W 1和电阻R 上产生的焦耳热Q 1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R 上产生的焦耳热Q 为多少?解析:(1)初始时刻棒中感应电动势:0E Lv B =棒中感应电流:EI R=作用于棒上的安培力F ILB =联立得220L v B F = 安培力方向:水平向左线图中磁通量的变化规律如右图所示,则a,b 两点的电势高低与电压表的读数为(。

电磁感应中的法拉第定律及应用

电磁感应中的法拉第定律及应用

电磁感应中的法拉第定律及应用在电磁感应中,法拉第定律是一个基本的物理定律。

它描述了通过导体中的磁通量变化产生的电动势。

本文将探讨法拉第定律的原理和应用,并介绍一些实际应用案例。

一、法拉第定律的原理法拉第定律是由英国物理学家迈克尔·法拉第于1831年提出的。

它可以总结为以下公式:ε = -ΔΦ/Δt其中,ε表示感应电动势,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。

该公式表明,当导体中的磁通量发生变化时,就会在导体中感应出电动势。

根据法拉第定律,可以得出以下重要结论:1. 磁通量变化越大,感应电动势越大。

当磁通量Φ在时间Δt内发生改变时,导体中的感应电动势ε与ΔΦ/Δt成正比。

2. 磁通量变化的速率越快,感应电动势越大。

当ΔΦ在Δt内发生快速变化时,导体中的感应电动势ε也会增加。

3. 磁通量与感应电动势的方向成正比。

根据楞次定律,感应电动势的方向使得导体周围的磁场发生变化,并与磁通量的变化方向相反。

二、法拉第定律的应用法拉第定律在实际中有广泛的应用。

以下是几个常见的应用案例:1. 变压器变压器是利用法拉第定律的基本原理来实现的。

当交流电通过变压器的初级线圈时,产生的交变磁场会穿透次级线圈,导致次级线圈中的磁通量发生变化。

根据法拉第定律,次级线圈中就会感应出电动势,从而实现将电能从初级线圈传递到次级线圈的功能。

2. 发电机发电机也是基于法拉第定律的工作原理来运行的。

当发电机的转子旋转时,导致导线和磁场相对运动,从而改变了导线中的磁通量。

根据法拉第定律,这个变化就会导致感应电动势的产生,进而产生电能。

3. 感应电磁炉感应电磁炉是利用法拉第定律的原理来加热物体的。

感应电磁炉的底部是一个线圈,当通过该线圈的交流电通路变化时,就会产生交变磁场。

将放置在炉上的锅具中的导体材料,如铁,会被感应电动势加热,从而使其快速加热。

4. 手电筒手电筒中的发光二极管(LED)也是通过法拉第定律的应用来工作的。

LED的正极和负极通过电路连接,当电池供电时,电流通过LED并产生磁场。

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用法拉第电磁感应定律是电磁学中的重要定律之一,它描述了磁场变化时在电路中引起的电流的现象。

在本文中,我将介绍法拉第电磁感应定律及其应用。

一、法拉第电磁感应定律的基本原理法拉第电磁感应定律由英国物理学家迈克尔·法拉第在1831年提出。

该定律描述了磁场变化时,空间中的导体中会产生感应电动势,从而引起电流的产生。

其数学表达式为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示穿过导体的磁通量,dt表示时间的微小变化。

负号表示感应电动势的方向与磁通量的变化方向相反。

二、法拉第电磁感应定律的应用法拉第电磁感应定律在现代生活中有广泛的应用。

以下是几个常见的应用领域:1. 发电机原理发电机是利用法拉第电磁感应定律的原理来转换机械能为电能的设备。

发电机中由磁场引起的磁通量的变化经过导线产生感应电动势,从而驱动电流的产生。

这些电流可用于供电、充电等。

2. 变压器的工作原理变压器也是利用法拉第电磁感应定律工作的设备。

当通过变压器的一个线圈的电流变化时,由于两个线圈的互感作用,将会在另一个线圈中诱导出电动势,从而在不同的线圈中实现电能的传输和变换。

3. 电动汽车的充电原理电动汽车的充电是利用法拉第电磁感应定律的原理进行的。

当电动汽车和充电桩之间建立起磁场变化时,通过感应电动势产生的电流可以对电动汽车进行充电。

4. 感应电磁炉的工作原理感应电磁炉也是基于法拉第电磁感应定律的工作原理。

感应电磁炉利用高频交变磁场在炉内感应出的涡流,在导体中产生电阻加热效应,实现加热的目的。

5. 磁力计的工作原理磁力计是利用法拉第电磁感应定律的原理来测量磁场强度的装置。

通过测量感应电动势的大小,可以间接地了解到磁场的强度。

6. 电能表的工作原理电能表(电表)也利用了法拉第电磁感应定律的原理来测量电能的消耗。

通过测量感应电动势的大小,可以得到电能的消耗量。

总结:法拉第电磁感应定律是电磁学中的基本定律之一,它描述了磁场变化引起导体中的感应电动势和电流的现象。

法拉第电磁感应定律的解释和应用

法拉第电磁感应定律的解释和应用

法拉第电磁感应定律的解释和应用法拉第电磁感应定律是描述导体内部电场变化时,在导体周围会产生感应电动势的物理规律。

这条定律由英国科学家迈克尔·法拉第在1831年得出,并被广泛应用于电磁感应、发电机、变压器等领域。

本文将对法拉第电磁感应定律及其应用进行详细解释。

一、法拉第电磁感应定律的原理法拉第电磁感应定律可以通过以下公式来描述:ε = -dφ/dt其中,ε是感应电动势,dφ是磁通量的变化率,dt是时间的微小变化量。

该公式表明,当磁通量的变化率越大,产生的感应电动势也越大。

法拉第电磁感应定律的实质是磁感线切割导体时,导体中的自由电子受到磁场力的作用而形成感应电流,从而产生感应电动势。

当磁场发生改变时,磁感线的数目和方向也会发生相应的变化,导致磁通量的变化。

根据法拉第电磁感应定律,这种磁通量的变化将引发感应电动势和感应电流。

二、法拉第电磁感应定律的应用1. 发电机发电机是利用法拉第电磁感应原理工作的设备之一。

发电机通过旋转的磁场切割导线圈,产生感应电动势,并将这种电动势转化为电能输出。

在发电机中,通过改变磁场的方向和大小,可以调节产生的感应电动势和输出电能的大小。

发电机广泛应用于发电厂和机动车辆等领域。

2. 变压器变压器是利用法拉第电磁感应定律工作的另一种重要设备。

变压器通过在一根绕组中引入交变电流,由于电流的变化产生交变磁场,进而引起另一根绕组中的感应电动势。

变压器在电能传输和电压调节中起到至关重要的作用,广泛应用于电力系统和电子设备中。

3. 感应电磁炉感应电磁炉是一种利用法拉第电磁感应定律的家用电器。

感应电磁炉通过在底部放置线圈,通过交变电流产生变化的磁场。

当放置了带有磁性的炊具时,磁场将切割炊具内的导体,从而产生感应电流加热食物。

感应电磁炉具有高效、安全、环保等优点,成为现代家庭常用的厨房设备之一。

4. 电磁感应传感器电磁感应传感器是利用法拉第电磁感应定律原理制成的传感器。

电磁感应传感器可以感测到磁场强度或方向的变化,并将其转化为电信号输出。

法拉第电磁感应定律

法拉第电磁感应定律

法拉第电磁感应定律法拉第电磁感应定律是描述变化磁场引起感应电动势和感应电流产生的物理规律。

该定律由英国物理学家迈克尔·法拉第于1831年发现并提出。

它在电磁学、电动机、发电机和变压器等领域有着广泛的应用。

本文将对法拉第电磁感应定律的原理、应用和相关实验进行详细介绍。

一、法拉第电磁感应定律的原理法拉第电磁感应定律主要包括两个方面的内容:磁通量的变化引起感应电动势,感应电动势的大小与磁通量变化率成正比。

下面将对这两个方面进行详细阐述。

1. 磁通量的变化引起感应电动势当磁场的磁通量通过一个线圈时,如果磁场的强度发生变化,即磁通量发生变化,线圈中就会产生感应电动势。

感应电动势的方向由勒沃瓦定律决定,即感应电动势的方向使得通过线圈的电流的磁场的方向抵消原磁场的变化。

如果磁通量的变化率为Φ/t,线圈的匝数为N,根据法拉第电磁感应定律可得感应电动势:ε = -NΦ/t其中,ε表示感应电动势,N表示线圈的匝数,Φ表示磁通量,t表示时间。

2. 感应电动势的大小与磁通量变化率成正比当磁通量变化率较大时,所产生的感应电动势也相应增大。

根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。

即感应电动势的大小为Φ/t的导数。

当磁通量以一定的速率改变时,线圈中产生的感应电动势也以相同的速率改变。

二、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域有着广泛的应用,尤其是在发电、电动机和变压器等设备中。

1. 发电机发电机是运用法拉第电磁感应定律制造的。

利用机械能驱动导线在磁场中运动,使得磁通量发生变化,从而产生感应电动势。

通过外部电路连接,感应电动势驱动电子流动,最终转化为电能。

2. 变压器变压器是利用法拉第电磁感应定律制造的。

变压器通过磁场感应来实现电能的传递和变换。

当交流电通过变压器的一侧线圈时,由于电流的改变引起磁场的改变,从而在另一侧线圈中感应出电动势,实现电能的输送和变压。

3. 电磁感应传感器电磁感应传感器是利用法拉第电磁感应定律制造的。

电磁感应的法拉第定律

电磁感应的法拉第定律

电磁感应的法拉第定律电磁感应是指通过磁场的变化产生电场,或者通过电场的变化产生磁场的一种现象。

法拉第定律则是描述了电磁感应现象的规律。

本文将详细介绍电磁感应的法拉第定律的基本原理和应用。

一、法拉第定律的基本原理法拉第定律由英国物理学家迈克尔·法拉第于1831年提出,它的核心思想是电磁感应产生的电动势可以通过磁通量的变化来计算。

具体表述为:当一磁场的变化穿过闭合电路时,电路中产生的电动势的大小与这一变化有关。

根据法拉第定律,当磁场的变化率Φ/Δt通过一个闭合电路时,该电路中的感应电动势E的大小与该变化率成正比。

具体的数学表达式如下所示:E = -NΔΦ/Δt其中,E为感应电动势,N为电路中的匝数,ΔΦ为磁通量的变化量,Δt为变化的时间。

二、法拉第定律的应用1. 电磁感应现象的实验验证为了验证法拉第定律,我们可以进行一系列的实验。

首先,可以利用一个恒定的磁场和一个闭合电路。

当改变电路与磁场的相对运动状态时,便可观察到电动势的变化。

通过测量感应电动势和磁通量变化率的关系,我们可以验证法拉第定律的正确性。

2. 电磁感应的发电原理电磁感应的发电原理是基于法拉第定律的应用之一。

当磁场的变化率通过线圈时,感应电动势的出现会导致电流的流动。

这是发电机的基本工作原理。

发电机中通过机械装置使得线圈与磁场相对运动,从而产生感应电动势,并通过外部负载输出电能。

3. 电磁感应的感应耦合电磁感应的另一个重要应用是感应耦合。

在电磁感应中,一个变化的磁场可以通过感应耦合的方法将电磁能量传递到其他电路中。

这种方法在电力变压器和互感器中得到广泛应用。

4. 电动机的工作原理电磁感应的法拉第定律还可以解释电动机的工作原理。

在电动机中,通过将电流通过线圈,使得线圈在磁场中受到力的作用,从而产生机械运动。

这种机械运动可以被用来驱动各种机械设备。

三、法拉第定律的实际应用法拉第定律的应用广泛存在于各个领域。

在能源领域,发电机的设计和电力变压器的制造都离不开法拉第定律的基本原理。

法拉第电磁感应定律及其实际运用

法拉第电磁感应定律及其实际运用

法拉第电磁感应定律及其实际运用电磁感应是电磁学中一项重要的基础理论,而法拉第电磁感应定律则是电磁感应理论的核心。

法拉第电磁感应定律由英国物理学家迈克尔·法拉第于1831年首次提出,它描述了磁场变化时所产生的感应电动势的大小与方向。

这一定律不仅在理论研究中具有重要意义,而且在实际应用中也发挥着巨大作用。

法拉第电磁感应定律的表述很简洁明了:当一个闭合电路中的磁通量发生变化时,该电路中就会产生感应电动势。

这个感应电动势的大小与磁通量变化的速率成正比,方向则由右手定则决定。

这个定律的数学表达式为:ε = -dΦ/dt,其中ε表示感应电动势,Φ表示磁通量,dt表示时间的微小变化量。

法拉第电磁感应定律的实际应用非常广泛。

其中一个重要的应用是发电机的工作原理。

发电机通过转动磁场和线圈之间的相互作用,产生感应电动势,从而将机械能转化为电能。

发电机的基本原理就是利用法拉第电磁感应定律来实现的。

另一个重要的应用是变压器。

变压器是一种通过电磁感应原理来实现电压变换的装置。

当变压器的输入线圈中通过交流电流时,产生的磁场会感应出输出线圈中的感应电动势,从而实现电压的变换。

变压器的工作原理也是基于法拉第电磁感应定律的。

除了发电机和变压器,法拉第电磁感应定律还有许多其他实际应用。

例如,电动机的工作原理也是基于电磁感应的。

电动机通过在磁场中通电导体中产生的力来实现转动,从而将电能转化为机械能。

这种转换过程同样遵循法拉第电磁感应定律。

此外,电磁感应也在许多科学实验和仪器中得到应用。

例如,磁强计和霍尔效应传感器等设备都是基于电磁感应原理来测量磁场强度和方向的。

这些设备的设计和工作原理都离不开法拉第电磁感应定律的指导。

总之,法拉第电磁感应定律是电磁学中的重要理论之一,它描述了磁场变化时所产生的感应电动势的大小和方向。

这一定律在实际应用中发挥着重要作用,如发电机、变压器、电动机等。

同时,它也在科学实验和仪器中得到广泛应用。

通过深入研究和理解法拉第电磁感应定律,我们可以更好地应用它来解决实际问题,推动科学技术的发展。

电磁感应定律及其应用

电磁感应定律及其应用

电磁感应定律及其应用电磁感应定律是电磁学中的一项重要定律,它描述了磁场变化所引起的感应电动势。

本文将探讨电磁感应定律的基本原理以及它在实际应用中的重要性。

一、法拉第电磁感应定律的基本原理法拉第电磁感应定律是英国物理学家迈克尔·法拉第于1831年提出的。

该定律表明,当一个导体被放置在变化的磁场中,导体两端会产生感应电动势,并产生电流。

根据法拉第电磁感应定律,感应电动势的大小与磁场的变化率成正比,并与导体的几何形状有关。

如果磁场的变化速率更快,感应电动势的大小也会增加。

二、电磁感应定律的应用1. 电力发电电磁感应定律的最重要应用之一是电力发电。

电磁感应通过旋转的磁场和线圈产生电动势,进而生成电流。

这种现象被广泛应用于发电厂中的发电机,将机械能转化为电能。

2. 变压器变压器是电力系统中常见的设备,通过电磁感应定律实现电能的传输和变换。

当一个交流电通过一个线圈时,它产生的变化磁场会感应出另一个线圈中的电动势。

通过变压器的设计,可以改变电压的大小和方向。

3. 感应炉感应炉是一种利用电磁感应原理加热金属的装置。

通过感应炉,可以在金属工业中实现高效的加热和熔化金属的过程。

感应炉采用线圈产生的变化磁场来感应出金属中的电流,从而产生热量。

4. 电动机电动机也是电磁感应定律的一个重要应用。

在电动机中,通过变化的电磁场产生转矩,从而使电机转动。

电动机在各种机械设备中得到了广泛应用,例如工业生产线、交通工具等。

5. 增强磁场利用电磁感应定律,可以制造出强大的磁场。

通过通电线圈的电流变化,可以在铁芯中产生较强的磁场。

这种原理被应用于电磁铁、电磁炮等设备中。

三、电磁感应定律的实验为了验证电磁感应定律,科学家们进行了一系列的实验。

其中最著名的实验是法拉第的实验。

他采用了一个线圈和一个磁铁,通过磁铁在线圈附近的移动来产生感应电动势。

通过实验的数据分析,法拉第证明了磁场变化确实引起了感应电动势的产生。

这个实验成为了后续电磁感应研究的基础,对电磁学的发展产生了重要影响。

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用法拉第电磁感应定律是电磁学中的重要定律之一,由英国物理学家迈克尔·法拉第于1831年提出。

它描述了导体中变化的磁通量会引起导体中的感应电动势。

法拉第电磁感应定律的表述如下:当通过一个线圈中的磁通量发生变化时,导线两端将产生感应电动势,该电动势与磁通量的变化率成正比。

具体而言,设一个线圈的匝数为N,当磁场穿过线圈时,磁通量Φ通过线圈的面积A。

根据法拉第电磁感应定律,线圈两端的感应电动势E与磁通量Φ的变化率ΔΦ/Δt之积成正比。

数学上可以表示为:E = -N * (ΔΦ/Δt)其中,E是感应电动势,N是线圈的匝数,ΔΦ/Δt是磁通量的变化率。

负号表示感应电动势的方向是由磁通量的减小而引起的。

根据法拉第电磁感应定律,当通过线圈中的磁通量发生变化时,导致线圈两端产生电动势。

这个原理被广泛应用于各种电磁设备和技术中。

1. 电动机电动机是将电能转换为机械能的设备,在其工作原理中使用了法拉第电磁感应定律。

当电动机中的线圈受到外界磁场的作用时,导致线圈内部的磁通量发生变化,进而产生感应电动势。

这个感应电动势会使得线圈中的电流产生,从而形成磁场,与外界磁场相互作用,使得电动机产生力和运动。

2. 发电机发电机是将机械能转换为电能的装置,同样也利用了法拉第电磁感应定律。

在发电机中,通过机械方式转换为机械能的旋转运动,驱动线圈与磁场相对运动,导致线圈内的磁通量发生变化。

这个变化的磁通量会引起感应电动势,从而产生电流,最终输出电能。

3. 变压器变压器是电能传输和变换中常用的设备,其中也利用了法拉第电磁感应定律。

变压器由两个相互绝缘的线圈组成,它们通过磁场相联系。

当输入线圈中的电流变化时,导致输入线圈中的磁通量发生变化。

根据法拉第电磁感应定律,这个变化的磁通量将在输出线圈中引起感应电动势,从而实现电能的传输和变压。

总结起来,法拉第电磁感应定律在电磁学中具有重要的应用价值。

它可以解释和推导电动机、发电机、变压器等电磁设备的工作原理,并为这些设备的设计和优化提供了理论依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应定律的应用(一) 知识点1、感生电动势
例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。

在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。

现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD )
A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向
B .E 1<E 2,I 1沿逆时针方向,I 2沿顺时针方向
C .E 1<E 2,I 2沿顺时针方向,I 3沿逆时针方向
D .
E 2=E 3,I 2沿顺时针方向,I 3沿顺时针方向
例题2.如图,线圈内有理想边界的匀强磁场,当磁感应强度均匀增加时,有一带电微粒静止于水平放置的平行板电容器中间,若线圈的匝数为n ,粒子的质量为m ,带电量为q ,线圈面积为s ,平行板电容器两板间的距离为d ,求磁感应强度的变化率。

例题3、如图18(a )所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。

线圈的半径为r 1。

在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图18(b )所示。

图线与横、纵轴的截距分别为t 0和B 0。

导线的电阻不计。

求0至t 1时间内
(1)通过电阻R 1上的电流大小和方向;
(2)通过电阻R 1上的电量q 及电阻R 1上产生的热量。

(1)20203n B r Rt π,电流由b 向a 通过1R (2)2224
021
2
29n B r t Rt π 练习、如图所示,U 形导线框固定在水平面上,右端放有质量为m 的金属棒ab ,ab 与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L 1、L 2,回路的总电阻为R 。

从t =0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B =kt ,(k >0)那么在t 为多大时,金属棒开始移动?
2
212211,L L k mgR
t mg R L kL L kt μμ==⋅
⋅ 知识点2、动生电动势
例题.如图所示,空间存在两个磁场,磁感应强度大小均为,方向相反且垂直纸面,、为其边界,OO ′为其对称轴。

一导线折成边长为的正方形闭合回路,回路在纸面内以恒定速度向右运动,当运动到关于OO ′对称的位置时( ACD )
A .穿过回路的磁通量为零
B .回路中感应电动势大小为2B
C .回路中感应电流的方向为顺时针方向
D .回路中边与边所受安培力方向相同 练习1、如图,电阻r =5Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距L =30cm ,导轨上接有一电阻R =10Ω,整个导轨置于竖直向下的磁感强度B =的匀强磁场中,其余电阻均不计。

现使ab 棒以速度v =2.0m/s 向右作匀速直线运动,试求: (1)ab 棒中的电流方向及ab 棒两端的电压U ab ; (2)ab 棒所受的安培力大小F ab 和方向。

练习2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为
B 的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是( A )
知识点3、动生中的图像描绘
例题、匀强磁场磁感应强度 B= T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求:
(1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线
(2)画出ab 两端电压的U-t 图线
练习.如图(a )所示,水平放置的两根平行金属导轨,间距L =0.3m .导轨左端连接R = Ω的电阻,区域abcd 内存在垂直于导轨平面B =的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为t = Ω,导轨电阻不计,使金属棒以恒定速度r =1.0 m/s 沿导轨向右穿越磁场,计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b )中画出.
(0-)A R U I 12.06
.0072
.01===
(-)E=0, I 2=0 (-) I 3=0.12A 知识点4、电磁感应中的图像问题
例题1、如图所示,LOO ’L ’为一折线,它所形成的两个角∠LOO ’和∠OO ’L ‘均为450。

折线的右边有一匀强磁场,其方向垂直OO ’的方向以速度v 做匀速直线运动,在t =0时刻恰好位于图中所示的位置。

以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—时间(I —t )关系的是(时间以l /v 为单位)( ) 例题2.如图,EOF 和E O F '''为空间一匀强磁场的边界,其中EO ∥E O '',FO ∥F O '',且EO ⊥OF ;OO '为∠EOF 的角平分线,OO '间的距离为l ;磁场方向垂直于纸面向里。

一边长为l 的正方形导线框沿OO '方向匀速通过磁场,t=0时刻恰好位于图示位置。

规定导线框中感应电流沿逆时针方向时为正,则感应电流i 与实践t 的关系图线可能正确的是
练习1.图中两条平行虚线之间存在匀强磁场,虚线同的距离为l ,磁场方向垂直纸面向里.abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l .t =0时刻,bc 边与场区域边界重合(如图),现令线圈以恒定的速度v ,沿垂直于磁场区域边界的方向穿过磁场区域.取沿a→b→c→d→a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是( )
a
d
A .
B .
D .C .
练习 2.如图,一有界区域内,存在着磁感应强度大小均为,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为,边长为的正方形框的边紧靠磁场边缘置于桌面上,使线框从静止开始沿轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图( A )
知识点5、自感现象
例题1. 如图所示,电阻R 和电感线圈L 的值都较大,电感线圈的电阻不计,A 、B 是两只完全相同的灯泡,当开关S 闭合时 ,下面能发生的情况是( D ) A .B 比A 先亮,然后B 熄灭 B .A 比B 先亮,然后A 熄灭 C .A 、B 一起亮,然后A 熄灭 D .A 、B 一起亮,然后B 熄灭
例题2.如图所示的电路中,电源的电动势为E,内阻为r,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在t=0时刻闭合开关S ,经过一段时间后,在t=t 1时刻断开S,下列表示A 、B 两点间电压U AB 随时间t 变化的图像中,正确的是( B )
练习、如图所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略不计,下列说法中正确的是( AD )
A .合上开关S 接通电路时,A 2先亮A 1后亮,最后一样亮
B .合上开关S 接通电路时,A 1和A 2始终一样亮
C .断开开关S 切断电路时,A 2立即熄灭,A 1过一会熄灭
D .断开开关S 切断电路时,A 1和A 2都要过一会才熄灭
习题:
1.如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为时铜棒中电动势大小为,下落距离为时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是( D )
A 、>,a 端为正
B 、>,b 端为正
C 、<,a 端为正
D 、<,b 端为正
2.如图,一直导体棒质量为m 、长为l 、电阻为r ,其两端放在位于水平面内间距也为l 的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。

开始时,给导体棒一个平行于导轨的初速度v 0。

在棒的运动速度由v 0减小至v 1的过程中,通过控制负载电阻的阻值使棒中的电流强度I 保持恒定。

导体棒一直在磁场中运动。

若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。

()102
1
v v Bl E +=
()r I v v Bl P 21022
1-+=。

相关文档
最新文档