几何学概论期末精彩试题及问题详解

合集下载

完整版几何概型的经典题型及答案

完整版几何概型的经典题型及答案

几何概型的常见题型及典例分析一•几何概型的定义1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型 .2. 特点:(1) 无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个;(2) 等可能性,即每个基本事件发生的可能性均相等 . 构成事件A 的区域长度(面积或体 积) 试验的全部结果所构成的区域长度(面积或体积)说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系:(1) 联系:每个基本事件发生的都是等可能的.(2) 区别:①古典概型的基本事件是有限的, 几何概型的基本事件是无 限的;②两种概型的概率计算公式的含义不同..常见题型(一)、与长度有关的几何概型分析:在区间[1,1]上随机取任何一个数都是一个基本事件.所取的数是 区间[1,1]的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的3.计算公式:P (A )例1、在区间[1,1]上随机取一个数x 1X ,cos 2-的值介于0到2之间的概率为().A.- 3B.C.D.区间长度有关,符合几何概型的条件 解:在区间[1,1]上随机取一个数X ,即x [0到-之间,需使x或 x22 2 33 2 2 2••• 1 x 2或-x 1,区间长度为3 3由几何概型知使cos —x 的值介于0到1之间的概率为2 22符合条件的区间长度 J 1所有结果构成的区间长 度 2 3 .例2、如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯 C,D ,问A 与C,B 与D 之间的距离都不小于10米的 概率是多少?思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型.解 记E : “ A 与C,B 与D 之间的距离都不小于10米”,把AB1等分,由于中间长度为妙3=10米,方法技巧我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于 R 的概率 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 地分布在于平行弦垂直的直径上(如图1-1 ) O 也就是说,样本空间所对应的区域 G 是一维空 间(即直线)上的线段 MN 而有利场合所对 应的区域G 是长度不小于R 的平行弦的中点K 所在的区间。

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。

选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。

2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。

对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。

二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。

答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。

将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。

2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。

答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。

这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。

三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。

几何学概论期末试题及答案

几何学概论期末试题及答案

《几何学概论》试题(1)1. 试确定仿射变换,使y 轴,x 轴的象分别为直线01=++y x ,01=--y x ,且点(1,1)的象为原点.(51')2. 利用仿射变换求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知A (1,2,3),B (5,-1,2),C (11,0,7),D (6,1,5),验证它们共线,并求(CD AB ,)的值.(8')6. 设1P (1,1,1),2P (1,-1,1),4P (1,0,1)为共线三点,且(4321,P P P P )=2,求3P 的坐标.(21')7. 叙述并证明帕普斯(Pappus)定理.(01')8.一维射影对应使直线l 上三点P (-1),Q (0),R (1)顺次对应直线l '上三点P '(0),Q '(1),R '(3),求这个对应的代数表达式.(01')9.试比较射影几何、仿射几何、欧氏几何的关系.(01')《高等几何》试题(2)1.求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 叙述笛沙格定理,并用代数法证之.(51')3.求证a (1,2,-1) ,b (-1,1,2),c (3,0,-5)共线,并求l 的值,使).3,2,1(=+=i mb la c i i i (01')4.已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x ,01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 5.试比较欧氏、罗氏、黎氏几何的关系. (01') 6.试证两个点列间的射影对应是透视对应的充要条件是它们底的交点自对应. (01')7.求两对对应元素,其参数为121→,0→2,所确定对合的参数方 程. (01')8.两个重叠一维基本形B A B A λλ'++,成为对合的充要条件是对应点的参数λ与λ'满足以下方程: )0(0)(2≠-=+'++'b ad d b a λλλλ (51')《高等几何》试题(3)1. 求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x , 01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 6. 在一维射影变换中,若有一对对应元素符合对合条件,则这个射影变换一定是对合. (51')7. 试比较射影几何、仿射几何、欧氏几何的关系, 试比较欧氏、罗氏、黎氏几何的关系. (02')[2005—2006第二学期期末考试试题]《高等几何》试题(A )一、 填空题(每题3分共15分)1、 是仿射不变量, 是射影不变量2、 直线30x y +=上的无穷远点坐标为3、 过点(1,i,0)的实直线方程为4、 二重元素参数为2与3的对合方程为5、 二次曲线22611240x y y -+-=过点(1,2)P 的切线方程二、 判断题(每题2分共10分)1、两全等三角形经仿射对应后得两全等三角形 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、一个角的内外角平分线调和分离角的两边 ( )4、欧氏几何是射影几何的子几何,所以对应内容是射影几何对应内容的子集 ( )5、共线点的极线必共点,共点线的极点必共线 ( )三、(7分)求一仿射变换,它使直线210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2)四、(8分)求证:点 (1,2,1),(1,1,2),(3,0,5)A B C --三点共线,并求,t s使,(1,2,3)i i i c ta sb i =+=五、(10分)设一直线上的点的射影变换是/324x x x +=+证明变换有两个自对应点,且这两自对应点与任一对对应点的交比为常数。

七年级下册数学期末考试几何大题证明必考题精选

七年级下册数学期末考试几何大题证明必考题精选

图①DA EC B Fl图②ABEF C lD 七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。

如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。

(1)如图1, 连结DF 、BF ,说明:DF =BF ;(2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。

A EB 图1D CG FA BD C GFE 图2练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上(1)BD 与CE 相等吗?请说明理由.(2)你能求出BD 与CE 的夹角∠BFC 的度数吗?(3)若将已知条件改为:四边形ABCD 与四边形AEFG 都是正方形,例3、正方形四边条边都相等,四个角都是90.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由;②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由;(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;F B②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度α,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C图 2FG D A 图 1F D A外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论. (4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o , R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21A B C D EP A B C DE P M(3) A B C D EP M (2) A B C D EM (P ) (1) A B C D E P M(5)C B APDEFC B E 又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中,h 1、h 2、h 3、h 之间的关系;⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的;例2、已知△ABC 是等边三角形,将一块含30角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.(B)CE F图1ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P ) (1)练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。

几何概型例题分析及习题(含答案)

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案)[例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴影部分167604560222=-=P[例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概率。

解:R AC AB 2||||==. ∴ 212===⋂R R BCDP ππ圆周[例3] 将长为1的棒任意地折成三段,求三段的长度都不超过21的概率。

解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为21。

事件“三段的长度都不超过21”所对应的几何区域可表示为Ω∈=),(|),{(y x y x A ,}211,21,21<--<<y x y x 即图中最中间三角形区域,此区域面积为81)21(212=⨯ 此时事件“三段的长度都不超过21”的概率为412181==P[例4] 两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25,下午3:00张三在基地正东30内部处,向基地行驶,李四在基地正北40内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。

解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x故19225120025412ππ==P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02=++b ax x 两根均为正数的概率。

几何题库简答题及答案

几何题库简答题及答案

几何题库简答题及答案1. 题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这两个锐角的度数。

答案:设较小的锐角为 \( x \) 度,则另一个锐角为 \( 2x \) 度。

根据直角三角形内角和定理,\( x + 2x + 90 = 180 \)。

解得\( x = 30 \) 度,所以较小的锐角为 30 度,较大的锐角为 60 度。

2. 题目:一个圆的半径是 10 厘米,求这个圆的周长和面积。

答案:圆的周长 \( C \) 可以用公式 \( C = 2\pi r \) 计算,其中 \( r \) 是半径。

代入 \( r = 10 \) 厘米,得 \( C = 2\times \pi \times 10 = 20\pi \) 厘米。

圆的面积 \( A \) 可以用公式 \( A = \pi r^2 \) 计算,代入 \( r = 10 \) 厘米,得 \( A= \pi \times 10^2 = 100\pi \) 平方厘米。

3. 题目:一个矩形的长是 8 厘米,宽是 5 厘米,求它的对角线长度。

答案:矩形的对角线 \( d \) 可以用勾股定理求得,即 \( d =\sqrt{l^2 + w^2} \),其中 \( l \) 是长,\( w \) 是宽。

代入\( l = 8 \) 厘米,\( w = 5 \) 厘米,得 \( d = \sqrt{8^2 + 5^2} = \sqrt{64 + 25} = \sqrt{89} \) 厘米。

4. 题目:一个正五边形的外接圆半径是 6 厘米,求它的边长。

答案:正五边形的边长 \( a \) 可以通过外接圆半径 \( R \) 计算,公式为 \( a = 2R \sin(\pi/5) \)。

代入 \( R = 6 \) 厘米,得 \( a = 2 \times 6 \times \sin(\pi/5) \) 厘米。

5. 题目:一个圆柱的底面半径是 3 厘米,高是 10 厘米,求它的体积。

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。

高一数学几何概型试题答案及解析

高一数学几何概型试题答案及解析

高一数学几何概型试题答案及解析1.在区间上随机取一个数,的值介于0到之间的概率为()A.B.C.D.【答案】A【解析】由,可得或,即或,则的值介于到之间的概率为:.故选A.【考点】几何概型的问题.2.甲乙两人各自在300米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是多少().A.B.C.D.【答案】B【解析】由随机事件特点可知,甲乙两人可以在跑道上任何位置,且互不影响.同时考虑到两人距离不超过50米,将跑到建立数轴,且设甲乙两人的坐标为.则,满足几何概型.,,故B【考点】几何概型.3.向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为 ().A.B.C.D.【答案】C【解析】观察这个图可知:阴影部分是一个小三角形,在直线AB的方程为6x-3y-4=0中,令x=1得A(1,),令y=-1得B(,-1).∴三角形ABC的面积为S=AC×BC=×(1+)(1-)=,则飞镖落在阴影部分(三角形ABC的内部)的概率是:P=.故选C.【考点】几何概型.4.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.【答案】C【解析】以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故概率为p=.【考点】几何概型.5.如图,在△AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,则△AOC为钝角三角形的概率为()A.0.6B.0.4C.0.2D.0.1【答案】B【解析】点C的活动范围在线段OB上,所以D的测度为5,△ACO为钝角三角形包含∠OAC,∠OCA为钝角,△AOC为钝角三角形时,∠ACO为钝角,或∠OAB是钝角.当∠ACO=90°时,如下图由勾股定理可求 OC=1;∠OAB=90°时,由直角三角形中的边角关系可得OC=4,BC=1,综上,所以d的测度为2,故△AOC为钝角三角形的概率等于=0.4,故选B.【考点】几何概型.6.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm的圆,中间有边长为0.5 cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为.【答案】【解析】如图,.【考点】几何概型.7.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。

大学几何学考试题及答案

大学几何学考试题及答案

大学几何学考试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是欧几里得几何的公理?A. 两点之间可以画一条直线B. 所有直角都相等C. 两点确定一条直线D. 直线外一点与直线上各点连接的线段中,垂线段最短答案:C2. 在平面几何中,一个三角形的内角和是多少?A. 180度B. 360度C. 90度D. 270度答案:A3. 以下哪个几何图形是中心对称图形?A. 正方形B. 矩形C. 等腰三角形D. 等边三角形答案:A4. 一个圆的面积公式是?A. A = πr²B. A = 2πrC. A = πrD. A = 4πr²答案:A二、填空题(每题5分,共20分)1. 一个圆的周长公式是______。

答案:C = 2πr2. 如果一个矩形的长是10cm,宽是5cm,那么它的面积是______平方厘米。

答案:503. 在直角坐标系中,点(3,4)关于x轴的对称点的坐标是______。

答案:(3,-4)4. 一个正方体的体积公式是______。

答案:V = a³三、简答题(每题10分,共30分)1. 什么是勾股定理?请给出其公式并解释其意义。

答案:勾股定理是直角三角形的两条直角边的平方和等于斜边的平方。

公式为a² + b² = c²,其中a和b是直角边,c是斜边。

这个定理说明了在直角三角形中,边长之间的关系。

2. 描述一下什么是相似三角形,并给出相似三角形的性质。

答案:相似三角形是指两个三角形的对应角相等,对应边的比例相等的三角形。

相似三角形的性质包括:对应角相等,对应边成比例,以及面积比等于对应边长比的平方。

3. 解释一下什么是圆的切线,并给出切线的性质。

答案:圆的切线是指在圆上某一点处与圆相切的直线。

切线的性质包括:切线与过该点的半径垂直,且在切点处只有一个切线。

四、计算题(每题15分,共30分)1. 给定一个半径为5cm的圆,求其周长和面积。

立体几何期末复习(含答案)

立体几何期末复习(含答案)

期末复习 立体几何答案1(广东12)如图5所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE 。

(1)、证明:BD ⊥平面PAC ;(2)、若PA=1,AD=2,求二面角B-PC-A 的正切值; (1)∵ PA ABCD ⊥平面 ∴ PA BD ⊥ ∵ PC BDE ⊥平面 ∴ PC BD ⊥ ∴ BD PAC ⊥平面(2)设AC 与BD 交点为O ,连OE ∵ PC BDE ⊥平面 ∴ PC OE ⊥ 又∵ BO PAC ⊥平面 ∴ PC BO ⊥ ∴ PC BOE ⊥平面∴ PC BE ⊥∴ BEO ∠为二面角B PC A --的平面角 ∵ BD PAC ⊥平面 ∴ BD AC ⊥∴ ABCD 四边形为正方形∴ BO在PAC ∆中,133OE PA OE OC AC ==⇒=∴ tan 3BOBEO OE∠== ∴ 二面角B PC A --的平面角的正切值为32(广东13)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC=,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值.【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '==所以cos OH A HO A H '∠==',所以二面角A CD B '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y xz =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,5n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦值为5. .CO BDEA C DOBE'A图1图23(北京13)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D ,使得AD ⊥A 1B ,并求1BDBC 的值.4(新课标2)(18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB的中点,12AA AC CB AB ===。

大学解析几何试卷及答案(一)

大学解析几何试卷及答案(一)

《空间解析几何》期末考试试卷(A)考试形式:闭卷考试 考试时间:120分钟班号 学号 姓名 得分1 下列等式中正确的是 ( ) A a (b c )= (a b )c B (a ⨯b )c =a (b ⨯c ) C (a b )2 =a 2b 2 D a ⨯b =c ⨯b ,b ≠0,则a =c2 已知向量a 与b 的夹角为23π, 且||3a =, ||4b =, 则2()a b +为 ( )A 14B 13C 12D 11 3 点(1,2,3)M -和平面:5340x y z π-++=间的离差为 ( )A1δ=- B 1δ= C 0δ= D 12δ=-4 直线320:0x y z l x y z +--=⎧⎨-+=⎩与平面:230x y z π+--=的交点和夹角分别为 ( )A (1,0,1)--,3π B (1,0,1)--, 6π C (1,0,1), 3π D (1,0,1)-, 6π 5 方程2350x my z ++-=与6620lx y z --+=表示二平行平面,则,l m 为 ( ) A 4,3l m =-= B 3,3l m ==- C 4,3l m ==- D 3,4l m =-= 6 二次曲线223426250x xy y x y ++--+=属于 ( ) A 抛物型 B 椭圆型 C 双曲型 D 不能确定.二 填空题(每空3分,共18分)1 中心在点(3,1,1)-且通过点(2,3,5)-的球面方程为 .2 在直角坐标系下, 通过点(1,5,3)--且与平面63520x y z --+=垂直的直线方程为 .3 与平面2340x y z -+-=平行, 且在y 轴上截距等于3-的平面方程为 .4 曲线⎩⎨⎧=++=+222222:a z y x axy x L 在xOz 面上的投影曲线方程为 . 5 二次曲线222430x xy y x y -++--=上过点()2,1的切线方程是 .6 设一条二次曲线通过两条二次曲线222610x xy y x +-+-=与2220x y x y ---=的交点,并且还通过点(2,2)-,这条二次曲线的方程为 .三 试用两种方法求过点)2,0,0(0-M ,与平面1:32180x y z ∏-+-=平行,且与直线12341:1zy x l =--=-相交的直线l 的方程. (10分)四 在空间直角坐标系中,直线1l 和2l 的方程分别为1l :11142412x t y t z t=-+⎧⎪=-⎨⎪=--⎩和2l :222545355x t y t z t=-+⎧⎪=-⎨⎪=-⎩(1)求过1l 且平行于2l 的平面方程;(2)求1l 和2l 的距离;(3)求1l 和2l 的公垂线方程.(15分) 五 求直线01xy zβα-==绕z 轴旋转所得旋转曲面的方程,并就α与β可能的值讨论曲面类型.(15分)六 将二次曲线22230x xy y x y ++++=化成标准型,并作出它的图形.(14分)七 求与两直线161:321x y z l --==和284:322x y z l -+==-都相交,且与平面:2350x y ∏+-=平行的直线的轨迹. (10分)《空间解析几何》期末考试试卷答案(A)考试形式:闭卷考试 考试时间:120分钟班号 学号 姓名 得分1 下列等式中正确的是 ( B ) A a (b c )= (a b )c B (a ⨯b )c =a (b ⨯c ) C (a b )2 =a 2b 2 D a ⨯b =c ⨯b ,b ≠0,则a =c2 已知向量a 与b 的夹角为23π, 且||3a =, ||4b =, 则2()a b +为 ( B )A 14B 13C 12D 11 3 点(1,2,3)M -和平面:5340x y z π-++=间的离差为 ( C )A1δ=- B 1δ= C 0δ= D 12δ=-4 直线320:0x y z l x y z +--=⎧⎨-+=⎩与平面:230x y z π+--=的交点和夹角分别为 ( D )A (1,0,1)--,3π B (1,0,1)--, 6π C (1,0,1), 3π D (1,0,1)-, 6π 5 方程2350x my z ++-=与6620lx y z --+=表示二平行平面,则,l m 为 ( A ) A 4,3l m =-= B 3,3l m ==- C 4,3l m ==- D 3,4l m =-= 6 二次曲线223426250x xy y x y ++--+=属于 ( B ) A 抛物型 B 椭圆型 C 双曲型 D 不能确定.二 填空题(每空3分,共18分)1 中心在点(3,1,1)-且通过点(2,3,5)-的球面方程为222(3)(1)(1)21x y z -+++-=.2 通过点(1,5,3)--且与平面63520x y z --+=垂直的直线方程为153635x y z -++==--. 3 与平面2340x y z -+-=平行, 且在y 轴上截距等于3-的平面方程为2360x y z -+-=.4 曲线⎩⎨⎧=++=+222222:az y x ax y x L 在xOz 面上的投影曲线方程为220:0z ax a L y ⎧+-=⎨=⎩.5 二次曲线222430x xy y x y -++--=上过点()2,1的切线方程是5460x y --=.6 设一条二次曲线通过两条二次曲线222610x xy y x +-+-=与2220x y x y ---=的交点,并且还通过点(2,2)-,这条二次曲线的方程为2224527340x xy y x y -+--+=.三 试用两种方法求过点)2,0,0(0-M ,与平面1:32180x y z ∏-+-=平行,且与直线12341:1zy x l =--=-相交的直线l 的方程. (10分)解法一 先求l 的一个方向向量),,(Z Y X υ。

(完整版)立体几何期末复习(含详细答案)

(完整版)立体几何期末复习(含详细答案)

立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.4.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.5.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。

(容器壁的厚度忽略不计,结果保留π)6.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.7.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.8.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________ m.9.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________.10.已知直三棱柱ABC -A 1 B 1 C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1 =12,则球O 的半径为( )A.3172 B .210 C.132D .310 11.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.12.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为( )A.52B.3-1C.12D.2-113.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛16.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为_______.17.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.18.在三棱锥A -BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为22,32,62,则该三棱锥外接球的表面积为()A.2πB.6πC.46πD.24π19.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求点C到平面APB的距离.20.如图所示,在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.立体几何单元复习卷(二)21.到空间不共面的四点距离相等的平面的个数为()A.1 B.4C.7 D.822.如图,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.23.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.24.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n25.已知m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若m⊥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n∥β,m⊥n,则α∥βC.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n∥β,α∥β,则m∥n26.如图,在直三棱柱ABC-A′B′C′中,△ABC是边长为2的等边三角形,AA′=4,E,F,G,H,M分别是边AA′,AB,BB′,A′B′,BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC′A′,则动点P的轨迹长度为()A.2 B.2πC.2 3 D.427.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若m⊂β,α⊥β,则m⊥αB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n28.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC 1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.29.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( ) A.12B .1 C.32 D .230.如图,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P -ABC 中直角三角形的个数为( )A .4B .3C .2D .131.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF32.如图,PA ⊥⊙O 所在平面,AB 是⊙O 的直径,C 是⊙O 上一点,AE ⊥PC ,AF ⊥PB ,给出下列结论:①AE ⊥BC ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ,其中真命题的序号是________.33.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .34.(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.35.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.36.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.37.如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=2 2.(1)求证:DE∥平面BCF;(2)求证:CF⊥平面ABF;(3)当AD=23时,求三棱锥F-DEG的体积.立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形.答案:②③④3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.解析:如图,图①、图②分别表示△ABC的实际图形和直观图.从图②可知,A′B′=AB=2,O′C′=12OC=32,C′D′=O′C′sin 45°=32×22=64.所以S△A′B′C′=12A′B′·C′D′=12×2×64=64.答案:6 44.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.6.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。

立体几何大题(解析版)

立体几何大题(解析版)

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:则点C 0,2,0 ,D 0,0,3 ,E 233,0,0 ,则CD =0,-2,3 ,CE =233,-2,0 ,设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,因为AB ⊥AE ,则A 1B ⊥A 1E ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,DM ⊂平面ACD ,所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),因为点M是PD的中点,所以M0,22,22,所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为AB =AC ,所以AE ⊥BC ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由已知AF =1,∠BAC =60°,所以EF =3,AE =2,BE =1,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,设平面A 1BC 的法向量为n =x ,y ,z ,则n ⋅BC =-3x +y =0n ⋅BA 1 =-3x +3z =0 ,令x =1,得n =1,3,1 ,设平面BCC 1的法向量为m =a ,b ,c ,则m ⋅BC =-3a +b =0m ⋅CC 1 =b +3c =0,令a =1,得m =1,3,-1 ,所以cos n ,m =n ⋅m n ⋅m=35⋅5=35,即二面角A 1-BC -M 的正弦值为45.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.【答案】(1)证明见解析(2)62【分析】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,有HBCG 为平行四边形,根据题设可得FB ⊥HB ,即FB ⊥CG ,再由线面垂直的性质可得CB ⊥FB ,最后根据线面、面面垂直的判定即可证结论.(2)构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,确定相关点坐标,进而求平面BDF 、平面ABG 的法向量,利用空间向量夹角的坐标表示及已知条件可得h =2r ,即可求出点G 到直线DF 的距离.【详解】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB ⎳CG ,又G 为弧CD 的中点,则H 是弧AB 的中点,所以∠HBA =45°,而由题设知:∠ABF =45°,则∠HBF =∠HBA +∠ABF =90°,所以FB ⊥HB ,即FB ⊥CG ,由CB ⊥底面ABF ,FB ⊂平面ABF ,则CB ⊥FB ,又CB ∩CG =C ,CB ,CG ⊂平面BCG ,所以FB ⊥平面BCG ,又FB ⊂平面BDF ,所以平面BDF ⊥平面BCG .(2)由题意,构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,则B 0,2r ,0 ,F 2r ,0,0 ,D 0,0,h ,G -r ,r ,h ,所以FD =-2r ,0,h ,BD =0,-2r ,h ,AB =0,2r ,0 ,AG =-r ,r ,h ,若m =x ,y ,z 是面BDF 的一个法向量,则m ⋅FD =-2rx +hz =0m ⋅BD =-2ry +hz =0 ,令z =2r ,则m =h ,h ,2r ,若n =a ,b ,c 是面ABG 的一个法向量,则n ⋅AB =2rb =0n ⋅AG =-ra +rb +hc =0 ,令c =r ,则n =h ,0,r ,所以cos m ,n =m ⋅n m n=h 2+2r 22h 2+4r 2×h 2+r 2=155,整理可得h 2-4r 2 h 2+2r 2 =0,则h =2r ,又AB =2,由题设可知,此时点G -1,1,2 ,D 0,0,2 ,F 2,0,0 ,则DF =2,0,-2 ,DG =-1,1,0 ,所以点G 到直线DF 的距离d =DG 2-DG ⋅DF 2DF2=62.13(22·23下·江苏·三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE =AD ,△ABC 为底面圆O 的内接正三角形,圆锥的高DO =18,点P 为线段DO 上一个动点.(1)当PO =36时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.【答案】(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP ⊥BP 和AP ⊥CP ,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE =AD ,AD =DE ,所以△ADE 是正三角形,则∠DAO =π3,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO ⊥AE ,在Rt △AOD 中,DO =18,所以AO =DO 3=63,因为△ABC 是正三角形,所以AB =AO ×32×2=63×3=18,AP =AO 2+PO 2=92,BP =AP ,所以AP 2+BP 2=AB 2,AP ⊥BP ,同理可证AP ⊥CP ,又BP ∩PC =P ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O -xyz .设PO =x ,(0≤x ≤18),所以P 0,0,x ,E -33,9,0 ,B 33,9,0 ,C -63,0,0 ,所以EP =33,-9,x ,PB =33,9,-x ,PC =-63,0,-x ,设平面PBC 的法向量为n =a ,b ,c ,则n ⋅PB =33a +9b -cx =0n ⋅PC =-63a -cx =0,令a =x ,则b =-3x ,c =-63,故n =x ,-3x ,-63 ,设直线PE 和平面PBC 所成的角为θ,则sin θ=cos EP ,n =33x +93x -63x 108+x 2⋅x 2+3x 2+108=63x 108+x 2⋅4x 2+108=634x 2+1082x 2+540≤6324x 2⋅1082x 2+540=13,当且仅当4x 2=1082x 2,即PO =x =36时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.14(22·23下·镇江·三模)如图,四边形ABCD 是边长为2的菱形,∠ABC =60°,四边形PACQ 为矩形,PA =1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP ,DP 与平面ABCD 所成角相等;②三棱锥P -ABD 体积为33;③cos ∠BPA =55(1)平面PACQ ⊥平面ABCD ;(2)求二面角B -PQ -D 的大小;(3)求点C 到平面BPQ 的距离.【答案】(1)证明见解析(2)2π3(3)32【分析】(1)若选①,则作PA ⊥面ABCD ,证明A 和A 重合从而得到PA ⊥面ABCD ,从而得到面面垂直;若选②,计算得到P 到面ABD 的距离h =1=PA ,得到PA ⊥面ABCD ,从而得到面面垂直;若选③,通过余弦定理计算得到PA ⊥AB ,再通过PA ⊥面ABCD ,从而得到面面垂直;(2)通过建立空间直角坐标系,求出两个平面的法向量,结合二面角计算公式计算即可;(3)通过点面距离的计算公式直接计算即可.【详解】(1)选①,连接BD ,作PA ⊥面ABCD ,垂足为A .∵BP ,DP 与平面ABCD 所成角相等,∴A B =A D ,∴A 在BD 的中垂线AC 上,∵在平面PACQ 内,PA ⊥AC ,PA ⊥AC ,∴A 和A 重合,∴PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD若选②,设P 到面ABD 的距离为h ,∵V P -ABD =13S △ABD ⋅h =13×3⋅h =33,得h =1=PA ,∴PA 即为P 到面ABD 的距离,即PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD .若选③,由余弦定理得,cos ∠BPA =PB 2+PA 2-AB 22PB ⋅PA =55,∴BP =5,∴BP 2=AP 2+AB 2∴PA ⊥AB ,又PA ⊥AC ,AC ∩AB =A ,AC ,AB ⊂面ABCD∴PA ⊥面ABCD ,又PA ⊂面PACQ∴面PACQ ⊥面ABCD(2)因为PA ⊥面ABCD ,OB ,OC ⊂面ABCD ,所以PA ⊥OB ,PA ⊥OC ,取PQ 中点G ,则OG ⎳PA ,所以OG ⊥OB ,OG ⊥OC ,又因为OB ⊥OC ,所以建立如下图所示空间直角坐标系,∵B 3,0,0 ,P 0,-1,1 ,D -3,0,0 ,Q 0,1,1 ,∴BQ =-3,1,1 ,DQ =3,1,1 ,DP =3,-1,1 ,设平面BPQ 的一个法向量为m =x ,y ,z ,则m⋅BP =0m ⋅BQ =0 ,即-3x -y +z =0-3x +y +z =0 ,令x =3,则y =0,z =3,∴m =3,0,3 ,设平面DPQ 的一个法向量为n =x 1,y1,z 1 ,则n ⋅DP=0n ⋅DQ =0 ,即3x 1-y 1+z 1=3x 1+y 1+z 1=0,令x1=3,则y 1=0,z 1=-3,∴n =3,0,-3 ,∴cos m ,n =m ⋅n m ⋅ n =-623×23=-12,∵m ,n ∈0,π ,∴m ,n =2π3,由图可知二面角B -PQ -D 是钝角,所以二面角B -PQ -D 的大小为2π3.(3)∵C 0,1,0 ,Q 0,1,1 ,∴CQ =0,0,1 ,∵平面BPQ 的一个法向量为m =3,0,3 ,∴点C 到平面BPQ 的距离d =CQ ⋅m m=323=32.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.【答案】(1)证明见解析(2)EP EA 1=25【分析】(1)作B 1O ⊥AB 交AB 于O 点,由面面垂直的性质可得B 1O ⊥平面ABC ,可得B 1O ⊥AC ,再由线面垂直的判定定理得AC ⊥平面A 1B 1BA ,从而得到AC ⊥A 1B ,再由线面垂直的判定定理可得答案;(2)以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设EP =λEA 1 ,可得AP =-λ,1-λ,3λ ,求出平面A 1BE 的一个法向量,由线面角的向量求法可得答案.【详解】(1)因为侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB =AC =2,所以△ABB 1、△AA 1B 1为边长为2的等边三角形,作B 1O ⊥AB 交AB 于O 点,则O 点为AB 的中点,因为平面A 1B 1BA ⊥平面ABC ,平面A 1B 1BA ∩平面ABC =AB ,B 1O ⊂平面A 1B 1BA ,所以B 1O ⊥平面ABC ,AC ⊂平面ABC ,可得B 1O ⊥AC ,又AB 1⊥AC ,B 1O ∩AB 1=B 1,B 1O 、AB 1⊂平面A 1B 1BA ,可得AC ⊥平面A 1B 1BA ,因为A 1B ⊂平面A 1B 1BA ,所以AC ⊥A 1B ,因为侧面A 1B 1BA 为菱形,所以B 1A ⊥A 1B ,AB 1∩AC =A ,AB 1、AC ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C ;(2)由(1)知,AC ⊥平面A 1B 1BA ,∠BAC =π2,取做A 1B 1的中点O 1,连接AO 1,则B1O ⎳AO 1,所以AO 1⊥平面ABC ,以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则A 0,0,0 ,A 1-1,0,3 ,B 2,0,0 ,E 0,1,0 ,A 1B =3,0,-3 ,EA 1 =-1,-1,3 ,设EP =λEA 1 ,可得P -λ,1-λ,3λ ,所以AP =-λ,1-λ,3λ ,设平面A 1BE 的一个法向量为n=x ,y ,z ,则A 1B ⋅n=0EA 1 ⋅n =0,即3x -3z =0-x -y +3z =0 ,令z =3,可得n =1,2,3 ,可得sin π4=cos n ,AP =n ⋅AP n AP=-λ+2-2λ+3λ 1+4+3λ2+1-λ 2+3λ2,解得λ=0舍去,或λ=25,所以EP EA 1=25.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.【答案】(1)N 是CD 的中点(2)12,1,0 ,-1310,1,185 【分析】(1)根据面面平行的性质证明MN ⎳PC ,即可得解;(2)先根据球的体积求出PQ ,然后根据空间中两点间的距离公式即可得解.【详解】(1)因为平面OMN ⎳平面PBC ,平面OMN ∩平面PCD =MN ,平面PBC ∩平面PCD =PC ,所以MN ⎳PC ,因为M 是PD 的中点,所以N 是CD 的中点;(2)由题意4π×PQ 22=214π,解得PQ =212,设MQ =λMN,λ∈R ,由题意,P 0,0,2 ,M 0,1,1 ,N 12,1,0 ,则PM =0,1,-1 ,MN =12,0,-1 ,则PQ =PM +MQ =0,1,-1 +λ12,0,-1 =λ2,1,-λ-1 ,则λ24+1+-λ-1 2=212,解得λ=1或λ=-135,当λ=1时,MQ =MN ,则Q 12,1,0 ,当λ=-135时,MQ =-135MN =-1310,0,135,设Q x ,y ,z ,则MQ =x ,y -1,z -1 =-1310,0,135,所以x =-1310y -1=0z -1=135 ,解得x =-1310y =1z =185 ,则Q -1310,1,185 ,综上所述点Q 的坐标为12,1,0,-1310,1,185 .17(22·23·汕头·三模)如图,圆台O 1O 2的轴截面为等腰梯形A 1ACC 1,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点.(1)在平面BCC 1内,过C 1作一条直线与平面A 1AB 平行,并说明理由;(2)若四棱锥B -A 1ACC 1的体积为23,设平面A 1AB ∩平面C 1CB =l ,Q ∈l ,求CQ 的最小值.【答案】(1)作图见解析,理由见解析(2)7【分析】(1)根据线面平行的判定和中位线定理即可求解;(2)根据几何关系或空间向量方法即可求解.【详解】(1)取BC 中点P ,作直线C 1P 即为所求,取AB 中点H ,连接A 2H ,PH ,则有PH ∥AC ,PH =12AC ,如图,在等腰梯形A 1ACC 1中,A 1C 1=12AC ,有HP ∥A 1C 1,HP =A 1C 1,则四边形A 1C 1PH 为平行四边形,即有C 1P ∥A 1H ,又A 1H ⊂平面A 1AB ,C 1P⊄平面A 1AB ,所以C 1P ∥平面A 1AB .(2)法一:延长AA 1,CC 1交于点O ,故O ∈AA 1⊂平面ABA 1,O ∈CC 1⊂平面CC 1B故平面A 1AB ∩平面C 1CB =BO ,BO 即l ,在△OBC 中,OC ,OB 均为圆锥母线.过点B 作BO ⊥AC 于O .在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高h =AA 21-AC -A 1C 122=3,∴等腰梯形A 1ACC 1的面积为S =122+4 3=33,所以四棱锥B -A 1ACC 1的体积V =13S ×BO =13×33×BO =23,解得BO =2,故点O 与O 2重合,BC =22由AC =2AA 1=2A 1C 1,得OC =2CC 1,且∠C 1CA =60°,故OC =AC =4=OB .△OBC 中,O 到BC 距离h 1=OB 2-BC 22=14.则△OBC 面积=12OB ⋅CQ min =12BC ⋅h 1,得:CQ 的最小值为:CQ min =22⋅144=7.法二:同法一求出B 的位置.以O 2为原点,OB ,OC ,O 2O 1方向为x ,y ,z 轴正向建立空间直角坐标系,C 0,2,0 ,B 2,0,0 ,AA 1 =0,1,3 ,AB =2,2,0 ,CC 1 =0,-1,3 ,BC=-2,2,0设面A 1AB 的法向量为a=x 1,y 1,z 1a ⋅AA 1=y 1+3z 1=0a ⋅AB=2x 1+2y 1=0,取z 1=1,有a=3,-3,1 ;同理可得面C 1CB 的法向量为β=3,3,1 ,由l =面C 1CB ∩面A 1AB ,可知B ∈l ,设l 的方向向量为l=x ,y ,z ,故l ⋅a =3x -3y +z =0,l ⋅β=3x +3y +z =0取l=1,0,3 ,下面分2个方法求|CQ |min求|CQ |min 方法1:BQ =l=t ,0,3t ,,∵B 2,0,0 ,∴Q t -2,0,3t∴CQ =(t -2)2+22+(3t )2=4t 2-4t +8,当t =12时,CQ 取最小值为7.求CQ min 方法2:BC 在l 上的投影向量的模为BC ⋅l l =-2×1+2×0+0×32=1故CQ 的最小值即C 到l 的距离为BC 2-12=7.法三:在三角形△BCO 中,BO =CO =4,BC =22,cos ∠CBO =42+(22)2-422×4×22=122⋅sin ∠CBO =1-1222=722,所以CQ ≥CB sin ∠CBO =722×22=7.18(19·20下·临沂·二模)如图①,在Rt △ABC 中,B 为直角,AB =BC =6,EF ∥BC ,AE =2,沿EF 将△AEF 折起,使∠AEB =π3,得到如图②的几何体,点D 在线段AC 上.(1)求证:平面AEF ⊥平面ABC ;(2)若AE ⎳平面BDF ,求直线AF 与平面BDF 所成角的正弦值.【答案】(1)证明见解析;(2)64.【分析】(1)由余弦定理计算证明EA ⊥AB ,再利用线面垂直的判定、性质,面面垂直的判定推理作答.(2)以A 为原点,建立空间直角坐标系,利用空间向量求线面角的正弦作答.【详解】(1)在△ABE 中,AE =2,BE =4,∠AEB =π3,由余弦定理得:AB 2=AE 2+BE 2-2AE ⋅BE cos ∠AEB =4+16-2×2×4×12=12,则AB =23,有EB 2=EA 2+AB 2,于是∠EAB =π2,即有EA ⊥AB ,又EF ⊥EB ,EF ⊥EA ,EA ∩EB =E ,EA ,EB ⊂平面ABE ,因此EF ⊥平面ABE ,而AB ⊂平面ABE ,则EF ⊥AB ,又因为EA ∩EF =E ,EA ,EF ⊂平面AEF ,从而AB ⊥平面AEF ,而AB ⊂平面ABC ,所以平面AEF ⊥平面ABC .(2)以A 为原点,以AB ,AE 分别为x ,y 轴,过点A 垂直于平面ABE 的直线为z 轴,建立空间直角坐标系,如图,由(1)知,EF ⊥平面ABE ,而EF ⎳BC ,则有BC ⊥平面ABE ,则A (0,0,0),B (23,0,0),E (0,2,0),F (0,2,2),C (23,0,6),AF =(0,2,2),FB =(23,-2,-2),AC=(23,0,6),连接EC 与FB 交于点G ,连接DG ,因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =DG ,则AE ⎳GD ,有GC GE =DCDA,在四边形BCFE 中,由EF ⎳BC ,得GC GE =BC EF =3,即DC DA=3,AD =14AC =32,0,32 ,FD =AD -AF =32,-2,-12,设平面BDF 的法向量为n =(x ,y ,z ),则n ⋅FD =32x -2y -12z =0n ⋅FB =23x -2y -2z =0,令x =1,得n =(1,0,3),设直线AF 与平面BDF 所成角为θ,于是sin θ=|cos ‹n ,AF ›|=|n ⋅AF ||n ||AF |=2322×2=64,所以直线AF 与平面BDF 所成角的正弦值为64.19(22·23下·广州·三模)如图,四棱锥P -ABCD 的底面为正方形,AB =AP =2,PA ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点.(1)求证:平面EFG ⊥平面PAC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E -ABG 体积.【答案】(1)证明见解析(2)19【分析】(1)由线面垂直判定可证得BD ⊥平面PAC ,由中位线性质知EF ⎳BD ,从而得到EF ⊥平面PAC ,由面面垂直判定可得结论;(2)以A 为坐标原点可建立空间直角坐标系,设PG =λPC ,λ∈0,12 ∪12,1 ,由线面角的向量求法可构造方程求得λ,结合垂直关系可得G 平面PAB 的距离为16BC =13,利用棱锥体积公式可求得结果.【详解】(1)连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ⎳BD ,∵底面四边形ABCD 为正方形,∴BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,∵EF ⎳BD ,∴EF ⊥平面PAC ,又EF ⊂平面EFG ,∴平面EFG ⊥平面PAC .(2)以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,E 1,0,1 ,F 0,1,1 ,P 0,0,2 ,C 2,2,0 ,设PG =λPC ,λ∈0,12 ∪12,1 ,则AG =AP +PG =0,0,2 +2λ,2λ,-2λ =2λ,2λ,2-2λ ,AE =1,0,1 ,AF =0,1,1 ,设平面AEF 的一个法向量为n=x ,y ,z ,则n ⋅AE=x +z =0n ⋅AF=y +z =0,令z =-1,解得:x =1,y =1,∴n =1,1,-1 ;设直线AG 与平面AEF 所成角为θ,sin θ=cos n ,AG =n ⋅AGn ⋅AG=6λ-2 3⋅4λ2+4λ2+2-2λ 2=13,解得:λ=16或λ=12(舍),∴PG =16PC ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ;∵BC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴G 到平面PAB 的距离为16BC =13,∴V E -ABG =V G -ABE =13S △ABE ⋅16BC =13×12×12×2×2×13=19.20(22·23下·长沙·一模)斜三棱柱ABC -A 1B 1C 1的各棱长都为2,∠A 1AB =60°,点A 1在下底面ABC 的投影为AB 的中点O .(1)在棱BB 1(含端点)上是否存在一点D 使A 1D ⊥AC 1若存在,求出BD 的长;若不存在,请说明理由;(2)求点A 1到平面BCC 1B 1的距离.【答案】(1)存在,BD =25(2)2155【分析】(1)连接OC ,以O 点为原点,如图建立空间直角坐标系,设BD =tBB 1 ,t ∈0,1 ,根据AC 1 ⋅A 1D=0,求出t 即可;(2)利用向量法求解即可.【详解】(1)连接OC ,因为AC =BC ,O 为AB 的中点,所以OC ⊥AB ,由题意知A 1O ⊥平面ABC ,又AA 1=2,∠A 1AO =60°,所以A 1O =3,以O 点为原点,如图建立空间直角坐标系,则A 10,0,3 ,A 1,0,0 ,B -1,0,0 ,C 0,3,0 ,由AB =A 1B 1得B 1-2,0,3 ,同理得C 1-1,3,3 ,设BD =tBB 1,t ∈0,1 ,得D -1-t ,0,3t ,又AC 1 =-2,3,3 ,A 1D =-1-t ,0,3t -3 ,由AC 1 ⋅A 1D=0,得-2-1-t +33t -3 =0,得t =15,又BB 1=2,∴BD =25,∴存在点D 且BD =25满足条件;(2)设平面BCC 1B 1的法向量为n=x ,y ,z ,BC =1,3,0 ,CC 1 =-1,0,3 ,则有n ⋅BC=x +3y =0n ⋅CC 1=-x +3z =0,可取n =3,-1,1 ,又BA 1=1,0,3 ,∴点A 1到平面BCC 1B 1的距离为d =BA 1 cos BA 1 ,n =BA 1 ×3+0+3BA 1×5=2155,∴所求距离为2155.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.【答案】(1)2(2)证明见解析【分析】(1)通过证明线线和线面垂直,并结合已知条件即可得出三棱锥C -A 1B 1C 1的体积;(2)建立空间直角坐标系,表达出各点的坐标,求出所成角为α与β的正余弦值,即可证明结论.【详解】(1)由题意,∵平面ABB 1A 1⊥平面ABC ,且平面ABB 1A 1∩平面ABC =AB ,AB ⊥BC ,BC ⊂平面ABC ∴BC ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BC ⊥BB 1,又AC ⊥BB 1,BC ∩AC =C ,BC ,AC ⊂平面ABC ∴BB 1⊥平面ABC ,连接C 1B ,∵DE ⎳平面BCC 1B 1,DE ⊂平面ABC 1,平面ABC 1∩平面BCC 1B 1=C 1B ,∴DE ∥C 1B ,∵AE =2EB ,∴AD =2DC 1 ,∴A 1C 1=12AC .∴三棱锥C -A 1B 1C 1底面A 1B 1C 1的面积S 1=12×2×3=3,高h =BB 1=2,。

大学考试解析几何试题答案

大学考试解析几何试题答案

大学考试解析几何试题答案一、选择题1. 若一条直线过点A(2,3),且与直线2x-y=0垂直,求该直线的方程。

解析:已知直线2x-y=0的斜率为2,与其垂直的直线斜率为-1/2(因为垂直直线的斜率互为负倒数)。

设所求直线方程为y=kx+b,代入点A(2,3)和斜率-1/2,得到方程为y=-1/2x+7/2。

2. 圆的一般方程为x^2+y^2+Dx+Ey+F=0,若该圆过点(1,2),且其圆心在直线2x-y=0上,求D、E、F的值。

解析:将点(1,2)代入圆的一般方程得1^2+2^2+D+2E+F=0。

又因为圆心(-D/2, -E/2)在直线2x-y=0上,代入得-D/2*2-E/2=0,解得D=E。

将D=E代入前面的方程,解得D=-6,E=-6,F=-7。

所以圆的方程为x^2+y^2-6x-6y-7=0。

二、填空题1. 已知三角形ABC的三个顶点坐标分别为A(1,2),B(4,5),C(7,3),求三角形ABC的面积。

解析:首先计算三条边的长度,|AB|=√[(4-1)^2+(5-2)^2]=√10,|BC|=√[(7-4)^2+(3-5)^2]=5,|AC|=√[(7-1)^2+(3-2)^2]=2√5。

然后利用海伦公式计算面积,p=(|AB|+|BC|+|AC|)/2=(√10+5+2√5)/2,面积S=√[p(p-|AB|)(p-|BC|)(p-|AC|)]=√[(9+2√10)(4+√10)(4+2√5)(4+√5)]。

2. 已知椭圆的长轴为2a,短轴为2b,且a>b,若椭圆的周长为P,求P的近似值。

解析:椭圆的周长没有精确公式,但可以用Ramanujan的近似公式计算:P≈π[3(a+b)-√{(3a-b)(a+3b)}]。

这个公式在大多数情况下都能给出较为精确的结果。

三、解答题1. 已知锥体的高为h,底面为正方形,边长为a,求锥体的侧面积。

解析:锥体的侧面积可以通过底面周长与斜高之积的一半来计算。

几何制图期末考试题及答案

几何制图期末考试题及答案

几何制图期末考试题及答案一、选择题(每题2分,共20分)1. 在平面几何中,一个点的轨迹,如果它到两个固定点的距离之和是常数,这个点的轨迹是什么?A. 直线B. 圆C. 椭圆D. 抛物线2. 以下哪个图形不是平面图形?A. 三角形B. 正方形C. 立方体D. 长方形3. 如果一个三角形的两边长分别为3和4,第三边长度大于1而小于7,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 104. 在一个圆中,弦AB和弦CD相交于点P,如果PA = PB,那么以下哪个陈述是正确的?A. CD = CP + PDB. PC = PDC. PA = PDD. PA = CP5. 以下哪个不是几何图形的属性?A. 面积B. 体积C. 周长D. 角度6. 一个正六边形的内角是多少度?A. 90B. 120C. 135D. 1507. 在直角三角形中,如果一个锐角是另一个锐角的两倍,那么较小的锐角是多少度?A. 30B. 45C. 60D. 758. 一个圆的半径是5,那么它的直径是多少?A. 10B. 15C. 20D. 259. 一个矩形的长是宽的两倍,如果它的周长是24厘米,那么它的长是多少厘米?A. 6B. 8C. 10D. 1210. 一个球体的体积公式是什么?A. V = πr^2hB. V = 4/3πr^3C. V = πr^3D. V = 1/3πr^3答案:1. C2. C3. B4. B5. B6. B7. A8. A9. B10. B二、填空题(每空1分,共10分)1. 一个圆的周长公式是 ________。

2. 三角形的内角和是 ________ 度。

3. 一个正方形的对角线长度是边长的 ________ 倍。

4. 如果一个三角形的两边长分别为a和b,且a > b,那么第三边c 的取值范围是 ________。

5. 正弦定理的公式是 ________。

6. 一个圆的面积公式是 ________。

数学期末考试立体几何问题解析

数学期末考试立体几何问题解析

数学期末考试立体几何问题解析在数学的学习中,立体几何是一个极其重要的内容。

它不仅仅在我们的日常生活中起到了很大的作用,也是数学学科中的一门重要分支。

在数学期末考试中,立体几何问题是经常出现的题型之一。

本文将对数学期末考试中的立体几何问题进行解析。

一、平面与直线的交点问题平面与直线的交点问题是立体几何中的基础问题之一。

考虑一个平面和一条直线,求它们的交点是本题的关键。

首先,我们需要求出平面和直线的方程。

然后,将直线方程代入平面方程,解方程组即可求得交点的坐标。

最后,结合图形,我们可以判断交点的具体位置。

例如,考虑以下问题:已知平面的方程为2x + 3y - z = 6,直线的方程为x + y + z = 2,求平面与直线的交点。

我们可以先把直线的方程代入平面的方程,得到2x + 3y - (2 - x - y) = 6。

化简得到3x + 4y = 8。

解方程组3x + 4y = 8,我们可以得到x = 2,y = 1。

将x和y的值代入直线方程,可以得到z = -1。

因此,平面与直线的交点为(2, 1, -1)。

二、平面与平面的交线问题在立体几何中,平面与平面的交线问题是比较复杂的一类问题。

在考试中,这类问题往往需要结合图形进行分析和判断。

要解决平面与平面的交线问题,我们需要先确定平面的方程,然后将一个平面的方程代入另一个平面方程,再解方程组。

最后,我们可以通过分析交线在图形中的位置和方向,确定交线的具体形状和性质。

举例来说,考虑以下问题:已知平面1的方程为x + y + z = 5,平面2的方程为2x - y + 3z = 6,求平面1与平面2的交线方程。

我们可以将平面1的方程代入平面2的方程,得到2x - (5 - x - y) +3z = 6。

化简可得3x + 2y + 3z = 11。

解方程组3x + 2y + 3z = 11,我们可以得到x = 1,y = 2。

将x和y的值代入任意一个平面的方程,可以得到z = 2。

几何制图期末考试题目及答案

几何制图期末考试题目及答案

几何制图期末考试题目及答案一、选择题(每题2分,共20分)1. 点A、B、C不共线,且线段AB=AC,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:D2. 已知圆的半径为r,圆心到直线的距离为d,当d=r时,直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切答案:B3. 一个平行四边形的对角线互相垂直,那么这个平行四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:B4. 如果一个多边形的每个内角都相等,且每个外角都相等,那么这个多边形是:A. 三角形B. 四边形C. 五边形D. 六边形答案:B5. 正六边形的内角是:A. 90°B. 120°C. 150°D. 180°答案:B6. 已知一个三角形的两边长分别为a和b,且a>b,如果这个三角形是等腰三角形,那么第三边的长度是:A. a-bB. a+bC. aD. b答案:C7. 一个圆的内接四边形的对角线互相垂直,那么这个四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:A8. 已知三角形ABC中,∠A=90°,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B9. 一个多边形的内角和为900°,那么这个多边形的边数是:A. 5B. 6C. 7D. 8答案:B10. 一个正多边形的每个内角都相等,且每个外角也相等,那么这个正多边形的边数是:A. 3B. 4C. 5D. 6答案:D二、填空题(每题2分,共20分)11. 一个圆的周长为2πr,其中r是________。

答案:半径12. 直角三角形的斜边长度是两直角边长度的________。

答案:平方根之和13. 正五边形的每个内角的度数是________。

答案:108°14. 如果一个三角形的两边长分别为3和4,那么第三边的长度范围是________。

期末立体几何大题复习题

期末立体几何大题复习题

期末立体几何大题复习题
立体几何是数学中的一个重要分支,它涉及到空间中的点、线、面以
及它们的相互关系。

期末复习时,我们需要重点关注以下几个方面:
1. 空间直线与平面的位置关系:理解空间直线与平面的平行、垂直关系,以及它们的性质和判定。

2. 平面与平面的位置关系:掌握平面与平面的平行、相交关系,以及
如何通过几何方法或向量方法来证明它们。

3. 空间多面体:熟悉空间多面体的基本概念,包括棱柱、棱锥、棱台等,以及它们的体积和表面积的计算方法。

4. 空间几何体的体积和表面积:掌握不同几何体的体积和表面积计算
公式,如球体、圆柱、圆锥等。

5. 空间向量:学习空间向量的基本运算,包括向量的加法、减法、数
乘以及向量的数量积和向量积。

6. 立体几何的证明技巧:熟悉立体几何中常见的证明方法,如反证法、构造法等。

7. 综合应用题:通过解决一些综合应用题来提高解决实际问题的能力,这些题目通常涉及到多个知识点的结合。

8. 解题技巧与策略:在复习过程中,注意总结解题技巧和策略,如如
何选择合适的坐标系,如何利用对称性简化问题等。

9. 练习题与例题:通过大量的练习题和例题来巩固知识点,提高解题速度和准确率。

10. 历年真题:研究历年的考试真题,了解考试的题型和难度,以及命题的规律。

复习时,建议同学们制定一个合理的复习计划,均衡分配时间,既要注重理论知识的学习,也要重视实际操作和练习。

同时,要注意培养空间想象能力,这对于解决立体几何问题至关重要。

希望同学们在期末考试中取得优异的成绩。

专题8.3 立体几何初步 章末检测3(难)(解析版)

专题8.3 立体几何初步 章末检测3(难)(解析版)

专题8.3 立体几何初步章末检测3(难)第I卷(选择题)一、单选题(每小题5分,共40分)1.下列说法正确的是()A.棱柱的各个侧面都是平行四边形B.底面是矩形的四棱柱是长方体C.有一个面为多边形,其余各面都是三角形的几何体是棱锥D.直角三角形绕其一边所在直线旋转一周形成的几何体是圆锥【答案】A【详解】解:对于A,根据棱柱的性质可知,棱柱的各个侧面都是平行四边形,故A正确;对于B,底面是矩形,若侧棱不垂直于底面,这时的四棱柱是斜四棱柱,不是长方体,只有底面是矩形的直四棱柱才是长方体,可知B错误;对于C,有一个面为多边形,其余各面都是三角形的几何体不一定是棱锥,只有其余各面是有一个公共点的三角形的几何体,才是棱锥,故C错误;对于D,直角三角形绕其一条直角边所在直线旋转一周形成的几何体是圆锥,如果绕着它的斜边旋转一周,形成的几何体则是两个具有共同底面的圆锥,故D错误.故选:A.2.一个圆台上、下底面的半径分别为3cm和8cm,若两底面圆心的连线长为12cm,则这个圆台的母线长为()A.11cm B.12cm C.13cm D.14cm【答案】C【详解】如图所示圆台:A,B为上下底面圆心,由题可得直角梯形ABCD 中,过D 作BC 的垂线,垂足为E ,DE =12,CE =5,由勾股定理可得CD =13,即该圆台母线长为13cm .故选:C3.已知正三棱锥P ABC -侧棱长2PA =,40APB ∠=︒.一只小蚂蚁从顶点A 出发沿着棱锥的侧面爬行一周回到A 点,则小蚂蚁爬行的最短距离是( )A .B .C .3D .4【答案】B【详解】三棱锥的侧面展开图如图,'AA 最短,'120︒∠=APA ,222'2+2222cos12012︒=-⨯⨯⨯=AA ,∴AA 故选:B4.已知三棱锥P ABC -的顶点都在球O 的球面上,2AB AC ==,BC =PB ⊥平面ABC ,若球O 的体积为,则该三棱锥的体积是( )A .163B .5CD .83【答案】A【详解】由球O 的体积343V r π==,得r =.因为2AB AC ==,BC =ABC 为等腰直角三角形,故三角形ABC 的外心为斜边中点Q ,设球心为O ,故OQ ⊥面ABC ,故//OQ PB由勾股定理4OQ ==故()222416PB OP BQ -=-=故8PB =则三棱锥的高8h =,所以体积1116228323V =⨯⨯⨯⨯=. 故选:A.5.已知,αβ是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列命题正确的是( ) A .若//,//m n αβ,且//αβ,则//m nB .若m α⊥,βn//,且αβ⊥,则m n ⊥C .若,ααβ⊥⊥m ,则//m βD .若//,m m αβ⊥,则αβ⊥ 【答案】D【详解】由//,//m n αβ,且//αβ,得//m n 或m 与n 异面或m 与n 相交,故A 错误;由m α⊥,βn//,且αβ⊥,得//m n 或m 与n 相交或m 与n 异面,故B 错误;由,ααβ⊥⊥m ,得//m β或m 在β 平面内,故C 错误;由//,m m αβ⊥,得αβ⊥,故D 正确.故选:D .6.已知三棱锥A BCD -外接球的表面积为8π,AB AC BD CD ===,2BC AD =,直线AD 与平面BCD 所成角为3π,则AB 等于( )A .1B .2C .3D .4【答案】B【详解】取BC 的中点为O ,连接,AO OD ,过A 作AE OD ⊥,交OD 于E .因为,,AB BD AC CD BC BC ===,所以ABC DBC ∆≅∆,故AO OD =.又BO OC =,所以AO BC ⊥,同理DO BC ⊥,因为AO DO O ⋂=,故BC ⊥平面AOD .因为BC ⊂平面BCD ,故平面BCD ⊥平面AOD ,因为平面BCD 平面AOD OD =,AE ⊂平面AOD ,故AE ⊥平面BCD ,所以ADO ∠为直线AD 与平面BCD 所成的角,因此60ADO ∠=︒,故ADO ∆为等边三角形,故AO AD =.因为2BC AD =,所以BO AO =,同理BO OD =,故OA OB OC OD ===,所以O 为外接球的球心且OA 为球的半径.因为外接球的表面积为8π,故248OB ππ⨯=,故OB =所以2AB ==.故选:B.7.在Rt ABC 中,90,C CA CB CD ===是斜边的高线,现将ACD 沿CD 折起,使平面ACD ⊥平面BCD ,则折叠后AB 的长度为( )A .2B C D .3【答案】C【详解】由题设,可得如下平面图及其翻折后的立体图,90,C CA CB ===∴2AD =,1BD =,又面ACD ⊥面BCD ,面ACD面BCD CD =,AD CD ⊥,AD ⊂面ACD , ∴AD ⊥面BCD ,而BD ⊂面BCD ,故AD BD ⊥,∴在Rt ADB 中,AB ==故选:C. 8.堑堵和阳马都是中国古代算数中的几何体,堑堵是指底面为直角三角形的直三棱柱,阳马是指底面为长方形,一条侧棱垂直于底面的四棱锥,在如图所示的堑堵中,面积最大的侧面ABCD 是边长为2的正方形,则四棱锥E ABCD -的体积的最大值为( )A .13B .23 C .1D .43 【答案】D【详解】 因为面积最大的侧面ABCD 是边长为2的正方形,所以90AEB =︒∠.如图所示:作EH AB ⊥于H ,因为堑堵是指底面为直角三角形的直三棱柱,所以平面ABCD ⊥平面AEB ,因为EH ⊂平面AEB ,所以EH ⊥平面ABCD ,因为当AE =BE 时,EH 最大,最大值为1,所以E ABCD -的体积的最大值为1422133⨯⨯⨯=. 故选:D.二、 多选题(每小题5分,共20分) 9.已知正方体1111 ABCD A B C D -中,设与对角线1AC 垂直的平面α截正方体表面所得截面多边形记为M ,则关于多边形M 的说法正确的是( )A .M 可能为正三角形B .M 可能为正方形C .若M 为六边形,则面积为定值D .若M 为六边形,则周长为定值【答案】AD【详解】对于A ,M 为1A BD 知M 能为正三角形对于B ,截面要么与正方体的三个面相截,要么与正方体的六个面相截,从而截面为三角形或六边形知B 错误对于C ,D ,当截面M 为六边形EFGHIJ 时,如图,由于截面1A BD 与截面EFGHIJ 都与直线1AC 垂直,因此它们平行,它们与正方体的在同一表面上交线必平行,如1//GH A B ,//FF BD , 同理1//GF B C ,设正方棱长a .EF CF BD CB ∴==,且1C FG BF B C B == 1CF BF CF BF BC BC BC +=+==EF FG ∴+=,同理,GH HI IJ JE +=+=,所以M 为六边形时周长为为定值,但六边形变形时面积不为定值,当,,,,,E F G H I J 为各棱中点时2,当截面向平面1A BD 靠拢时,1A BD 是其极限位置,但1A BD 2a 与最大值不相同,C 错,D 正确故选:AD .10.如图,在直角梯形ABCD 中,,BC DC AE DC ⊥⊥,且E 为CD 的中点,M ,N 分别是,AD BE 的中点,将三角形ADE 沿AE 折起,则下列说法正确的是( )A .不论D 折至何位置(不在平面ABC 内),都有//MN 平面DEC ;B .不论D 折至何位置(不在平面ABC 内),都有MN AE ⊥;C .不论D 折至何位置(不在平面ABC 内),都有//MN AB ;D .在折起过程中,一定存在某个位置,使EC AD ⊥.【答案】ABD【详解】由已知,在未折叠的原梯形中,//AB DE ,//BE AD ,所以四边形ABED 为平行四边形,所以BE AD =,折叠后如图所示,过点M 作//MP DE ,交AE 于点P ,MP ⊄平面DEC ,DE ⊂平面DEC ,//MP ∴平面DEC ,连接NP ,因为M ,N 分别是,AD BE 的中点,所以P 为AE 中点,故////NP AB EC ,NP ⊄平面DEC ,EC ⊂平面DEC ,//NP ∴平面DEC ,又MP NP P =,∴平面//MNP 平面DEC ,又MN ⊂平面MNP ,//MN ∴平面DEC ,故A 正确;由已知,,AE ED AE EC ⊥⊥,所以,AE MP AE NP ⊥⊥,又MP NP P =,,MP NP ⊂平面MNP ,AE ∴⊥平面MNP ,又MN ⊂平面MNP ,AE MN ∴⊥,故B 正确;假设//MN AB ,则MN 与AB 确定平面MNBA ,从而BE ⊂平面MNBA ,AD ⊂平面MNBA ,这与BE 和AD 是异面直线矛盾,故C 错误;当EC ED ⊥时,EC AD ⊥,证明如下:因为,,,,EC EA EC ED EA ED E EA ED ⊥⊥⋂=⊂平面ADE ,所以EC ⊥平面ADE ,又AD ⊂平面ADE ,所以EC AD ⊥,故D 正确.故选:ABD.11.已知三棱锥A BCD -的各顶点都在球O 上,点,M N 分别是,AC CD 的中点,AB ⊥平面BCD ,224CD AB BC ===,AD = )A .CD ⊥平面ABCB .球O 的体积是C .直线BD 与平面ABC D .平面BMN 被球O 所截的截面面积是14π3 【答案】ABD【详解】对于选项A ,因为AB ⊥平面BCD ,所以,AB BD AB CD ⊥⊥,由224CD AB BC ===,AD =得BD =222BC CD BD +=,所以BC CD ⊥,所以CD ⊥平面ABC ,故A 正确;对于选项B ,AD 是Rt △ABD 和Rt ACD △的公共斜边,所以AD 中点即三棱锥A BCD -外接球的球心O ,所以球O 的半径为R =O 的体积为34π3V =⨯=,故B 正确; 对于选项C ,因为CD ⊥平面ABC ,所以CBD ∠即直线BD 与平面ABC 所成的角,所以sin CBD ∠==C 错误; 对于选项D ,设点O 到平面BMN 的距离为h ,平面BMN 被球O 所截的截面圆的半径为r ,因为MN 是ACD △的中位线,所以点O 到平面BMN 的距离等于点C 到平面BMN 的距离,故O BMN C BMN V V --=N BCM V -=,易求得BM MN BN ==所以BMN S =△1112332h =⨯,解得h =所以222143r R h =-=,所以截面圆的面积为214ππ3S r ==,故D 正确. 故选ABD .12.已知ABC 中,BC =4C π,BD 为边AC 上的高,且AD =BD 将ABD △折起至PBD △的位置,使得cos PDC ∠=,则( )A .平面PDC ⊥平面BDCB .三棱锥P BCD -的体积为8C .PC =D .三棱锥P BCD -外接球的表面积为36π【答案】ACD【详解】对于A :因为BD 为边AC 上的高,所以BD AC ⊥,沿BD 将ABD △折起至PBD △的位置后,BD PD ⊥,BD DC ⊥,所以BD ⊥平面PDC ,所以平面PDC ⊥平面BDC ,所以A 选项正确;对于B :因为BD DC ⊥,BC =4BCD π∠=,所以4BD DC ==,又sin PDC ∠==1422PDC S =⨯=△,184233P BCD B PDC V V --==⨯⨯=,所以B 选项不正确;对于C :在PDC △中,PD =4DC =,cos PDC ∠=,由余弦定理可得2222cos101642PC PD DC PD DC PDC=+-⋅∠=+-=,所以PC=C选项正确;对于D:如图,记O为三棱锥P BCD-外接球的球心,N为PDC△外接圆的圆心,连接ON,则ON⊥平面PDC,取BC的中点M,DC的中点Q,连接MQ,得//MQ BD,又BD⊥平面PDC,所以MQ⊥平面PDC,故//ON MQ,连接OM,NQ,易知OM⊥平面BDC,NQ⊥平面BDC,故//OM NQ,且NQ MQ⊥,则四边形OMQN为矩形,连接OD,DN,则DN为PDC△外接圆的半径,由正弦定理可得2sinPCDNPDC===∠DN=,又122ON MQ BD===,故外接球半径3OD=,所以三棱锥P BCD-外接球的表面积为24336ππ⨯=,所以D选顼正确.故选:ACD.第II卷(非选择题)三、填空题(每小题5分,共20分)13.已知圆锥的顶点为P,底面圆心为O,高为1,E和F是底面圆周上两点,PEF面积的最大值为______.【答案】2【详解】依题意可得圆锥的母线2l==,所以2PE PF==,显然3APOπ∠=,则轴截面△APB的顶角223APB APOπ∠=∠=,所以20,3EPBπ⎛⎤∠∈ ⎥⎝⎦,故当2EPBπ∠=时,PEF面积有最大值11sin2212222PE PFπ⋅⋅⋅=⨯⨯⨯=.故答案为:2.14.在三棱锥P ABC -中,AB BC AC ===P 点在底面ABC 内的射影恰好为ABC 的重心O ,PO =4,将ABP △绕着AB 旋转,使P 点落在平面ABC 上的点P '处(如图所示),则直线CP 与直线'AP 所成的角的余弦值为___________.【详解】 如图,设D 为AB 的中点,连接CD ,OA ,OB .因为O 为ABC 的重心,D 为AB 的中点,所以易知C ,O ,D 三点共线,又因为AB BC AC ===,即ABC 为等腰三角形,所以CD ⊥AB ,所以13OD CD ==因为PO =4,即点P 到平面ABC 的距离等于4,2AO =,所以PA PB ==PC =从而可知P A P B ''==,所以四边形CAP B '为菱形,所以//BC AP ',所以BCP ∠或其补角即为直线CP 与直线'AP 所成的角,在BCP 中,由余弦定理得222cos 2BC PC PB BCP BC PC +-∠==⋅⋅=.故答案为:10.15.如图,三棱锥P ABC -中,M 是PC 的中点,E 是AM 的中点,点F 在线段PB 上,满足//EF 平面ABC ,则:BF FP =_______.【答案】1:3【详解】取MC 的中点N ,连接EN ,EF ,FN ,可知//EN AC ,又//EF 平面ABC ,从而可得平面//ENF 平面ABC ,又平面ENF ⋂平面PBC FN =,平面ABC 平面PBC BC =,所以//NF BC ,又M 为PC 的为中点,N 为MC 的为中点,所以::1:3BF FP CN NP ==.故答案为:1:3.-中,AB⊥平面BCD,16.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑.在鳖臑A BCD⊥,2BD CD===,点P在棱AC上运动.则PBDAB BD CD△面积的最小值为___________.【详解】如图,作PQ BC ⊥于点Q ,作QM BD ⊥,交BD 于点M ,连接PM .得到//PQ AB ,//QM CD ,PQ ⊥平面BCD ,PQ BD ⊥,又QM BD ⊥,QM PQ Q ⋂=,所以BD ⊥面PQM ,所以PM BD ⊥.设CQ x =,CB =2PQ CQ PQ AB CB =⇒=PQ x =≤≤ 在BCD △中,2BQ QM QM BC CD =⇒=,得到,QM =PM ====, 当且仅当x 时,等号成立.11222PBD S BD PM =⋅≥⨯=△ .四、 解答题(第17题10分,18-22题每题12分,共70分)17.如图,在三棱锥P ABC -中,三角形ABC 为等腰直角三角形且90ABC ∠=︒,侧棱PA ,PB ,PC 相等且4PC AC ==,O 为AC 的中点.(1)求证:平面PAC ⊥平面ABC ;(2)求直线PB 与平面PAC 所成角的正弦值.【答案】(1)证明见解析;(2)12. 【详解】 (1)连接OB ,因为PAC △为等边三角形,O 为AC 的中点,所以PO AC ⊥,因为4PA PB AC ===,所以2AO BO ==,所以PO =在PBO 中,因为222PB PO BO =+,所以90POB ∠=︒,即PO OB ⊥,又因为AO BO O =,所以PO ⊥平面ABC .又由PO ⊂平面PAC ,所以平面PAC ⊥平面ABC .(2)由(1)知PO ⊥平面ABC ,因为BO ⊂平面ABC ,所以PO BO ⊥,因为BO OC ⊥,且AC PO O =,所以BO ⊥平面PAC ,所以BPO ∠为PB 与平面PAC 所成的角,在直角BPO △中,因为4PB =,2BO =,所以1sin 2BPO ∠=.18.如图,在三棱锥P ABC -中,ABC 为直角三角形,90ACB ∠=,△PAC 是边长为4的等边三角形,BC =AC ,AB 的中点分别是D ,E ,60PDE ∠=.(1)请你判断平面P AB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由;(2)求三棱锥P ABC -的体积.【答案】(1)垂直,证明见解析;(2)【详解】(1)面PAB ⊥面ABC ,理由如下:由AC ,AB 的中点分别是D ,E ,则//DE BC .由90ACB ∠=,BC =DE AC ⊥,DE =由△PAC 是边长为4的等边三角形,则PD AC ⊥,PD = ∵ED PD D =,∴AC ⊥面PED ,而PE ⊂面PED ,即AC PE ⊥,∵60PDE ∠=,在PDE △中,由余弦定理,得3PE ==, ∴222=PD PE ED +,即PE ED ⊥,又ACED D =∴PE ⊥面ABC ,又PE ⊂面PAB .∴面PAB ⊥面ABC .(2)由(1)知:PE ⊥面ABC ,即PE 是三棱锥P ABC -的高.又ABC 为直角三角形,90ACB ∠=,BC =4AC =,∴11422ABC S AC BC =⋅=⨯⨯=,∴三棱锥P ABC -的体积:13ABC V S PE =⋅133=⨯= 19.如图,在四棱锥P ABCD -中,M ,N 分别是AB ,AP 的中点,AB BC ⊥,MD PC ⊥,//MD BC ,1BC =,2AB =,3PB =,CD =,PD =(1)证明://PC 平面MND ;(2)求直线PA 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)5.【详解】(1)连接AC ,交MD 于E ,再连接NE因为//MD BC ,M 是AB 的中点,所以E 是AC 的中点,又N 是AP 的中点,所以//NE PC ,且NE ⊂平面MND ,PC ⊄平面MND所以//PC 平面MND ;(2)过C 作CF MD ⊥于F ,连接PF ,又因为MD PC ⊥,且CF PF F ⋂=所以MD ⊥平面PFC ,所以BC ⊥平面PFC ,所以平面PFC ⊥平面PBC ,过F 作FG PC ⊥于G ,又因为平面PFC 平面PBC PC =,且FG ⊂平面PFC ,所以FG ⊥平面PBC .在Rt PBC 中,PC ==在直角梯形MBCD 中1MB BC ==,CD =,则1FD FC ==在Rt PFD 中,PF ==在PFC △中,PF =,1FC =,=PC则222cos 2PF FC PC PFC PF FC +-∠==⋅,所以sin 5PFC ∠=,从而2sin 2PFC S PF FC PFC FG PC PC ⋅⋅∠===,又由MF FD =,PF MD ⊥,知PM PD ==所以由()22222PB PA PM MA +=+可得PA =因为点A 到平面PBC 的距离是点M 到平面PBC 的距离的2倍,点M 到平面PBC 的距离和点F 到平面PBC 距离相等,所以点A 到平面PBC 的距离是点F 到平面PBC 的距离的2倍,所以直线PA 与平面PBC 所成角的正弦值为2FG PA = 20.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90,30ABC BAC ∠=︒∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点.请你用几何法解决下列问题:(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值; (3)求二面角1A A C B --的正弦值【答案】(1)证明见解析;(2)35;(3.【详解】证明:(1)连接1A E ,11A A A C =,E 是AC 的中点,1A E AC ∴⊥, 又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =, 1A E ∴⊥平面ABC ,1A E BC ∴⊥, 1//A F AB ,90ABC ∠=︒,1BC A F ∴⊥, 111A F A E A =,BC ∴⊥平面1A EF , EF BC ∴⊥.(2)取BC 中点G ,连接EG 、GF ,则1EGFA 是平行四边形,由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由(1)得BC ⊥平面1EGFA ,则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连接1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角),不妨设4AC =,则在Rt △1A EG中,1A E =EG = O 是1A G的中点,故122A G EO OG ===,2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯, ∴直线EF 与平面1A BC 所成角的余弦值为35.(3)过点B 作BH AC ⊥于H ,连接AH ,因为平面11A ACC ⊥平面ABC ,所以BH ⊥平面11A ACC ,所以1A BC 在平面11A ACC 的射影是1A HC △,设二面角1A A C B --为ϕ,由图示知ϕ为锐角,在ABC 中,90,30ABC BAC ∠=︒∠=︒,设112A A A C AC ===,所以1BC =,12CH =, 在1A BC 中,12A B AC ==,1111cosA HC A BCSS ϕϕ⨯∴====. 所以二面角1A A CB --.21.如图,在四棱锥P ABCD -中,PBC 为正三角形,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,3AD CD ==,4BC =,点M ,N 分别在线段AD 和PC 上,且2DMCNAM PN ==.(1)求证://PM 平面BDN ;(2)设二面角P AD B --为θ.若1cos 3θ=,求直线PA 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)5.【详解】(1)证明:连接MC ,交BD 于E , 因为2DMAM =,3AD =,所以2DM =,1AM =,因为//AD BC ,所以MDE ∽CBE △,2CEBCCNEM DM NP ===,所以//PM NE ,因为NE ⊂平面BDN ,PM ⊄平面BDN ,所以//PM 平面BDN .(2)解:取BC 中点F ,连接MF 、PF ,因为PBC 为正三角形,所以PF BC ⊥,sin 604sin 60PF PB =⋅︒=⋅︒=, 因为ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,2FC MD ==,所以四边形DMFC 为矩形,所以MF BC ⊥,因为MF PF F ⋂=,所以BC ⊥平面PMF ,所以平面PBC ⊥平面PMF , 因为//AD BC ,所以AD ⊥平面PMF ,所以AD MP ⊥,AD MF ⊥,所以PMF θ∠=,设PM x =,由余弦定理得2222cos PF PM MF PM MF θ=+-⋅⋅⋅,于是(22213233x x =+-⋅⋅⋅, 整理得2230x x --=,解得3x =或1x =-(舍去),取PF 中点Q ,连接MQ ,因为MP MF =,所以MQ PF ⊥,又因为平面MPF ⊥平面PBC ,所以MQ ⊥平面PBC ,即线段MQ 的长为点M 到平面PBC 的距离,因为//AD BC ,BC ⊂平面PBC ,AD ⊄平面PBC ,所以//AD 平面PBC ,所以MQ 的长也是A 点到平面PBC 的距离,而MQ ==PA =所以直线PA 与平面PBC 所成角的正弦值为5MQ PA ==. 22.如图,几何体的底面ABCD 是边长为2的菱形,60ABC ∠=︒,PCD 和PAD △均为正三角形,M ,N 分别为CD ,PB 的中点.(1)求证:PA MN ⊥;(2)求二面角P CM N --的余弦值.【答案】(1)证明见解析;(2【详解】(1)取PA 的中点E ,连结AM ,ME ,AC ,PM ,NE 如图所示 PCD 、PAD △、CAD 是全等的等边三角形,根据题意,AM PM =,则PA ME ⊥,又AM CD ⊥,PM CD ⊥,PM AM M =,所以CD ⊥平面APM ,且PA ⊂平面APM ,则PA CD ⊥,因为N ,E 分别为PB ,PA 的中点,则////NE AB CD ,所以PA NE ⊥,且PA ME ⊥又ME NE E ⋂=,则PA ⊥平面MNE ,又MN ⊂平面MNE ,所以PA MN ⊥.(2)连结BD ,AC 交于点E ,由已知可得P ACD -为棱长为2正四面体,过P 作PO ⊥平面ABCD ,则O 在线段BD 上,23OD DE =⨯=,则PO ==BO =,PO ⊂PBD 平面,所以平面PBD ⊥平面ABCD ,过N 作NH BD ⊥于H ,则NH ⊥平面ABCD ,NH CD ⊥,连结HC ,所以//NH PO ,所以H 是BO 的中点,123HO BO ==,3DH =,2DC =,30CDH ∠=,由余弦定理得22242cos303HC DH CD CD DH =+-⨯⨯=,所以222HC CD HD +=,即90HCD ∠=,HC CD ⊥,NH HC H =,CD ⊥平面NHC ,NC ⊂平面NHC ,则HC CM ⊥,所以NCH ∠为二面角N CM H --的平面角,123NH PO ==,3HC =,tan 2NH NCH HC ∠==.由已知可得,PM CD ⊥,AM CD ⊥,所以二面角P CM A --的平面角PMA θ=∠,AM =133OM AM ==,tan POOM θ===令二面角P CM N --的平面角大小为α,则tan tan tan tan()1tan tan 2NCH NCH NCH θαθθ-∠=-∠==+∠,所以,cos 3α=,二面角P CM N --的余弦值为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《几何学概论》试题(1)1. 试确定仿射变换,使y 轴,x 轴的象分别为直线01=++y x ,01=--y x ,且点(1,1)的象为原点.(51')2. 利用仿射变换求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知A (1,2,3),B (5,-1,2),C (11,0,7),D (6,1,5),验证它们共线,并求(CD AB ,)的值.(8')6. 设1P (1,1,1),2P (1,-1,1),4P (1,0,1)为共线三点,且(4321,P P P P )=2,求3P 的坐标.(21')7. 叙述并证明帕普斯(Pappus)定理.(01')8.一维射影对应使直线l 上三点P (-1),Q (0),R (1)顺次对应直线l '上三点P '(0),Q '(1),R '(3),求这个对应的代数表达式.(01')9.试比较射影几何、仿射几何、欧氏几何的关系.(01')《高等几何》试题(2)1.求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 叙述笛沙格定理,并用代数法证之.(51')3.求证a (1,2,-1) ,b (-1,1,2),c (3,0,-5)共线,并求l 的值,使).3,2,1(=+=i mb la c i i i (01')4.已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x ,01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 5.试比较欧氏、罗氏、黎氏几何的关系. (01') 6.试证两个点列间的射影对应是透视对应的充要条件是它们底的交点自对应. (01')7.求两对对应元素,其参数为121→,0→2,所确定对合的参数方 程. (01')8.两个重叠一维基本形B A B A λλ'++,成为对合的充要条件是对应点的参数λ与λ'满足以下方程: )0(0)(2≠-=+'++'b ad d b a λλλλ (51')《高等几何》试题(3)1. 求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x , 01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 6. 在一维射影变换中,若有一对对应元素符合对合条件,则这个射影变换一定是对合. (51')7. 试比较射影几何、仿射几何、欧氏几何的关系, 试比较欧氏、罗氏、黎氏几何的关系. (02')[2005—2006第二学期期末考试试题]《高等几何》试题(A )一、 填空题(每题3分共15分)1、 是仿射不变量, 是射影不变量2、 直线30x y +=上的无穷远点坐标为3、 过点(1,i,0)的实直线方程为4、 二重元素参数为2与3的对合方程为5、 二次曲线22611240x y y -+-=过点(1,2)P 的切线方程二、 判断题(每题2分共10分)1、两全等三角形经仿射对应后得两全等三角形 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、一个角的外角平分线调和分离角的两边 ( )4、欧氏几何是射影几何的子几何,所以对应容是射影几何对应容的子集 ( )5、共线点的极线必共点,共点线的极点必共线 ( )三、(7分)求一仿射变换,它使直线210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2)四、(8分)求证:点 (1,2,1),(1,1,2),(3,0,5)A B C --三点共线,并求,t s使,(1,2,3)i i i c ta sb i =+=五、(10分)设一直线上的点的射影变换是/324x x x +=+证明变换有两个自对应点,且这两自对应点与任一对对应点的交比为常数。

六、(10分)求证:两直线所成角度是相似群的不变量。

七、(10分)(1)求点(5,1,7)关于二阶曲线222123121323236240x x x x x x x x x ++---=的极线(2)已知二阶曲线外一点P 求作其极线。

(写出作法,并画图)八、(10分)叙述并证明德萨格定理的逆定理九、(10分)求通过两直线[1,3,1],[1,5,1]a b -交点且属于二级曲线222123420u u u +-=的直线十、(10分)已知,,,,A B P Q R 是共线不同点,如果(,)1,(,)1,(,)PA QB QR AB PR AB =-=-求《高等几何》试题(B )一、 填空题(每题3分共15分)1、 仿射变换//71424x x y y x y ⎧=-+⎨=++⎩的不变点为 2、 两点决定一条直线的对偶命题为3、 直线[i ,2,1-i] 上的实点为4、 若交比(,)2AB CD = 则(,)AD BC =5、 二次曲线中的配极原则二、判断题(每题2分共10分)1、不变直线上的点都是不变点 ( )2、在一复直线上有唯一一个实点 ( )3、两点列的底只要相交构成的射影对应就是透视对应 ( )4、射影群⊃仿射群⊃正交群 ( )5、二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数 ( )三、(7分)经过(3,2)(6,1)A B -和的直线AB 与直线360x y +-=相交于P ,求 ()ABP四、(8分)试证:欧氏平面上的所有平移变换的集合构成一个变换群五、(10分)已知直线1234,,,L L L L 的方程分别为:210,320,70,510x y x y x y x -+=+-=-=-=求证四直线共点,并求1234(,)L L L L六、(10分)利用德萨格定理证明:任意四边形各对对边中点的连线与二对角线中点的连线相交于一点七、(10分)求(1)二阶曲线22212313230x x x x x -+-=过点的切线方程 (2)二级曲线222123170u u u +-=在直线L[1,4,1] 上的切点方程八、(10分)叙述并证明德萨格定理定理(可用代数法)九、(10分)已知二阶曲线(C ):221121332460x x x x x x +++=(1) 求点(1,2,1)P 关于曲线的极线(2) 求直线123360x x x -+=关于曲线的极点十、(10分)试证:圆上任一点与圆接形各顶点连线构成一个调和线束《高等几何》试题(C )一、填空题(每题3分共15分)6、 直线20x y +-=在仿射变换//213x x y y x y ⎧=+-⎨=-+⎩下的像直线 7、 X 轴Y 轴上的无穷远点坐标分别为8、 过点(1,-i ,2)的实直线方程为9、 射影变换'230λλλ--=自对应元素的参数为10、 二级曲线222123170u u u +-=在直线上[1,4,1]的切点方程 三、 判断题(每题2分共10分)1、仿射变换保持平行性不变 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、线段中点与无穷远点调和分离两端点 ( )4、 如果P 点的极线过Q 点,则Q 点的极线也过P 点 ( )5、不共线五点可以确定一条二阶曲线 ( )三、(7分)已知OX 轴上的射影变换'213x x x -=+,求坐标原点,无穷远点的对应点四、(8分)已知直线,,a c d 的方程分别为123123120,00x x x x x x x +-=-+==, 且2(,)3ab cd =-求直线b 的方程。

五、(10 分)已知同一直线上的三点,,A B C 求一射影变换使此三点顺次变为,,B C A 并判断变换的类型,六、(10分)求证:两直线所成角度是相似群的不变量。

七、(10分)求射影变换'112'22'33x x x x x x x ρρρ⎧=+⎪=⎨⎪=⎩的不变点坐标八、(10分)叙述并证明帕斯卡定理九、(10分)求通过两直线[1,3,1],[1,5,1]a b -交点且属于二级曲线222123420u u u +-=的直线十、(10分)试证:双曲型对合的任何一对对应元素 'P P →,与其两个二重元素E,F 调和共轭即(',PP EF )=-1[参考答案] 高等几何标准答案(A )一、 填空题:(每空3分共15分)1、单比,交比2、(1,-3,0)3、30x =4、''25()120λλλλ-++=5、123127260x x x +-=二、判断题(每题2分共10分)1、错,2、错,3、对,4、错,5、对三、解:在直线210x y +-=上任取两点(1,0),(1,1)A B - 2分由(1,0)(1,0),(1,1)(1,1),(1,1)(1,2)A A B B →-→--→- 设仿射变换为'111213'212223x a x a y a y a x a y a ⎧=++⎨=++⎩ 将点的坐标代入可解得 ''22133222x x y y x y ⎧=+-⎪⎨=--+⎪⎩ 7分四、证明:因为1211120305--=- 所以三点共线 4分 由:3,20,25t s t s t s -=+=-+=- 解得 1,2t s ==-所以 12,(1,2,3)i i c a b i =-= 8分 五、证明:令''232204x x x x x x x +==+-=+由得 解得121,2x x ==- 即有两个 自对应点 4分设k 与'324k k k +=+ 对应,有'5((1)(2),)2kk -=为常数 10分 注:结果 有25也对,不过顺序有别。

六、证明:设两直线为:1122:,:a y k x b b y k x b =+=+相似变换为:''''x a x by c y bx ay d⎧=++⎨=-++⎩ 220a b +≠ 将变换代入直线a 的方程得:''121212k a b k a b k k a k b a k b++==--同理可得 5分 ''2121''212111k k k k k k k k --∴=++ 即''tan ,tan ,a b a b <>=<> 即两直线的夹角是相似群的不变量 10分七、解:(1)设(5,1,7)为P 点坐标, 二阶曲线矩阵为A=231332121--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以点P 的极线为S P =0即 123231(5,1,7)3320121P x S x x --⎛⎫⎛⎫ ⎪⎪=--= ⎪⎪ ⎪⎪--⎝⎭⎝⎭得 x 2=0 5分(2)略八(在后边)九、解:通过直线[1,3,1],[1,5,1]a b -的交点的直线的线坐标为[1,35,1]k k k ++- 2分若此直线属于二阶曲线则有 2224(1)(35)2(1)0k k k +++--=即 22742110k k ++= 解得111,39k k =-=- 10分 十、解:设123,,P A k B Q A k B R A k B =+=+=+由1122(,)1,(,)1(,)(,)(,)2,2PA QB PA QB PQ AB k AB PQ PQ AB k k k =-=-====得由2323(,)1,(,)1k qr ab AB QR k k k =-==-⇒=-得 所以13(,)(,)2k PR AB AB PR k ===- 10分八、德萨格定理的逆定理:如果两个三点形的对应边的交点共线,则对应顶点的连线共点。

相关文档
最新文档