居于马线性代数第一章答案
居余马线性代数课后详细答案
1、22220aab a b ab ab abb=⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi b a bi a bi ab a b ab a b aa bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+--------- 920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++--- 45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w wwww ww w w w w w w w w www+⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx=++---=-+9、143000400400431(1)0434********324321+-=-=-按第行展开10、公式: 111112111222222122112212000000000000n n nn nn nn n n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,11100000000(1)0n n n n n n n n n n n n n n n n nnn n a a a a a a a a a a a a a a a a a a -------===-⋅解:101000010000100200002010(1)1008000080090000910+-⋅按第行展开 9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111112----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即 12341234123421113234113410113103110102223412*********114141231123111---=-=-----------第行第行第行第行 第行第行10*16160==13、50421111111121011211121021014324741204120032415311115420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变) 365641111111111111112545325453032750327536342254650328700012254653634203075002001111136564329722------===---根据课本20页公式(1.21),原式012112003*4120322=-=-=-()15、1200340012132*160013345151-==---()()=3216、1234512345123678910678910213567810*220000130101143100002400024011113-=-=-=-第,行对换17、根据课本20页公式(1.22) 23001121120030212(1)30212*(5)600024031241240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!00300040005B ---==------=----所以 3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b xa xbc x a b xb xc a b xa xbc a b xb xc a b xb c a b c x a b xb c x x a b c a b xb c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、1111111121111100311111004111110xx x x x y x y yxy++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()00xx xxy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开 2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b ac aab c b a c ab ac aabcb ac a--==--=⋅----左()()()()()()()()()()()()()()()()2222222222b ac a c ac a c a b a b ab a b a c a c ac ab ab a b ac a c ac bab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a ab b b a b a b acacabaccc ac a=--=-------整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a ab ac a c b b b cc---=故原式得证。
《线性代数复习资料》第一章习题答案与提
详细描述:本题主要考察学生对线性方程组解法的理解 ,通过给定的线性方程组,要求学生判断其解的情况, 并求解当有解时的解向量。
习题二解析
在此添加您的文本17字
总结词:向量空间
在此添加您的文本16字
详细描述:本题主要考察学生对向量空间的定义和性质的 理解,要求学生判断给定的集合是否构成向量空间,并说 明理由。
线性变换与矩阵表示
线性变换是线性代数中的重要概念,理解如何用 矩阵表示线性变换以及其性质是解决相关问题的 关键。
向量空间的维数与基底
向量空间的维数与基底的概念较为抽象,理解其 定义和性质有助于更好地解决相关问题。
04
典型例题解析
例题一解析
总结词
矩阵的乘法
详细描述
本题考查了矩阵乘法的规则和计算方法。首先,我们需要明确矩阵乘法的定义,即第一个矩阵的列数必须等于第 二个矩阵的行数。然后,我们按照矩阵乘法的步骤,逐一计算结果矩阵的元素。在计算过程中,需要注意矩阵元 素的位置和计算方法。
导致在解题时无法正确应用它们。
THANK YOU
感谢聆听
例题二解析
总结词
行列式的计算
详细描述
本题考查了行列式的计算方法和性质。首先,我们需要明确行列式的定义,即由n阶方阵的元素按照 一定排列顺序构成的二阶方阵。然后,我们根据行列式的性质,逐步展开并化简计算结果。在计算过 程中,需要注意行列式的展开顺序和符号的变化。
例题三解析
总结词
向量的线性组合
详细描述
习题三解析
总结词:行列式计算 总结词:矩阵的秩 总结词:特征值与特征向量
详细描述:本题主要考察学生对行列式的计算能力,通 过给定的矩阵,要求学生计算其行列式的值。
居余马线性代数课后详细答案(更新)
1、22220a aba b ab ab ab b =⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi ba bi a bi ab a b ab a b a a bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+---------920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++---45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w w w w w ww w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx =++---=-+9、143000400400431(1)0434*******4324321+-=-=-按第行展开10、公式:11111211122222212211221200000000000n n nn nn nnn n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,1110000000(1)0000n n n n n n n nn n n n n n n n nn n n a a a a a a a a a a a a a a a a a a -------===-⋅解:10100001000010020*******(1)1008000080090000910+-⋅ 按第行展开9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111110002----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即123412341234211132341134101131031101022234121412022211141412311230111---=-=-----------第行第行第行第行 第行第行10*16160==13、504211111111210112111210210143247412041200324153111150420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变)3656411111111111111125453254530327503275363422546503287000122546536342030750020011111365640329700022------===--- 根据课本20页公式(1.21),原式012112003*41203022=-=-=-()15、1200340012132*16001334510051-==---()()=3216、1234512345123678910678910213567810*22000013010114301000024000240101100013-=-=-=-第,行对换17、根据课本20页公式(1.22)23001121120030212(1)30212*(5)6000240312401240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!030004000500B ---==------=----所以3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b x a x b c x a b x b x c a b x a x b c a b x b x c a b xb c a b c x a b x b c x x a b c a b x b c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、11111111211111003111110041111100x x x x x y x y y x y++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()000x x x xy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b a c a ab c b ac a b a c a a b c b a c a --==--=⋅----左()()()()()()()()()()()()()()()()2222222222b a c a c ac a c a b a b ab a b a c a c ac a b ab a b a c a c ac b ab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a a b b b a b a b a c a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a a b a c a c b bb cc ---= 故原式得证。
线性代数第一章习题参考答案
解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。
线性代数第一章课后习题答案
习题1.11、写出下列随机试验的样本空间.(1)生产产品直到有4件正品为正,记录生产产品的总件数.(2)在单位园中任取一点记录其坐标.(3)同时掷三颗骰子,记录出现的点数之和. 解:(1)}8,7,6,5,4{ =Ω(2)}1).{(22<+=Ωy x y x(3)}18,,10,9,8,7,6,5,4,3{ =Ω2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件AB-,BC,CB .解:)}6.6(),5.5(),4.4(),3.3(),2.2(),1.1{(=-A B{(=2.2(),1.1BC3.3(),)}4.4(),2.2(),1.13.3(),{(CB4.4(),=5.5(),6.6(),)}6.5(),5.6(),6.4(),4.6(),3、设某人向靶子射击3次,用i A表示“第i次射击击中靶子”(3,2,1=i),试用语言描述下列事件.(1)21A A (2)321)(A A A (3)2121A A A A解:(1)第1,2次都没有中靶(2)第三次中靶且第1,2中至少有一次中靶(3)第二次中靶4.设某人向一把子射击三次,用i A 表示“第i 次射击击中靶子”(i =1,2,3),使用符号及其运算的形式表示以下事件:(1)“至少有一次击中靶子”可表示为 ;(2)“恰有一次击中靶子”可表示为 ;(3)“至少有两次击中靶子”可表示为 ;(4)“三次全部击中靶子”可表示为 ;(5)“三次均未击中靶子”可表示为 ;(6)“只在最后一次击中靶子”可表示为 .解:(1)321A A A ; (2) 321321321A A A A A A A A A ;(3)323121A A A A A A ; (4) 321A A A ; (5) 321A A A (6) 321A A A5.证明下列各题(1)B A B A =- (2))()()(A B AB B A B A --=证明:(1)右边=AB A B A -=-Ω)(={A ∈ωω且}B A B -=∉ω=左边(2)右边=)(A B AB B A ()() ={}B A B A =∈∈ωωω或习题1.21.设A 、B 、C 三事件,41)()()(===C P B P A P , 0)(,81)()(===AB P BC P AC P ,求A 、B 、C 至少有一个发生的概率.解:0)(0)(=∴=ABC P AB P).(C B A P )()()()()()()(ABC P AC P BC P AB P C P B P A P +---++= =21812413=⨯-⨯2.已知5.0)(=A p ,2.0)(=B A P , 4.0)(=B P ,求 (1))(AB P ,(2))(B A P -, (3))(B A P , (4))(B A P .解:(1)1.0)()(,==∴=∴⊂A P AB P AAB B A(2)5.0)()(,==∴=∴⊂B P B A P BB A B A3.设)(A P =0.2 )(B A P =0.6 A .B 互斥,求)(B P .解:B A , 互斥,)()()(B P A P B A P +=故4.02.06.0)()()(=-=-=A P B A P B P4.设A 、B 是两事件且)(A P =0.4,8.0)(=B P(1)在什么条件下)(AB P 取到最大值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少?解:由加法公式)()()()(B A P B P A P AB P -+==)(2.1B A P -(1)由于当B A ⊂时B B A = ,)(B A P 达到最小, 即8.0)()(==B P B A P ,则此时)(AB P 取到最大值,最大值为0.4(2)当)(B A P 达到最大, 即1)()(=Ω=P B A P ,则此时)(AB P 取到最小值,最小值为0.25.设,1615)(,81)()()(,41)()()(=======C B A P AC P BC P AB P C P B P A P 求).(C B A P 解:)(1)(ABC P ABC P -=,16116151)(1=-=-=C B A P ).(C B A P )()()()()()()(ABC P AC P BC P AB P C P B P A P +---++= =167161813413=+⨯-⨯ 习题1.31.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2张花色相同的概率.解:设事件A ={3张中至少有2张花色相同} 则A ={3张中花色各不相同}602.01)(1)(35211311311334≈-=-=C C C C C A P A P 2.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.解法一 随机试验是从50只铆钉随机地取3个,共有350C 种取法,而发生“某一个部件强度太弱”这一事件只有33C 这一种取法,其概率为19600135033=C C ,而10个部件发生“强度太弱”这一事件是等可能的,故所求的概率为196011960010101===∑=i i p p 解法二 样本空间的样本点的总数为350C ,而发生“一个部件强度太弱”这一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有33110C C 种情况,故发生“一个部件强度太弱”的概率为1960135033110==C C C p 3.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.解法一 设A 表示“取出的3个数之积能被10整除”,1A 表示“取出的3个数中含有数字5”, 2A 表示“取出的3个数中含有数字偶数”, 214.0786.019495981)(()(1)(1)(1)()(3332121212121=-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+--=-=-==A A P A P A P A A P A A P A A P A P )解法二设”次取得数字为“第5k A k ,3,2,1=k k B k 次取得偶数”,为“第。
线性代数练习册第一章部分答案(本)
1 .AAT E; 3 . A2 E 2. AT A
AAT E A1 AT ; A2 E A1 A AT A1 A
或 或
AAT E AAAT AE AT A
AAT E, A2 E A( AT A) 0, A可逆 A1 A( AT A) A1 0 AT A
2 −3 1 r2 − 2 r1 0 0 1 3 0 2r2 0 −1 −3 r − 2r 0 4 1
2 0 0
−3 1 10
2 −3 1 r1 + 3r2 0 1 0 1 3 0 r1 0 0 0 0 2 −4 −4 −2 −2 3 5 3 4 3 1 0 −1 −4 3 −4 1 −2 0 −2 −1
而 B11 所以,
(1)11 0 1 0 1 0 , 11 211 0 2 0 2 0
11
1 4 1 0 1 1 4 A11 PB11 P 1 11 1 1 0 2 3 1 1 4 213 1 1 213 1 4 1 1 213 3 1 211 1 1 3 1 211 4 211 2731 2732 683 684
1 0 0
0 5 1 3 0 0
1 (2)B = 3 2 3 解:
−1 −3 −2 −3
3 5 3 4 −1 −3 −2 −3
1 B= 3 2 3 r2 − 3r1 r3 − 2r1 r4 − 3r1
1 0 0 0
3 −1 3 − 4 −8 0 −4 8 0 −3 6 −6 0 −5 10 −10 3 1 0 0 0 1 0 0 −4 −2 0 0 2 −2 0 0 3 2 0 0 −3 2 0 0
线性代数第一章习题及解答
n(n−1) 2
D. a11 . . . a1n ··· ··· ··· D an1 . . . ann
因为 D = D , 而 D =
T
对 DT 作上述行交换得, 于是
D2 = (−1)
n(n−1) 2
D = (−1)
T
n(n−1) 2
5
对 D2 依次进行相邻列交换, 然后转置得
D2 = (−1)
4
a+b 1 Dk = 0 ··· 0 0
ab a+b 1 ··· 0 0 1
0 ab a+b ··· 0 0 a+b 0 ··· 0 0 a+b 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ab a+b 1 ··· 0 0 ab a+b 1 ··· 0 0
0 0 0 ··· a+b 1 0 ab a+b ··· 0 0 0 ab a+b ··· 0 0
··· ··· ··· ···
(a − n)n (a − n)n−1 . . . a−n
1 1 ··· 1 解:将 Dn 一次进相邻行交换, 然后进行相邻列交换得 1 1 ··· 1 a−n a−n+1 ··· a 2 2 (a − n + 1) · · · a2 (xj = a − j, j = 0, 1, . . . , n) Dn = ( a − n ) . . . . . . . . ··· . (a − n)n (a − n + 1)n ∏ = (xj − xi ) 0≤i<j ≤n ∏ = (i − j )
a a . . . x ··· a 0 . . . x−a (rj − r1 , j = 1, 2, . . . , n)
《线性代数》第1章习题详解
一、习题1参考答案1. 求下列排列的逆序数,并说明它们的奇偶性.(1)41253; (2)3712456; (3)57681234; (4)796815432 解(1)()4125330014τ=+++= 偶排列(2)()37124562500007τ=+++++= 奇排列(3)()576812344544000017τ=+++++++= 奇排列 (4)()7968154326755032129τ=+++++++= 奇排列 2. 确定i 和j 的值,使得9级排列.(1)1274569i j 成偶排列; (2)3972154i j 成奇排列. 解 (1) 8,3i j == (2) 8,6i j == 3.计算下列行列式.(1) 412-3- (2) 2211a a a a ++-1 (3) cos sin sin cos x xx x -(5)2322a a bab (6) 1log log 3b aab (7) 000xy x z y z--- 解(1)131523125=⨯-⨯=- (2)4(3)2(1)4212=-⨯--⨯=--3- (3)()22322211(1)11a a a a a a a a a a =-++-=--++-1 (4)22cos sin cos sin 1sin cos x x x x x x -=+= (5)233232220a a a b a b bab =-=(6)1log 3log log 2log 3b b aa ab a b=-=(7) 0000000xyxz xyz xyz y z -=+----=--4. 当x 取何值时3140010xx x≠ ? 解 因为314010xx x2242(2)x x x x =-=-所以当0x ≠且2x ≠时,恒有3140010xx x ≠5. 下列各项,哪些是五阶行列式ij a 中的一项;若是,确定该项的符号.1225324154(1);a a a a a 3112435224(2);a a a a a 4221351254(3)a a a a a解 (1)不是 (2)不是 (3)不是6. 已知行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a ,写出同时含21a 和21a 的那些项,并确定它们的正负号.解 12213443a a a a (2143)2τ= 符号为正; 14213243a a a a (2134)1τ= 符号为负. 7. 用行列式定义计算下列行列式.(1) 11121314152122232425313241425152000000a a a a a a a a a a a a a a a a (2)020200002200(3) 01000200001000n n-解 (1)行列式的一般项为12345()1122334455(1)j j j j j j j j j j a a a a a τ-若345,,j j j 中有两个取1,2列,则必有一个取自3,4,5列中之一的零元素,故该行列式的值为零,即原式0=(2)行列式中只有一项(3241)13223441(1)16a a a a τ-=不为零,所以原式16= (3)行列式的展开项中只有(2,3,4)11223341,1(1)(1)!n n n n n a a a a a n τ---=- 一项不为零,所以原式1(1)!n n -=-8. 用行列式性质计算下列行列式.(1) 111314895(2)1234234134124123(3)41241202105200117⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)2141312112325062⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦(5)ab ac aebd cd debf cf ef---(6)a b aa a bb a aa b a解 (1) 111314895321331r rr r--111021013--232r r-111005013--23r r↔111013005---5=(2)12342341341241232341c c c c+++10234103411041210123123413411014121123=121314r rr rr r-+-+-+123401131002220111------34222r rr r-+123401131000440004---160=(3)4124120210520011712r r↔12024124105200117-2131410r rr r--120207240152200117-----24r r↔120201170152200724----3242157r rr r++1202011700178500945342r r-12020117001500945=--(4) 2141312112325062-13r r↔1232312121415062--213141325r rr rr r---12320775032301098----------232r r -12320131032301098-3242310r r r r --123201310076002118----0=(5) abac ae bdcd de bfcfef---每列都提取公因式bc eadf bc e b c e ---每列都提取公因式111111111adfbce --- 1213r r r r ++11102020abcdef -23r r ↔11120002abcdef --4abcdef = (6)0000a b a a a b b a a a b a 4321r r r r +++2222000a b a b a b a ba a bb a a a b a ++++()11110200aa b a b b a a a ba =+121314ar r br r ar r -+-+-+()1111002000a b aa b a b b a b b a a --+----- 3232r r r r +-()11110020000a b aa b b b b b --+---=()2111100201100101a b a b a b --+--- 3424r r r ar ++()211110002200110101b a b a b -+---24c c ↔()211110101200110002b a b b a-+---()()2422224b a b b a b a b =+-=-9. 证明下列等式.(1) 111222222222111333333333a b c bc a c ab a bc a b c b c a c a b a b c =-+(2)11122122111211121112111221222122212221220000a a a a a a b b c c b b a a b b c c b b = (3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++=33()xy z a b y z x zxy+(4) 222244441111a b c da b c d a b c d ()()()()()a b a c a d b c b d =-----()()c d a b c d ⋅-+++ 证明 (1)左式123123123321213132a b c b c a c a b a b c a b c a b c =++--- 133321233212332()()()a b c b c b a c a c c a b a b =---+-=222222111333333b c a c a b a b c b c a c a b -+=右式(2)1112212211121112212221220000a a a a c c b b c c b b 按第一行展开222111121112121111122221222121220000a a a c b b a c b b c b b c b b - 111211121122122121222122b b b b a a a a b b b b =-1112111221222122a ab b a a b b =(3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++ 按第一列分开x ay bzaz bxa y az bx ax by z ax by ay bz ++++++ y ay bzaz bxb z az bx ax by x ax by ay bz +++++++2(0)xay bz z ay az bx x z ax by y +++++分别再分(0)yz az bxb z x ax by x y ay bz++++33x y z y z x a y z x b z x y zxy x yz +分别再分332(1)x y z x y za yz x b yz x z xy zxy=+-=右边 (4) 222244441111a b c d a b c d a b c d 213141c c c c c c --- 222222244444441000a b a c a d aa b a c a d a a b a c a d a --------- 按第一列展开222222222222222()()()b ac ad ab ac ad a b b a c c a d d a --------- 每列都提取公因式222111()()()()()()b ac ad a b a c a d a b b a c c a d d a ---++++++ 1213c c c c -+-+()()()b ac ad a ---222221()()()()()b ac bd bb b ac c a b b ad d a b b a +--++-++-+ 按第一列展开()()()()()b ac ad a c b d b -----222211()()()()c bc b a c bd bd b a d b ++++++++()()()()()a b a c a d b c b d =-----()()c d a b c d -+++10.设行列式30453221--,求含有元素2的代数余子式的和. 解 含有元素2的代数余子式是12222313A A A A +++()()()()345453343050111121212222--=-+-+-+---11161026=---=- 11. 设行列式3040222207005322=--D ,求第四行各元素余子式之和的值是多少? 解 解法一:第四行各元素余子式之和的值为41424344M M M M +++040340300304222222222222700000070070=+++---780314(7)(1)(2)28=-⨯++⨯+-⨯-⨯-=-解法二:第四行各元素余子式之和的值为4142434441424344M M M M A A A A +++=-+-+3040222207001111=---按第3行展开32340(7)(1)222111+----232r r +340704111--按第2行展开34282811-=---12.已知 1012110311101254-=-D ,试求: (1) 12223242A A A A -+- (2) 41424344A A A A +++ 解 (1)方法一:虽然可以先计算处每个代数余子式,然后再求和,但是这很烦琐.利用引理知道,第一列每个元素乘以第二列的代数余子式的和等于零。
线性代数课本第一章详细答案
第一章课后习题及解答计算下列二、三阶行列式(用沙路法和定义):1..02222=-=abab b a babab a2..1)sin sin (cos cos cos sin sin cos =--=-αααααααα3. .)(222))((2222222b a ab b a ab i b a ab bi a bi a bia ab bi a -=-+=--=--+=-+4. .5)3(422)2(351)4(24)4(5)2(2)3(13325214423-=-⨯⨯-⨯-⨯-⨯⨯--⨯⨯-+⨯-⨯+-⨯⨯=--- 5. .0942861753843762951987654321=⨯⨯-⨯⨯-⨯⨯-⨯⨯+⨯⨯+⨯⨯=6..1810142199)1(22021119941202)1(210112101199202114122-=⨯⨯-⨯-⨯-⨯⨯-⨯⨯+⨯-⨯+⨯⨯=-7. 111222ωωωωωω,其中.2321i+-=ω=36331ωωω-++=0.8..662323213212322233+-=---++⨯⨯=x x x x x x x xxx x xx计算下列数字元素行列式(利用行列式性质展开):9. .2564)1(123423403400400046=-=10.!.10!10)1(1000009000800020001000)09876543211(=-=ι11.111111111111---)4,3,2,(1=-i r r i=.8)2(20200002011113-=-=---12.3214214314324321(将2,3,4行加到第1行,提取公因子10)=103214214314321111(122334,,r r r r r r ---)=10113113110321--)4,3,2,(1=-i r r i=104040012101111---=102)4(-⨯=160.13.1111021*********-(41r r ↔)=245021*********--(1413125,4,r r r r r r ---)=315423001201111--------(32r r -)=315423043101111-------(24235,3r r r r ++)=1714870043101111-(342r r -)=710870043101111-=-.14. 1111156452243633545246563--(,2413,r r r r --提取第3行公因子2-)=11111210001110035452465632---(21r r -)=11111210001110035452111112---(,,21512r r r r --提取第5行公因子2-)=41121000111001323011111(45r r -)=4121000111001323011111-=4)3(-⨯=.12-15..32)16()2(1531432115310000430021=-⨯-=-⨯=-16. 11010420003100010987654321(,21r r -提取第1行公因子,5-提取第4行公因子2)=10-11010210003100010987611111(233445,,r r r r r r ↔↔↔)=1021310001098761101011111(4513,6r r r r --)=10131000432101101011111-(23r r -)=10131000322001101011111-=10.202-=-17. 8521310421042002030021100--(122334,,r r r r r r ↔↔↔)=8521304200203002110010421---(233445,,r r r r r r ↔↔↔)=04220300211008521310421-- =.6012)5(0422032111321-=⨯-=- 18.0BA*, 其中.0050004000300020*******,321021001⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛=B ABA *(换行)=AB *-0=!.3!5=-A B证明下列恒等式:19. .)1(3332221112333332222211111c b a c b a c b a x c b x a xb ac b x a xb ac b x a xb a -=++++++ 证:333332222211111c b x a xb ac b x a x b a c b x a x b a ++++++=333222111333222111333222111333222111c b xb c b xb c b x b c xa xb c x a x b c x a x b c b a c b a c b a c xa a c x a a c x a a +++ =003332221112333222111+++c a b c a b c a b x c b a c b a c b a =3332221112)1(c b a c b a c b a x - .111111111111111122y x yy x x =-+-+证:yy x x-+-+1111111111111111=yy x x yy x -+-+--11111101110111010010010001=yy x x xy -+-+1111111112=)11110110101001(2yy x yy x xy -+-+-+=))((222y x y x xy ---+=22y x 21. ).)()()((111333b c a c a b c b a cbac b a---++= 证:333322221111dcbad c b a d c b a (范德蒙行列式)=))()()()()((a b a c b c a d b d c d ------,其中,2d -的系数即为333111cbac b a∴ ))()()((111333a b a c b c c b a cbac b a---++=. 22. .111)(111222323232ccb b aa ca bc ab ccb b a a ++= 证:323232321111dddc c c b b b a a a (范德蒙行列式)=))()()()()((a b a c b c ad b d c d ------其中,d 的系数即为323232111ccb b aa ∴ 222323232111)())()()((111ccb b a a ca bc ab a b a c b c ca bc ab ccb b a a ++=---++=.计算下列各题:23.543002201dc b a =540020cb a d -=02ba cd -=.abcd24.dc b a1110011001---=dc dc b a 111001)1(11101------ =dc ddc ba 11)10111(-+-+-=.)1)(1(ad cd ab +++25.2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d dc c c c b b b b a a a a=0(因为按照行列式的求和性质展开时,每一项中均有两列成比例)26.1222111b a a c c b b a c a c bc b a +++(将2, 3列加到第1列)=122111b a a c cb a b ac b a a c cb ac b c b a ++++++++++ (第1,4列成比例)=0.27.44332211000000a b a b b a b a (按第1行展开)=00000433221433221b a b b a b a a b b a a - =332241332241a b b a b b a b b a a a -=))((32324141b b a a b b a a --.28.nn 222221222223222222222221-22321,,c c c c c c n ---=2203020001200002000021---n n(按照第1列展开)=22030200120002---n n=)!2(2--n .29.nn n nn a a a an a a a a na a a a)()2()1()()2()1(2111112222---------(范德蒙行列式)=∏≤<≤---ni j j a i a 0))((=∏=+-nk n n k 12)1(!)1(.30.nn n n n n n n n n n nn nn n n nn n n n n b b a b a b a a b b a b a b a a b b a b a b a a 111121211111212222222122111121211111+-+++-++-++------(第i 行提取公因子1,,1,+=n i a ni ,然后应用范德蒙行列式)=)(11∏+≤<≤-n i j j i jib a ab .用克拉默法则解下列线性方程组:31. ⎪⎪⎩⎪⎪⎨⎧=+++=++=++-=++.0,124,12,324543213214321431x x x x x x x x x x x x x x解:,71111021*********-=-=D ,71110211121124031-=-=D ,71110214121124352==D,71110114111123053=-=D ,701111214121134054-=-=D∴ .1,1,1,144332211==-==-====DD x DD x DD x DD x32. ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++=+++.5,4,3,1,143215321542154315432x x x x x x x x x x x x x x x x x x x x解:类似31题求解可得:.45,41,43,47,41154321-=-====x x x x x33. 问:齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+-+=+++=+++0,03,02,04321432143214321bx ax x x x x x x x x x x ax x x x有非零解时,b a ,必须满足什么条件?解:,011131********=-baa 即.4)1(2b a =+34. 求平面上过两点),(11y x 和),(22y x 的直线方程(用行列式表示).解:设直线方程为0=++c by ax ,则其满足:⎪⎩⎪⎨⎧=++=++=++0,0,02211c by ax c by ax c by ax有非零解,从而所求直线方程为:01112211=y x y x y x . 35. 求三次多项式332210)(x a x a x a a x f +++=, 使得.16)3(,3)2(,4)1(,0)1(====-f f f f解:由题意,得下列线性方程组: ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=-+-162793,3842,4,03210321032103210a a a a a a a a a a a a a a a a用克拉默法则求解,得:2,5,0,73210=-===a a a a , 从而,32257)(x x x f +-=.补充题证明下列恒等式:36.∏∑==+=+++ni i ni ina a a a a 1121.)11(111111111(1)用数学归纳法证明之;(2)利用线性性质,将原行列式表示为n 2个行列式之和的方法,计算行列式; (3)利用递推公式,计算行列式.解:(1)1=n 时,左边=1111a a +=+,右边=11a +,结论成立。
线性代数第一章习题答案.pdf
习题 1.11.计算下列二阶行列式.(1)5324;(2)ααααcos sin sin cos .解(1)146205324=−=;(2)ααααcos sin sin cos αα22sin cos −=.2.计算下列三阶行列式.(1)501721332−−;(2)00000d c b a ;(3)222111c b a c b a ;(4)cb a b a ac b a b a a c b a ++++++232.解(1)原式62072)5(1)3(12317)3(301)5(22−=××−−××−−××−××−+××+−××=(2)原式00000000000=⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=d c b a c a d b ;(3)原式))()((222222b c a c a b c b ac b a c a ab bc −−−=−−−++=;(4)原式)()()2()23)((b a ac c b a ab b a ac c b a b a a +−++++++++=3)23())(2(a c b a ab c b a b a a =++−+++−.3.用行列式解下列方程组.(1)⎩⎨⎧=+=+35324y x y x ;(2)⎪⎩⎪⎨⎧=++=++=++82683321321321x x x x x x x x x ;(3)⎩⎨⎧=−=+0231322121x x x x ;(4)⎪⎩⎪⎨⎧=−+=+=−−031231232132321x x x x x x x x .解(1)75341−==D ,253421−==D ,333212−==D 所以721==D D x ,732==D D y .(2)2121111113−==D ,21281161181−==D ,41811611832−==D ,68216118133−==D ;所以111==D D x ,222==D Dx ,333==DD x .(3)132332−=−=D ,220311−=−=D ,303122−==D 所以1321==D D x ,1332==D D y .(4)8113230121−=−−−=D ,81102311211−=−−−=D ,81032101112=−−=D ;20131301213=−=D 所以111==D D x ,122−==D Dx ,333==DD x .4.已知xx x x x x f 21112)(−−−=,求)(x f 的展开式.解xxx x x x f 21112)(−−−=22)(11)(1)(111)(2)()(2⋅⋅−⋅−⋅−⋅−⋅−−⋅⋅+−⋅⋅−+⋅−⋅=x x x x x x x x x x xx x 23223+−−=5.设b a ,为实数,问b a ,为何值时,行列式010100=−−−a b b a .解01010022=−−=−−−b a a b b a 0,022==⇒−=⇒b a b a .习题 1.21.求下列各排列的逆序数.(1)1527364;(2)624513;(3)435689712;(4))2(42)12(31n n L L −.解(1)逆序数为14;62421527364it ↓↓↓↓↓↓↓ (2)逆序数为5;311624513it ↓↓↓↓↓↓ (3)逆序数为19;554310010435689712it ↓↓↓↓↓↓↓↓↓(4)逆序数为2)1(−n n :2122210000421231↓↓−−−↓↓↓↓↓−n n n n t n i L L L L2.在由9,8,7,6,5,4,3,2,1组成的下述排列中,确定j i ,的值,使得(1)9467215j i 为奇排列;(2)4153972j i 为偶排列.解(1)j i ,为分别3和8;若8,3==j i ,则93411)946378215(=+++=τ,为奇排列;若3,8==j i ,则1234311)946873215(=++++=τ,为偶排列;(2)j i ,为分别6和8;若8,6==j i ,则205135231)397261584(=++++++=τ,为偶排列;若6,8==j i ,则215335131)397281564(=++++++=τ,为奇排列;3.在五阶行列式)det(ij a =D 展开式中,下列各项应取什么符号?为什么?(1)5145342213a a a a a ;(2)2544133251a a a a a ;(3)2344153251a a a a a ;(4)4512345321a a a a a .解(1)因5)32451(=τ,所以前面带“-”号;(2)因7)53142(=τ,所以前面带“-”号;(3)因10)12543()53142(=+ττ,所以前面带“+”号;(4)因7)13425()25314(=+ττ,所以前面带“-”号.4.下列乘积中,那些可以构成相应阶数的行列式的项?为什么?(1)12432134a a a a ;(2)14342312a a a a ;(3)5514233241a a a a a ;(4)5512233241a a a a a .解(1)可以,由于该项的四个元素乘积分别位于不同的行不同的列;(2)不可以,由于14342312a a a a 中的1434a a 都位于第四列,所以不是四阶行列式的项;(3)可以,由于该项的五个元素乘积分别位于不同的行不同的列;(4)不可以,由于5512233241a a a a a 中没有位于第四列的元素。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
《线性代数》第一章习题及解答
2x x 1 2 例 8 设 f (x) = 1 x 1 − 1 ,则 x 4 的系数为( ), x 3 的系数为( ).
3 2x 1 1 11 x
分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦
时,再考虑用行列式的计算方法进行计算.
解 从 f (x) 的表达式和行列式的定义可知,当且仅当 f (x) 的主对角线的 4 个元素的
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
故逆序数为 1;于是这个排列的逆序数为 t= 0+0+2+4+1= 7,故正确答案为(B).
例 2 下列排列中( )是偶排列.
因此
(−1)t a1n−1a2n−2 Lan−11ann ,其中
t = (n −1)(n − 2) , 2
( 2007 −1)( 2007 − 2 )
D = (−1) 2 2007!= −2007!.
此题也可以按行(列)展开来计算.
例 11 计算 n 阶行列式
2 1 1L1
1 2 1L1
Dn = 1 1 2 L 1
于是 A31 + A32 + A33 = 0, A34 + A35 = 0.
12345
12345
11122
11122
A51 + A52 + A53 + A54 + A55 = 3 2 1 4 6 r4 + r2 3 2 1 4 6 = 0
22211
33333
线性代数第一章习题答案
习 题 1-11.计算下列二阶行列式: (1)xx 11; (2)ααααsin cos cos sin -.解 (1)()11112-=-=x x xx .(2)1)cos (sin sin cos cos sin 22=--=-αααααα.2.计算下列三阶行列式:(1)121223112--; (2)00000d c b a ; (3)222111c b a c ba; (4)cb a b a ac b a b a a cb a ++++++232. 解 (1)原式5)2(2213)1(12112)1()2(31122=-⨯⨯-⨯⨯--⨯⨯-⨯⨯-+-⨯⨯+⨯⨯=. (2)原式00000000000=⋅⋅-⋅⋅-⋅⋅-⋅⋅+⋅⋅+⋅⋅=dc b a c ad b . (3)原式))()((222222b c a c a b c b ac b a c a ab bc ---=---++=. (4)原式)()()2()23)((b a ac c b a ab b a ac c b a b a a +-++++++++=3)23())(2(a c b a ab c b a b a a =++-+++-.3.证明下列等式:=333231232221131211a a a a a a a a a 3332232211a a a aa 3331232112a a a a a -3231222113a a a a a +.证明 333231232221131211a a a a a a a a a 322311332112312213322113312312332211a a a a a a a a a a a a a a a a a a ---++=)()()(312232211331233321123223332211a a a a a a a a a a a a a a a -+---=3332232211a a a a a =3331232112a a a a a -3231222113a a a a a +.4.用行列式解下列方程组:(1)⎩⎨⎧=+=+643534y x y x ; (2)⎪⎩⎪⎨⎧-=-+=++-=+-1236132321321321x x x x x x x x x .解 (1)74334==D ,246351==D ,963542==D ,所以 721==D D x ,792==D D y . (2)23213111132-=--=D ,232111161311-=----=D , 462131611122-=---=D ,691136111323-=---=D ; 所以 111==D D x ,222==D Dx ,333==DD x .习 题 1-21.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)4321; (2)2314; (3)1243; (4)3142;(5))2(42)12(31n n -; (6)2)22()2()12(31 --n n n .解 (1)是标准排列,其逆序数为0; (2)逆序有(4 1),(4 3),(4 2),(3 2),所以逆序数为4. (3)逆序有(3 2),(3 1),(4 2),(4 1),(2 1),所以逆序数为5. (4)逆序有(2 1),(4 1),(4 3),所以逆序数为3. (5)逆序有(3 2) 1个 (5 2),(5 4) 2个 (7 2),(7 4),(7 6) 3个 …………………()12(-n 2),()12(-n 4),()12(-n 6),…,()12(-n )22(-n ) )1(-n 个所以逆序数为 2)1(21-=+++n n n . (6)逆序有(3 2) 1个 (5 2),(5 4) 2个 …………………()12(-n 2),()12(-n 4),()12(-n 6),…,()12(-n )22(-n ) )1(-n 个 (4 2) 1个 (6 2),(6 4) 2个 …………………()2(n 2),()2(n 4),()2(n 6),…,()2(n )22(-n ) )1(-n 个所以逆序数为 )1(12)1()1(21-=+++-+-+++n n n n .2.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p a a a a τ-,其中τ为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++,所以44322311a a a a -和42342311a a a a 为所求.3.在5阶行列式)det(ij a =D 展开式中,下列各项应取什么符号?为什么? (1)5145342213a a a a a ; (2)2544133251a a a a a ; (3)2344153251a a a a a ; (4)4512345321a a a a a . 解 (1)因5)32451(=τ,所以前面带“-”号. (2)因7)53142(=τ,所以前面带“-”号.(3)因10)12543()53142(=+ττ,所以前面带“+”号. (4) 因7)13425()25314(=+ττ,所以前面带“-”号.4.若n 阶行列式)det(ij a =D 中元素ij a ),,2,1,(n j i =均为整数,则D 必为整数.这一结论对吗?为什么?解 这一结论正确,因整数经乘法运算后仍为整数,而D 为元素的乘法的代数和,因此结果仍为整数.5.证明:若n 阶行列式中有n n -2个以上的元素为零,则该行列式值为零.证明 因n 阶行列式中有2n 个元素,而有n n -2个以上元素为零,故不为零的元素的个数小于n .从而,在行列式展开式中的n 个元素的乘积项中至少有一个元素为零,所以乘积为零,代数和也为零,故该行列式的值为零.6.用行列式定义计算下列行列式:(1)0001100000100100; (2)0100111010100111; (3)nn 0000000010020001000-; (4)011,22111,111n n n n a a a a a a --. 解 (1)在展开式43214321)1(p p p p a a a a∑-τ中,不为0的项取自于113=a ,122=a ,134=a ,141=a ,而4)3241(=τ,所以行列式值为11111)1(4=⨯⨯⨯-. (2)在展开式43214321)1(p p p p a a a a∑-τ中,取14344==a a p ,则33p a 取为⎪⎩⎪⎨⎧====1134332333a a a a p p ,则⎪⎩⎪⎨⎧====1122224222a a a a p p ,11p a 取为111=a ,除此之外的项均为0.即行列式 4334221143322411)1()1(a a a a a a a a D ττ-+-=,而 2)1423(=τ,1)1243(=τ, 所以 0)1()1(2=-+-=D .(3)在展开式n np p p a a a2121)1(∑-τ中,不为0的项取为11,1=-n a ,22,2=-n a ,…,11,1-=-n a n ,n a nn =,而 2)1)(2()1)2)(1((--=--n n n n n τ,所以 !)1(2)1)(2(n D n n ---=.(4)在展开式n np p p a a a 2121)1(∑-τ中,不为0的项取n a 11,2-n a …1n a nn a .而2)1()1)2)(1((-=--n n n n n τ,所以 11,212)1()1(n n n n n a a a D ---=.习 题 1-31.设0333231232221131211≠==a a a a a a a a a a D ,据此计算下列行列式: (1)131211232221333231a a a a a a a a a ; (2)333231232221131211a ka a a ka a a ka a ; (3)333231131211232221444333222a a a a a a a a a ; (4)323233312222232112121311253225322532a a a a a a a a a a a a ------. 解 (1)a a a a a a a a a a r r a a a a a a a a a -=-↔33323123222113121131131211232221333231; (2)ka a a a a a a a a a k k k r a ka a a ka a a ka a =≠÷3332312322211312112333231232221131211)0(, 当0=k 时,结论仍成立.(3)33323123222113121121333231131211232221444222333444333222a a a a a a a a a r r a a a a a a a a a -↔ a a a a a a a a a a r r r 24)24(423333231232221131211321-=-÷÷÷.(4)3233312223211213113232323331222223211212131123223223225253225322532a a a a a a a a a c c a a a a a a a a a a a a ---------- a a a a a a a a a a c c a a a a a a a a a c c c 121212)2(3233323123222113121132323331222321121311321=↔-÷÷÷. 2.用行列式性质计算下列行列式:(1)111210321; (2)333222111321321321a a a a a a a a a +++++++++; (3)efcfbfde cd bdaeac ab ---;(4)yxyx x y x y yx y x+++;(5)28947104546333412------; (6)2605232112131412-. 解 (1)0111210000111210321321=--r r r . (2)02112112113213213213211213333222111=+++--+++++++++a a a cc c c a a a a a a a a a .(3)0202001321c e ec b adf rr r r e c be c b ec b adf ef cfbfde cd bdae ac ab-++---=---abcdef ec ecbadf r r 420002032=--↔. (4)yxyx x y x y x y x y y x c c c yxyx x y x y y x y x222222321++++++++++xy yy x y x y y x r r r r ---++--00)(21223 2)22()()22(y y x x y x y x +--+=)(2))((23322y x y x xy y x +-=--+=.(5)由于行列式中的第一列和第三列元素对应成比例,所以028947104546333412=------. (6)000002321121314122605232112131412214=----r r r .3.把下列行列式化为上三角形行列式,并计算其值:(1)3351110243152113------; (2)107825513315271391-------.解:(1)2113110243153351335111024315211341-------↔------r r 11101605510019182403351325141312---------+r r r r r r 111016019182401120335155323------↔÷r r r 2000320011203351533200760011203351581243432423-----↔+------+r r r r r r r r 402)2(215=⨯-⨯⨯⨯-=. (2)78130210017251307139121078255133152713*********------++---------r r r r r r r31224000210017251307139117324-=-----++r r r .4.用行列式性质证明下列等式:(1)yxzx zyz y x b a bz ay by ax bx az by ax bx az bzay bxaz bz ay by ax )(33+=+++++++++; (2)333222111333332222211111c b a c b a c b a c c b kb a c c b kb a c c b kb a =++++++; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a . 证明 (1)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开列按第左边1bzay by ax x by ax bx az z bxaz bz ay y b +++++++ bzay y zby ax x y bxaz z xab bz ay x zby ax z ybxaz y xa +++++++22分开列分别再按第bzay y xby ax x z bxaz z y b bz ay x xby ax z zbx az y y ab ++++++++2 z y z y x yx z xab y y z x x y zz xb a z x z y zy xy xb a y xzx z yzy xa 22233+++分开列分别再按第 zy xy x z x z yb y y x x x zzz yab z x xy z zxy yab y xxx z zzy y b a 3222++++ zy x y x zx z yb y x zx z yzy x a 330000+++++= =-+=y x z x zy zy xb y xzx z yzy x a 323)1(右边. (2)左边=-+++-3331221112133331222111132c b a c b a c b a kc c c b kb a c b kb a c b kb a c c 右边. (3)左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 062126212621262123222221312=++++--d d c cb b a ac c c c .5.计算下列n 阶行列式:(1))1(3210321102113011321--------------n nn n n n n n;(2)1121122112111211111-----+++n n n n n b a a a a b a a a a b a a a a;(3)a b b b b a b b bb a b bb b a ;(4)11111000000000112211-----n n a a a a a a ; (5)xa a a a a a a x a a a a a a a x a a a a a a a xa a a a a a a a n n n nn n n n n n n n -+-+-+-+-------113211232113221132111321.解 (1))1(3210321102113011321--------------n nn n n n n n!0000210002)1(23002)1(262021321,,3,21n nn n nn n n nn n i r r i =----=+.(2)1121122112111211111-----+++n n n n n b a a a a b a a a a b a a a a∏-=--==-11121121100000001,,3,2n i i n n i b b b b a a a ni r r.(3)a b b b b a b b b b a b bb b a ab b bn a b b a b b n a ba b n a bb b b n ac c n i i)1()1(0)1()1(21-+--+-+-++∑= ni r r i ,,21 =-ba b a b a b b b b n a ----+00000)1()(])1([1b a b n a n --+=-.(4)11111000000000112211-----n n a a a a a a nn a a a n i c c n i i 13210000000000001,,2,11211-----=+-+∏-=--=111)1(n i i n a n .(5)x a a a a a a a xa a a a a a a x a a a a a a a xa a a a a a a a n n n nn n n n n n n n -+-+-+-+-------113211232113221132111321xa xa x a x a a a a a a n i r r n n n n i ----=----12211321100000000000,,3,2)())((1211x a x a x a a n ---=- .6.解下列方程:(1)0913251323221321122=--x x ; (2)0)1(11111)2(111112111111111111=------xn x n x x.解(1)因22341222400051320010*******2513232213211x x r r r r x x ------1221)4)(1(22x x --=0)4)(1(322=--=x x 所以解为 1±=x ,2±=x .(2)因左边n i r r i ,,3,21 =-xn x n x x ------)2(00000)3(000001000000111110])2[()1(=----=x n x x ,所以解为 2,,2,1,0-=n x .习 题 1-41.求行列式342102321-=D 中元素3和4的余子式和代数余子式.解 3的余子式8420213==M ,3的代数余子式8)1(133113=-=+M A . 4的余子式5123132-==M ,4的代数余子式5)1(322332=-=+M A . 2.已知210004321333231232221131211==a a a a a a a a a D ,求333231232221131211a a a a a a a a a .解:因为21)1(1000432133323123222113121111333231232221131211=-⋅==+a a a a a a a a a a a a a a a a a a D ,所以 21333231232221131211=a a a a a a a a a .3.已知四阶行列式D 的第3行元素依次为1,1,2,2-,它们的余子式依次为4,3,2,5,求行列式D . 解 将行列式D 按第三行元素降阶展开,有3434333332323131A a A a A a A a D +++=4)1()1(3)1(12)1(25)1(243332313⋅-⋅-+⋅-⋅+⋅-⋅+⋅-⋅=++++13=4.设四阶行列式的第二行元素依次为0,1,,2x ,其余子式分别为y ,2,6,2-,第三行的各元素的代数余子式分别为5,1,6,3,求此行列式.解 因03424332332223121=+++A a A a A a A a ,即05011632=⨯+⨯++⨯x ,所以 67-=x .从而 2424232322222121A a A a A a A a D +++=y x ⋅-⋅+-⋅-⋅+⋅-⋅+⋅-⋅=++++42322212)1(0)2()1(16)1(2)1(2 97262-=--=+-=x .5.按第三行展开并计算下列行列式:(1)5021011321014321---; (2)00000000052514241323125242322211514131211a a a a a a a a a a a a a a a a . 解:(1)原式501211431)1()1(502210432)1(33213--⋅-+--⋅=++ 021101321)1(0521201421)1()1(4333++-⋅+--⋅-+24181218-=-+-=. (2)原式=0000)1(000000)1(514125242321151413112323524225242322151413121331a a a a a a a a a a a a a a a a a a a a a a ++-⋅+-⋅ 353433000A A A ⋅+⋅+⋅+00025242315141341232524231514134231a a a a a a a a a a a a a a a a += 0=.6.证明下列各等式:(1)322)(11122b a b b a ab ab a -=+;(2)444422221111d c b a d c b a dc b a ))()()()()()((d c b a d c d b c b d a c a b a +++------=; (3)n n n n n n na x a x a x a x a a a a xx x ++++=+-------1111221100000100001.证明 (1)左边122222221312a b a b a a b a ab a c c c c ------ab a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--==-=3)(b a 右边.(2)方法一左边44444442222222001ad a c a b a a d a c a b a a d a c a b a---------=)()()(4,3,22222222222222221a d d a c c a b b a d a c a b ad a c a b i c c i ---------=-)()()(111))()((222a d d a c c a b b a d a c a b a d a c a b ++++++---=))()((1312a d a c a b c c c c -----)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ ))()()()((b d b c a d a c a b -----=)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-.方法二记D d c b a d c b a d c b a =444422221111,构造矩阵444443333322222111111x d c b a x d c b ax d c b a xd c b aD =,则1D 是范德蒙德行列式,其结果为))()()()()()()()()((1d x c x b x a x c d b d a d b c a c a b D ----------=,其中3x 的系数为))()()()()()((d c b a c d b d a d b c a c a b +++-------.由行列式的降阶展开法则知,55445335225151A x A x A x xA A D +-+-=,其中3x 的系数D A =-45,所以有))()()()()()((d c b a c d b d a d b c a c a b D +++------=,即444422221111d c b a d c b a dc b a ))()()()()()((d c b a d c d b c b d a c a b a +++------=. (3) 用数学归纳法证明 当2=n 时,2121221a x a x a x a x D ++=+-=,命题成立.假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D列展开按第则1n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.7.计算下列各行列式:(1)3214214314321111; (2)ab c d e ed c b a 010000010000010;(3)328814412211111x x x--; (4)nn a a a a a 0100000000000010001321-. 解 (1)原式12312112112341213121200014,3,21------=------=-i c c i12304012112------r r 1613114=----=.(2)依次按第二行、第三行、第四行降阶展开,有abc d e edc ba 0100000100001022e a a e e a -==.(3)由范德蒙德行列式的结果知,328814412211111x x x--)4)(1(12)12)(22)(12)(2)(2)(1(2--=-----+--=x x x x x . (4)依次按第1,,3,2-n 行降阶展开,有nn a a a a a 000100000000000010001321 -)1(1111321132-==--n n n n a a a a a a a a a a .8.计算下列各行列式(k D 为k 阶行列式):(1)xyy x x y x y x n 0000000000000000=D ;(2)n n n n n a a a a a a a a a a a a a a a a ++++=1111321321321321D ;(3))det(ij n a =D ,其中||j i a ij -=;(4)nn a a a +++=11111111121D ,其中021≠n a a a ;(5)1111)()1()()1(1111n a a a n a a a n a a a n n n n n n n ------=---+D ;(提示:利用范德蒙德行列式的结果.)(6)nnnnn d c d c b a b a11112=D ,其中未写出的元素都是0.解 (1)按第1列降阶展开,有yxy y x yy xyx x y x x D n n0000000000)1(00000000001+-+=n n n y x 1)1(+-+=. (2)nn n n n a a a a a a a a a a a a a a a a ++++=1111D 3213213213211001010100111,23211---+=-ni a a a a ni r r∑=+ni ic c 211010*********n ni ia a a a ∑=+∑=+=ni i a 11.(3)ji a ij -=0432140123310122210113210)det(--------==n n n n n n n n a D ij n1,,2,11-=-+n i r r i i 0432111111111111111111111 --------------n n n nn i c c i ,3,21=+152423210222102210002100001---------------n n n n n212)1()1(----=n n n .(4)nn n nn ni na a a a a a a n i c c D +----=--11001001001,,2,1121Xa a a r a a r n n i i i n n 010010010012111--=∑+(其中∑-=++=111n i in n a aa X ))11()11(12111121∑∑=-=-+=++=ni in n i i n n n a a a a a a a a a a .(5)对第1+n 行,依次与上面相邻的行交换,直至交换到第1行,共需交换n 次.再把新的第1+n 行,依次与上面相邻的行交换,直至交换到第2行,共需交换1-n 次.依次类推,经2)1(1)1(+=++-+n n n n 次行交换,得 nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-⋅-⋅-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i .(6)nnnnn d c d c b a b a D11112=n n n n n nd d c d c b a b a a 0011111111----展开按第一行)1(1111111112nn n n n nn c d c d c b a b a b ----+-+2222---n n n n n n D c b D d a 展开都按最后一行,由此得递推公式222)--=n n n n n n D c b d a D ,所以 ∏=-=ni i i iin D c b da D 222)(,而 111111112c b d a d c b a D -==,所以 ∏=-=ni i i iin c b da D 12)(.习 题 1-51.用克拉默法则解下列方程组:(1)⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+067452296385243214324214321x x x x x x x x x x x x x x ;(2)⎪⎪⎩⎪⎪⎨⎧-=-++-=--+-=---=+++4326324231324321432143214321x x x x x x x x x x x x x x x x ;(3)⎪⎪⎩⎪⎪⎨⎧-=---=+++-=+-+=+++25320112324254321432143214321x x x x x x x x x x x x x x x x .解 (1)276741212060311512=-----=D , 8167402125603915181=------=D ,10867012150609115822-=-----=D , 2760412520693118123-=---=D 2707415120903185124=-----=D , 由克拉默法则知,方程组的解为311==D D x ,422-==D D x ,133-==D D x ,144==D Dx . (2)1531321113221133211-=------=D , 15313241136211432111=---------=D ,15313411162214332112=--------=D , 014211632241331113=-------=D ,15343216132411312114-=------=D ;由克拉默法则知,方程组的解为111-==D D x ,122-==D D x ,033==D D x ,144==D Dx . (3)14251321121341211111=----=D ,142513211210412211151=------=D 284512211203412111512=-----=D , 426523211013422115113=----=D , 14221320213212151114-=-----=D ,由克拉默法则知,方程组的解为111==D D x ,222==D D x ,333==D D x ,144-==DDx . 2.设曲线332210x a x a x a a y +++=通过四点),4,2(),3,1(),3,3()3,4(-,求系数3210,,,a a a a .解 由于曲线过四点,所以有⎪⎪⎩⎪⎪⎨⎧-=+++=+++=+++=+++36416432793484233210321032103210a a a a a a a a a a a a a a a a而126416412793184211111==D ,3664164327933842411131=-=D ,1864163127931844111312-=-=D , 246434127331842113113=-=D ,6316413931442131114-=-=D , 所以310==D D a ,2321-==D D a ,232==D D a ,2143-==D D a . 3.证明:对任意实数k ,线性方程组⎩⎨⎧=-+-=+-0)1(20)1(2121x k x kx x k 只有零解.证明 因系数行列式012)1(12122≠+=+-=---=k k k k k k D ,所以线性方程组只有零解.4.问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-+=-+=++-0)4(20)6(2022)5(3121321x x x x x x x λλλ有非零解? 解 系数行列式)210(4)4)(6)(5(402062225λλλλλλλ-----=---=D )8)(2)(5()82410)(5(2---=-+--=λλλλλλ,当0=D 时,即8,2,5===λλλ时,齐次线性方程组有非零解.5.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式μλμμμλ-==12111113D , 当0=D 时,即10==λμ或时,齐次线性方程组有非零解.,l β能由,m α线)m α 等于 12,,)m l R αβββ,,,。
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
居于马线性代数第一章答案
1、22220a ab a b ab ab ab b=⋅-⋅= 2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi b a bi a bi ab a b ab a b aa bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+---------920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++---45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w w w w w ww w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx =++---=-+9、143000400400431(1)043425604324324321+-=-=-按第行展开10、公式:111112111222222122112212000000000000n n nn nn nnn n nna a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,11100000000(1)n n n n n n n n n n n n n n n n nnn n a a a a a a a a a a a a a a a a a a -------===-⋅解:101000010000100200002010(1)10080000800900009010+-⋅按第行展开9(19)210(1)128910!+=⋅-⋅⋅⋅=11、31111111*********00311*(2)8111100204111112----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即123412341234211132341134101131031101022234121412022211141412311230111---=-=-----------第行第行第行第行 第行第行10*16160==13、5042111111112101121112102114324741204120032415311115420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变)3656411111111111111125453254530327503275363422546503287000122546536342030750020011111365640329700022------===--- 根据课本20页公式(1.21),原式012112003*41203022=-=-=-()15、1200340012132*16001334510051-==---()()=3216、1234512345123678910678910213567810*220000*********01000024000240101100013-=-=-=-第,行对换17、根据课本20页公式(1.22)23001121120030212(1)30212*(5)6000240312401240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!030004000500B ---==------=----所以 3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b xb xc a b x a x b c x a b x b x c a b x a x b c a b x b x c a b x b c a b c x a b x b c x x a b c a b x b c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、11111111211111003111110041111100xx x x x y x yyxy++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()000x x x xy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开 2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b ac aabc b ac a b a c a a b c b a c a --==--=⋅----左()()()()()()()()()()()()()()()()2222222222b a c a c ac a c a b a b ab a b a c a c ac a b ab a b a c a c ac b ab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a a bb b a b a b ac a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a a b a c a c b b b c c ---=故原式得证。
线性代数(居余马)1.1
一、二元线性方程组与二阶行列式
a11x1+a12x2=b1 , 用消元法解二元线性方程组 a21x1+a22x2=b2
得
b a22 −a12b2 a11b2 −b a21 1 1 . , x2 = x1 = a11a22 −a12a21 a11a22 −a12a21
一、二元线性方程组与二阶行列式
a11x1+a12x2=b1 , 用消元法解二元线性方程组 a21x1+a22x2=b2
得
b a22 −a12b2 a11b2 −b a21 1 1 . , x2 = x1 = a11a22 −a12a21 a11a22 −a12a21
a11 a1 我们用符号 表示代数和a11a22−a12a21 , 这样就有 a2 2 1 a2 b1 2 a1 a11 b1 b2 2 a2 b2 x1= ———— , x2= ———— . 1 a a2 a a a
其中 D=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31, D1=b1a22a33+a12a23b3+a13b2a32−b1a23a32−a12b2a33−a13a22b3, D2=a11b2a33+b1a23a31+a13a21b3−a11a23b3−b1a21a33−a13b2a31, D3=a11a22b3+a12b2a31+b1a21a32−a11b2a32−a12a21b3−b1a22a31. a11 a12 a13 为了便于记忆和计算, 我们用符号 a21 a22 a23 表示代数和 a31 a32 a33 a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、2222
0a ab a b ab ab ab b
=⋅-⋅= 2、
22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=
3、
222()()22()2a bi b a bi a bi ab a b ab a b a
a bi
+=+--=+-=--
4、3
24
2
123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+---------
5、123
4
561*5*92*6*73*4*81*6*82*4*93*5*7789=++---
6、2
21
4
1
12*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----
7、22
22
343222222
11101(1)(1)(1)01001w w w w
w w
w w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()
8、33222321
21*2*3322663
x x
x
x x x x x x x x x
x =++---=-+ 9、
1430004
004
00431(1)04342560432432
4321
+-=-=-按第行展开
10、公式:
解:
10100
00
10
010
02000020
10(1)10
080000
800900009
10
+-⋅按第行展开
11、
31
111111*********
00311*(2)811110020411
1
1
1
2
----=-=------第行第行第行第行第行第行
12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即
13、
5
04211111111210
1121112102
1
143247412041200324153
1
1
11
5
42
0153
-----
=-
=----=----------第,行交换
14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变)
根据课本20页公式(1.21),原式012
11
2003*41203
022
=
-=-=-() 15、
12
00340012132*160013
345
1
00
5
1-=
=---()()=32
16、1234512345
123678910678910
21
3567810*220000*********
0100002400024
01011
00013
-=-=-=-第,行对换
17、根据课本20页公式(1.22)
18、100
12
01*2*33!123
A ===,
所以 3*5*(1)||||3!5!0
A A
B B
=-=-
19、证:
20、111111112111110
031111100
411
1
1
10
0x
x x x x y x y
y
x
y
++----=
-+-----第行第行左第行第行第行第行
21、3333
33
3
3333
1
111110
10b a c a
a
b
c b a
c a b a c a
a b c b a c a --==--=⋅----左 22、解法1:()()()()2
32
32233223322332
3
22
33
1100
1111a a b
b b a b a b a
c a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---
又根据范德蒙行列式有:()()()2
2
2
111a a b a c a c b b b c c ---=
故原式得证。
解法2:分析:观察到右端的行列式是一个3阶范德蒙行列式 解答:构建新的4阶范德蒙行列式:
()f x 按第4行展开得:2341424344()f x M M x M x M x =-+⋅-⋅+⋅ (1)
其中,232342
2
3111a a M b b c c =,22442
111a a M b b c c = 按范德蒙行列式结论得:
32
()()()()()x a b c x ab bc ca x abc c a c b b a ⎡⎤=-+++++----⎣⎦ (2)
式子(1)和(2)对比,可得
可以看出,4244()M ab bc ca M =++,即2
32
2
322
32
111()111a a a a b
b ab b
c ca b b c c c c =++,得证.
23、
102021021
200140022354302
34554300250000000000a a a b b c a b ac bd abcd c c b c d d d d
-==⋅=第,列第,行对换对换 24、
2110010100
1101
1(1)(1)0
1011
1010
1a
b b a c
c
c
d d
d
+-=-+------()1a bcd d b cd ++++。