离散数学图论与系中有图题目
离散数学测验题--图论部分(优选.)
离散数学图论单元测验题一、单项选择题(本大题共10小题,每小题2分,共20分)1、在图G =<V ,E >中,结点总度数与边数的关系是( )(A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=Vv E v )deg(2、设D 是n 个结点的无向简单完全图,则图D 的边数为( )(A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/23、 设G =<V ,E >为无向简单图,∣V ∣=n ,∆(G )为G 的最大度数,则有(A) ∆(G )<n (B)∆(G )≤n (C) ∆(G )>n (D) ∆(G )≥n4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( )(A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( )(A) },,,,,,,,,{><><><><><=c d b c d b a b d a E(B) },,,,,,,,,{><><><><><=c d d b c b a b d a E(C) },,,,,,,,,{><><><><><=c d a d c b a b c a E6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的() (A)度数 (B) 出度 (C)最大度数 (D) 入度7、设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100则G 的边数为( ).A .5B .6C .3D .48、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( )(A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +29、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。
离散数学图论练习题(优选试题)
图论练习题一.选择题1、设G是一个哈密尔顿图,则G一定是( )。
(1) 欧拉图(2) 树(3) 平面图(4)连通图2、下面给出的集合中,哪一个是前缀码?()(1) {0,10,110,101111}(2) {01,001,000,1}(3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011}3、一个图的哈密尔顿路是一条通过图中()的路。
4、设G是一棵树,则G 的生成树有( )棵。
(1) 0(2) 1(3) 2(4) 不能确定5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。
6、一棵无向树的顶点数n与边数m关系是()。
7、一个图的欧拉回路是一条通过图中( )的回路。
8、有n个结点的树,其结点度数之和是()。
9、下面给出的集合中,哪一个不是前缀码( )。
(1) {a,ab,110,a1b11} (2) {01,001,000,1}(3) {1,2,00,01,0210} (4) {12,11,101,002,0011}10、n个结点的有向完全图边数是( ),每个结点的度数是( )。
11、一个无向图有生成树的充分必要条件是( )。
12、设G是一棵树,n,m分别表示顶点数和边数,则(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。
13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。
14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。
15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于:(1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。
16、设T是一棵树,则T是一个连通且( )图。
17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。
(1) 10 (2) 4 (3) 8 (4) 1618、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。
《离散数学》题库及答案
《失散数学》题库与答案一、选择或填空(数理逻辑部分)1、以下哪些公式为永真包括式?( A )(1) Q=>Q→P (2) Q=>P→Q (3)P=>P→Q (4) P (P Q)=>P答:在第三章里面有公式(1)是附加律,( 4)能够由第二章的包括等值式求出(注意与吸取律差异)2、以下公式中哪些是永真式?()(1)( ┐P Q)→(Q→R) (2)P →(Q→Q) (3)(P Q)→P (4)P→(P Q)答:( 2),(3),(4)可用包括等值式证明3、设有以下公式,请问哪几个是永真蕴涵式?()(1)P=>P Q (2) P Q=>P (3) P Q=>P Q(4)P (P →Q)=>Q (5)(P→Q)=>P (6)P (P Q)=>P答:(2)是第三章的化简律,(3)近似附加律,(4)是假言推理,( 3),(5),(6)都可以用包括等值式来证明出是永真包括式4、公式x((A(x)B(y,x))z C(y ,z)) D(x) 中,自由变元是 ( ),拘束变元是 ( )。
答: x,y, x,z(察看定义在公式x A 和 x A 中,称x为指导变元,A为量词的辖域。
在x A 和 x A 的辖域中, x 的所有出现都称为拘束出现,即称x 为拘束变元, A 中不是拘束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和 z C(y ,z) 中 y 为自由变元, x 和 z 为拘束变元,在 D(x) 中 x 为自由变元)5、判断以下语句可否是命题。
若是,给出命题的真值。
()(1)北京是中华人民共和国的国都。
(2)陕西师大是一座工厂。
(3)你喜欢唱歌吗?(4)若 7+8>18,则三角形有 4 条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是(命题必定满足是陈述句,不能够是疑问句也许祈使句。
离散数学及其应用图论部分课后习题答案
作业答案:图论部分P165:习题九1、 给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。
(1)111,G V E =<>,112345{,,,,}V v v v v v =,11223343345{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (2)222,G V E =<>,21V V =,11223344551{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,}E v v v v v v v v v v =<><><><><> (4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,}E v v v v v v v v v v =<><><><><> 解答: (1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。
(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。
14、设G 是(2)n n ≥阶无向简单图,G 是它的补图,已知12(),()G k G k δ∆==,求()G ∆,()G δ。
解答:2()1G n k ∆=--;1()1G n k δ=--。
15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。
解答:(c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d )同构,同构函数为12()345x a x bf x x c x d x e=⎧⎪=⎪⎪==⎨⎪=⎪=⎪⎩ 16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
离散数学图论部分经典试题及答案
离散数学图论部分经典试题及答案离散数学图论部分综合练习⼀、单项选择题1.设图G 的邻接矩阵为0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为,则G 有().A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =,则下列结论成⽴的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图⼀所⽰,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图⼆所⽰,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所⽰,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οοοοοca b edο f图⼀图⼆图三7.设有向图(a )、(b )、(c )与(d )如图四所⽰,则下列结论成⽴的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当()时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平⾯图,有v 个结点,e 条边,r 个⾯,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.⽆向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中⾄多有两个奇数度结点C .G 连通且所有结点的度数全为偶数 D .G 连通且⾄多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的⼀棵⽣成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.⽆向简单图G 是棵树,当且仅当( ).A .G 连通且边数⽐结点数少1B .G 连通且结点数⽐边数少1C .G 的边数⽐结点数少1D .G 中没有回路.⼆、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是. 2.设给定图G (如图四所⽰),则图G 的点割οοοοc a b f集是.3.若图G=中具有⼀条汉密尔顿回路,则对于结点集V 的每个⾮空⼦集S ,在G 中删除S 中的所有结点得到的连通分⽀数为W ,则S 中结点数|S|与W 满⾜的关系式为.4.⽆向图G 存在欧拉回路,当且仅当G 连通且.5.设有向图D 为欧拉图,则图D 中每个结点的⼊度.应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当时,K n 中存在欧拉回路.7.设G 是连通平⾯图,v , e , r 分别表⽰G 的结点数,边数和⾯数,则v ,e 和r 满⾜的关系式.8.设连通平⾯图G 的结点数为5,边数为6,则⾯数为. 9.结点数v 与边数e 满⾜关系的⽆向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知⼀棵⽆向树T 中有8个结点,4度,3度,2度的分⽀点各⼀个,T 的树叶数为.12.设G =是有6个结点,8条边的连通图,则从G 中删去条边,可以确定图G 的⼀棵⽣成树.13.给定⼀个序列集合{000,001,01,10,0},若去掉其中的元素,则该序列集合构成前缀码.三、判断说明题1.如图六所⽰的图G 存在⼀条欧拉回路.2.给定两个图G 1,G 2(如图七所⽰):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由.(2)若是欧拉图,请写出⼀条欧拉回路.v 123图六图七3.判别图G (如图⼋所⽰)是不是平⾯图,并说明理由.4.设G 是⼀个有6个结点14条边的连通图,则G 为平⾯图.四、计算题1.设图G =,其中V ={a 1, a 2, a 3, a 4, a 5},E ={,,,,}(1)试给出G 的图形表⽰;(2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表⽰;(2)写出其邻接矩阵;(2)求出每个结点的度数;(4)画出图G 的补图的图形. 3.设G =,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表⽰;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形. 4.图G =,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形;(2)写出G 的邻接矩阵;(3)求出G 权最⼩的⽣成树及其权值.5.⽤Dijkstra 算法求右图中A 点到其它各点的最短路径。
离散数学第七章图论习题课
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集
是
.
应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没
离散数学——图论部分习题课
之和为24,而图G中其余点的度数小于3,即图G中其余点的
度数只可能是2或1(由于图G是连通图,所以无零度点). 由此可知,图G中至少有11个顶点: 3个4度点,4个3度点和 4个2度点; 至多有15个顶点: 3个4度点,4个3度点和8个1
度点.
7. 设G1,G2,G3,G4均是4阶3条边的无向简单图,
n ( n 1) 2
即m=n(n-1)/4, 而m为正整数,所以要么n=4k或n=4k+1, 所以不存在3个顶点和6个顶点的自补图.
9. 设有向简单D的度数列为2,2,3,3,入度列为 0,0,2,3,试求D的出度列。 解:设有向简单图D的度数列为2,2,3,3, 对应的顶点分别为v1,v2,v3,v4,
(1)1,1,2,3,5 (3)1,3,1,3,2 答案(2) (2)1,2,3,4,5 (4)1,2,3,4,6
Байду номын сангаас
)
则它们之间至少有几个是同构的? 解: 4阶3条边非同构的无向简单图共有3个,因此 G1,G2,G3,G4中至少有2个是同构的。
8. 是否存在3个顶点和6个顶点的自补图? 解: 由于顶点为n的无向完全图的边数为
n ( n 1) 2
.
设G的自补图为G’,则G与G’的边数相等. 设它们的边数各为m,于是有m+m=
本章重点
一、掌握有关图的基本概念:
邻接 关联 有向图
平行边 多重图
无向图
n阶图
底图
连通图
自回路(环) 简单图
二、掌握图中顶点的度数,握手定理及其推论 定理:设图G是具有n个顶点、m条边的无向图, 其中点集V={v1, v2,… vn }, 则
deg(
i 1
(图论)离散数学习题参考答案2
解此不等式可得 n ≥ 7 , 即 G 中至少有 7 个顶点, 当为 7 个顶点时, 其度数列为 2, 2, 2, 3, 3, 4, 4 , Δ = 4, δ = 2 8. 设有 n 个顶点,由握手定理可得: ∑ d (vi ) = 2m ,即
i =1 n
1 × (3 + 5) + (n − 2) × 2 = 2 × 6
d − (v1 ) = 3, d + (v1 ) = 0; d − (v2 ) = 1, d + (v2 ) = 2; d − (v3 ) = 1, d + (v3 ) = 3; d − (v4 ) = 2, d + (v4 ) = 2
第十一次: (欧拉图与哈密顿图)P305 1.2.11.21 (无向树及其性质)P318 2.24(a), 25(b) 1. (a),(c) 是欧拉图,因为它们均连通且都无奇度顶点; (b),(d)都不是欧拉图;因为(b) 不连通,(d) 既不连通又有奇度顶点;要使(b),(d)变为欧拉图 均至少加两条边,使其连通并且无奇度顶点。如下图所示。
(1) v2 到 v5 长度为 1,2,3,4 的通路数分别为 0, 2, 0,0 条; (2) v5 到 v5 长度为 1,2,3,4 的通路数分别为 0,0,4,0 条; (3) D 中长度为 4 的通路(含回路)为 32 条; (4) D 中长度为小于或等于 4 的回路数为 12 条; (5) 因为 D 是强连通图,所以可达矩阵为 4 阶全 1 方阵,如上图所示。 46. 各点的出度和入度分别如下:
(v2,12)** (v5, 7)*
根据上表的最后一行,从 v1 到其余各点的最短路径和距离如下: v1v2, d(v1,v2)=6 v1v2v6, d(v1,v6)=12 v1v3, d(v1,v3)=3 v1v3v4v5v7, d(v1,v7)=7 v1v3v4, d(v1,v4)=5 v1v3v4v5v7v8, d(v1,v8)=10 v1v3v4v5, d(v1,v5)=6
离散数学_傅彦_图论部分例题精选(可编辑)
第12~13章图论部分例题精选例 1 下列各组数中,哪些能构成无向图的度数序列?哪些能构成无向简单图的度数序列?1 1,1,1,2,32 2,2,2,2,23 3,3,3,34 1,2,3,4,5 5 1,3,3,3解根据握手定理,非负整数序列d1,d2,…,dn 能构成无向图的度数序列当且仅当d1+d2+…+dn 为偶数,即由推论知,d1,d2,…,dn中奇度数结点的个数为偶数个。
而1,2,3, 5分别有4个,0个,4个,4个奇度数结点,所以可以构成无向图的度数序列。
而(4)中有3个奇度数结点,因而不能构成无向图的度数序列。
但这些图并不一定是简单无向图。
其中,1,2,3为简单无向图,(5)不是简单无向图。
因为,在(5)中,若存在无向简单图,是v1,v2,v3,v4,是G中四个顶点,其中,degv11, degv23, degv33, degv43,则结点v1 仅能与v2, v3, v4,之一相邻,不妨设v1与v2相邻,则除v2能达到度数3外, v3, v4都不能达到度数3.因为,简单图要求两个结点之间至多一条边相联结,所以, v3和v4外分别至多和v2与v4, v2与v3相邻,即degv3, degv4至多为2,与已知矛盾,因此,5不是无向简单图. 对应的图如6.1所示,其中1,2,3分别对应a,b,c,5对应d例2 下列各无向图中有几个结点?(1)16条边,每个结点的度数均为2;(2)21条边,3个度数为4的结点,其余结点的度数均为3;(3)24条边,每个结点的度数均相同。
解设该图的结点数为n,则由握手定理可知:,由上式可得 n=16,即该图有16个结点;由上式可得 n =13,即该图有13个结点;.①如果k1,则n48;②如果k2,则n24;③如果k3,则n16;④如果k4,则n12;⑤如果k6,则n8; ⑥如果k8,则n6;⑦如果k12,则n4;⑧如果k16,则n3;⑨如果k24,则n2;⑩如果k48,则n1.例3 已知无向简单图G有m条边,各结点的度数均为3.1 若m3n-6,证明G在同构意义下唯一,并求m和n;2 若n6,证明G在同构意义下不唯一.北师大2000年考研试题分析在图论中,对于简单无向图和简单有向图,若涉及到边和结点的问题,握手定理是十分有用的.解 1 由于各结点的度数均为3,现在有n个结点和m条边,所以由握手定理知:.又因为m3n-6,故可得m6,n4.此时所得的无向图如图6-2所示.该图是简单无向图中边最多的图,即为无向完全图K4.对于4个结点的完全图,在同构意义下是唯一的.2 若n6,由握手定理:故m9.此时有n6,m9,且每个结点的度数为3,此时对于简单无向图,6个结点,9条边及每个结点的度数为3的有如图6-3所示的两个非同构的图.因此,n6,m9,度数为3的无向图G在同构意义下是不唯一的.例4 无向图G有21条边,12个3度数结点,其余结点的度数均为2,求G 的阶数n.北大2001年考研试题解由握手定理:从而,n15,即该图有15个结点,则G的阶数n为15 例5 证明若无向图G 是不连通的,则G的补图是连通的.西南交大1999年考研试题证明: 设不连通的无向图GV,E仅有两个不连通的分支.将点集划分为两个子集V1u1,u2,…,ur和V2v1,v2,…,vs.同属一个子集的两结点是连通的即其间有无向通路,分属不同子集的两结点是不连通的.这样的图,以结点数n4为例来证明G的补图V,Ek-E是连通的,其图如图6-4a所示.任取点集V中的两结点,分两种情况讨论:2 ,即这两个结点属于图G的同一个连通分支.不妨假,如图6-4a,假设它们.在另一连通分中任取一,对照图6-4c中的结.显然因为两两均不在同一连通分支内,所以. 按照1的证明可知: 和因此可通过无向路相连通.由此可知,无论1,2都有G的补图是连通的,所以,对任意不连通的图G,其补图都是连通的.例6 已知n阶简单图G中有m条边,各顶点的度数均为3,又2nm+3,试画出满足条件的所有不同构的G.西南交大2000年考研试题解又2nm+3,即m2n-3故3n2m22n-34n-6故n6m2n-32×6-39此时有n6,m9且每个结点的度数为3,则不同构的图有两个,如图6.5所示.。
《离散数学》任务2 (图论部分概念与性质)选择题判断题
第二部分图论选择题判断题注意:A B C D顺序会出现变动!根据选项确定答案!1. 已知无向图G的邻接矩阵为,则G有(5点,7边).A. 5点,8边B. 6点,7边C. 6点, 8边D. 5点,7边2. 设无向图G的邻接矩阵为,则G的边数为( 5 ).A. 6B. 5C.4 C.33.设无向图G的邻接矩阵为则G的边数为( 7 )。
A.1 B. 6 C. 7 D. 144.设图G=<V, E>,v V,则下列结论成立的是 (()deg2v Vv E∈=∑) .A. deg(v)=2|E|B. deg(v)=|E|C.()deg2v Vv E∈=∑D.()degv Vv E∈=∑5.图G如图二所示,以下说法正确的是 ( {b,c}是点割集 )A. a是割点B. {b,c}是点割集C. {b, d}是点割集D. {c}是点割集6.如图所示,以下说法正确的是 ( e是割点).A. e是割点B. {a,e}是点割集C. {b , e}是点割集D. {d}是点割集7. 如图所示,以下说法正确的是(e是割点)A. e是割点B. {a,e}是点割集C. {b, e}是点割集D. {d}是点割集8. 如图一所示,以下说法正确的是 ( {(d, e)}是边割集 ) .A. {(a, e)}是割边B. {(a, e)}是边割集C. {(a, e) ,(b, c)}是边割集D. {(d, e)}是边割集9.图G如图四所示,以下说法正确的是( {(a, d) ,(b, d)}是边割集) .A. {(a, d)}是割边B. {(a, d)}是边割集C. {(a, d) ,(b, d)}是边割集D. {(b, d)}是边割集图四10.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是 ((a)是强连通的 ).图五A.(a)是强连通的B. (b)是强连通的C. (c)是强连通的D. (d)是强连通的11. 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( (d)只是弱连通的 ).图六A. (a)只是弱连通的B. (b)只是弱连通的C. (c)只是弱连通的D. (d)只是弱连通的12.设G是连通平面图,有v个结点,e条边,r个面,则r = ( e-v+2 ).A. e-v+2B. v+e-2C. e-v-2D. e+v+213.设完全图K n有n个结点(n 2),m条边,当(n为奇数)时,K n中存在欧拉回路.A. m为奇数B. n为偶数C. n为奇数D. m为偶数14.若G是一个欧拉图,则G一定是( 连通图).A. 平面图B. 汉密尔顿图C. 连通图D. 对偶图15.若G是一个汉密尔顿图,则G一定是( 连通图 ).A. 平面图B. 对偶图C. 欧拉图D. 连通图16.无向完全图K4是(汉密尔顿图).A. 欧拉图B. 汉密尔顿图C. 非平面图D. 树17.无向树T有8个结点,则T的边数为( 7 ).A. 6B. 7C.8D.918. 无向简单图G是棵树,当且仅当( G连通且边数比结点数少1 ).A. G连通且边数比结点数少1B. G连通且结点数比边数少1C. G的边数比结点数少1D. G中没有回路19. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( 5 ).A.8 B.5 C.4 D.320.设G是有n个结点,m条边的连通图,必须删去G的( m-n+1 )条边,才能确定G的一棵生成树A. m-n+1B. m-nC. m+n+1D. n-m+121. 以下结论正确的是(树的每条边都是割边)A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边22.无向图G存在欧拉回路,当且仅当(G连通且至多有两个奇数度结点).A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点二、判断题1.设G 是一个有7个结点16条边的连通图,则G 为平面图. ( 错 )2. 如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路. ( 错 )3. 如图九所示的图G 不是欧拉图而是汉密尔顿图. ( 对 )4. 设图G 如图七所示,则图G 的点割集是{f}. ( 错 )5. 两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.( 对 )6. 设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去4条边后使之变成树. ( 对 )7. 若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W ≤|S|. ( 对 )8. 汉密尔顿图一定是欧拉图. ( 错 )9. 设G=<V ,E>是具有n 个结点的简单图,若在G 中每一对结点度数之和小于n-1,则在G 中存在一条汉密尔顿路. ( 错 )(应该大于等于n-1)10. 设G 是一个连通平面图,且有6个结点11条边,则G 有7个面.( 对 )11. 已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. ( 对 )12. 设图G 是有5个结点的连通图,结点度数总和为10,则可从G 中删去6条边后使之变成树. ( 错 )(应该删除5-4=1条边)13. 设完全图Kn 有n 个结点(n ≥2),m 条边,当n 为奇数时,Kn 中存在欧拉回路 ( 对 )14. 设G 是一个图,结点集合为V ,边集合为E ,则()v Vdeg 2v E ∈=∑ ( 对 )15. 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b,d)},则该图中的割边为(b, c)( 对 )16. 结点数v与边数e满足e=v的无向连通图就是树. ( 错)17. 无向图G的结点数比边数多1,则G是树. ( 错)18. 设连通平面图G的结点数为5,边数为6,则面数为4. ( 错)19. 如图八所示的图G存在一条欧拉回路. ( 错)20. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( 对 )。
应用离散数学图论图的连通性题库试卷习题及答案
§5.2 图地连通性习题5.21.证明或否定:(1)简单图G 中有从点u 到点v 地两条不同地通路,则G 中有基本回路。
(2)简单图G 中有从点u 到点v 地两条不同地基本通路,则G 中有基本回路。
解:(1)简单图G 中有从点u 到点v 地两条不同地通道,则G 中有回路。
(2)简单图G 中有从点u 到点v 地两条不同地路,则G 中有回路。
解 (1)不一定:如下图,点1与点3之间有两条通道:(1,2,3)与(1,2,1,2,3),但图中没有回路。
(2)一定:设两条路分别为),,,,,(211v x x x u L m =与),,,,,(212v y y y u L n =。
若对m i ≤≤1,n j ≤≤1有j i y x ≠,则),,,,,,,,,,(12121u y y y y v x x x u n n m -是一条回路。
否则假设l k y x =且是离u 最近地一对(即对k i ≤≤1,l j ≤≤1,不存在j i y x =),则),,,,,,,,,(12121v y y y x x x u l k -是一条回路。
2.设G 是简单图,)(G δ≥2,证明G 中存在长度大于或等于1)(+G δ地基本回路。
证:以图G 中一点v 1出发,与之相邻地点设为v 2,由于)(G δ≥2,则v 2至少还有一个邻接点,设为v 3,若v 3与v 1邻接,则形成长度为1)(+G δ地基本回路,则若v 3不与v 1邻接,则至少还有一个邻接点,设为v 4,若v 4与v 1或v 2邻接,则形成长度为大于或等于1)(+G δ地基本回路,若v 4与v 1与v 2都不邻接,至少还有一个邻接点,设为v 5,…,依次类推,一定可以到达最后一个顶点v i ,由于)(G δ≥2 ,则除了v i -1外,一定会与前面地某个顶点邻接,就会形成长度为大于或等于1)(+G δ地基本回路。
3.证明:若连通图G 不是完全图,则G 中存在三个点w v u ,, ,使E v u ∈)(, ,E w v ∈)(, ,E w u ∉)(,。
离散数学图论与关系中有图题目
图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。
Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。
例1 分别求右面两图的色数(1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。
(2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。
又因为此图的最大度()4G ∆=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤∆=,因而()4G χ=。
(对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ∆=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着色,每个图至少需要几种颜色。
答案:(1)()2G χ=;(2)()3G χ=;(3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T要放进贮藏室保管。
出于安全原因,下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B,4个结点、6个结点和8个结点的三次正则图(2)(1)(3)(2)(1)P-D, S-C ,S-D ,问贮藏这8种药品至少需要多少个房间?解 以8种药品作为结点,若两种药品不能贮在同一个室内,则它们之间有一条边,这样得右图,转化为图的正常着色问题。
离散数学第7章 图论 习题
1 0 1 10
A=
1 0 0 00
1 0 1 00
0 0 0 00 i=4时,因为A[4,2]=1,将第四行
用Warshall算法求可
加到第2行,A不变。
达性矩阵。
i=5时,因为A的第5列全为0,所
i=1时,因为A的第一行 以A不变。
0 0 0 00
全为0,所以A不变。
i=2时,因为A的第2列 全为0,所以A不变。
充分性。 如果边e不包含在G的任一条回路中,那么连接结点u和v的边只 有e,而不会有其它连接u和v的任何路。因为如果连接u和v还有 不同于边e的路,此路与边e就组成一条包含边e的回路,从而导 致矛盾。所以删去边e后,u和v就不连通,故边e是割边。
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
2
练习7-2(2):若无向图G中恰有两个奇数度的结点, 则这两个结点之间必有一条路。
证明:设无向图G中两个奇数度的结点为u和v。 从u开始构造一条迹,即从u出发经关联于结点u的边e1到达结点 u1,若deg(u1)为偶数,则必可由u1再经关联于结点u1的边e2到达结 点u2,如此继续下去,每边只取一次,直到另一个奇数度结点停止, 由于图G中只有两个奇数度结点,故该结点或是u或是v。如果是v, 那么从u到v的一条路就构造好了。如果仍是结点u,此路是闭迹。
第7章 习题课
离散数学第7章 图论 习题
1
练习7-1(6)简单图的最大度小于结点数。
证明:设简单图G中有n个结点。 任取一个结点v, 由已知G是简单图没有环和重边,
离散数学__图论的典型问题
第7章 图论的典型问题
在图7 ― 3中, (a)图的每个结点的度数都为4, 所以它是欧拉图;(b)图不是欧拉图。 但我们继续考察 (b)图可以发现, 该图中有一条路v2v3v4v5v2v1v5, 它经 过(b)图中的每条边一次且仅一次, 我们把这样的路称 为欧拉路。
第7章 图论的典型问题
图7 ― 11 例4用图
第7章 图论的典型问题
研究这个问题是十分有趣且有实用价值的。 但很 可惜, 至今没有找到一个很有效的算法。
当然我们可以用枚举法来解, 但是当完全图的结 点较多时, 枚举法的运算量在计算机上也很难实现。 下面介绍的“最邻近方法”给出了问题的近似解。 最 邻近方法的步骤如下:
第7章 图论的典型问题
例2 设一个旋转鼓的表面被分成24个部分, 如图7 - 6所示。 其中每一部分分别由导体或绝缘体构成, 图 中阴影部分表示导体, 空白部分表示绝缘体, 绝缘体 部分给出信号0,导体部分给出信号1。 根据鼓轮转动 后所处的位置, 4个触头a, b, c, d将获得一定的信 息。 图中所示的信息为1101, 若将鼓轮沿顺时针方向 旋转一格, 则4个触头a, b, c, d获得1010 。试问鼓 轮上16个部分怎样安排导体及绝缘体, 才能使鼓轮每 旋转一格后, 4 个触头得到的每组信息(共16组)均 不相同?这个问题也即为: 把16个二进制数字排成一 个环形, 使得4个依次相连的数字所组成的16个4位二 进制数均不相同。
第7章 图论的典型问题
如果β走遍了G的所有边, 那么我们就得到所希望 的一条欧拉回路。 如果不是这样, 那么在β上将有某 一结点B, 与它关联的一些边尚未被β走过(因G连 通)。 但是, 实际上, 因为β走过了与B关联的偶数 条边, 因此不属于β的与B关联的边也是偶数条。 对于 其他有未走过边所关联的所有结点来说, 上面的讨论 同样正确。 于是若设G1是G-β的包含点B的一个连通 分支, 则G1的结点全是偶度结点。
应用离散数学图论平面图及图的着色题库试卷习题及答案
§5.6 平面图与图地着色 习题5.61. 假定一个连通平面图有8个顶点,每个顶点地度数都为3。
请问,这个图地平面嵌入将平面分成多少个面?解 根据条件有8=p ,122/83=⨯=q ,从而根据欧拉定理有62=+-=p q f 。
2.设G 是具有k 个连通分图地)(q p ,平面图地一个平面嵌入,其面数为f ,证明:1+=+-k f g p解 下面用数学归纳法证明如下:(1)1=k 时即为欧拉公式,所以成立。
(2)假设m k ≤时公式成立。
(3)当1+=m 时,将图G 看成两个图1G 与2G 地并,其中1G 为一个连通分图, 2G 为其余m 个连通分图地并,根据上面地假设,对图1G 与2G 有:11111+=+-f q p ,1222+=+-m f q p ,将上两式相加得: 1)1()1()()(212121++=-+++-+m f f q q p p注意到图1G 与2G 共用一个外部面,我们即得1+=+-k f g p 。
3.假定一个)(q p ,图是连通地平面二部图,且p ≥3,则q ≤42-p 。
证;由于二部图中每个回路地长度都是偶数。
当p ≥3时,即每个面地围数至少是4。
据定理,2q ≥4f=4(2-p+q) 从而q ≤42-p 。
4.图5.42地4个图是平面图吗?如果是,给出一个平面嵌入;如果不是,找出与5K 或K 3,3同胚地子图。
图5.42 习题4地图解 图(1),(2),(4)改画如下:从而知图(1),(2)是可平面图,图(4)是5阶完全图5K ,从而是非可平面图。
图(3)也是一个非可平面图,可用库拉托斯基定理证明如下:5.一个简单图地交叉数是指在平面里画这个图且不允许任何三条边在同一点交叉时,各边交叉地最少次数。
求以下非平面图地交叉数:3,3K , 5K , 6K , 7K , 4,3K , 4,4K , 5,5K解:3,3K 地交叉次数是15K 地交叉次数是56K 地交叉次数是107K 地交叉次数是184,3K 地交叉次数是84,4K 地交叉次数是115,5K 地交叉次数是166.下面地算法可以用来为简单图点着色。
计算机科学与技术 离散数学 练习-第4部分 图论
1、一个7阶无向简单图,其结点的最大度数为()A、5B、6C、7D、82、设G为7阶无向简单图,下列命题成立的是()A、G的每个结点度数均为3B、G的每个结点度数均为5C、G的每个结点度数均为6D、G的每个结点度数均为73、由4个点3条边构成的无向简单图中,结点的最大度数为()A、1B、2C、3D、44、(多选题)下列度数列,可以简单图化的是()A、5,5,4,4,2,1B、5,5,4,1,1C、5,4,4,2,1D、5,4,3,2,2E、4,4,3,3,2,2F、4,3,2,1G、3,3,2,2,1,1H、3,3,3,1I、3,3,1,15、下列可作为4阶无向简单图的结点度数序列是()A、1,2,3,4B、0,2,2,3C、1,1,2,2D、1,3,3,38、下列关于图的命题正确的是()A、欧拉图都是哈密顿图B、哈密顿图都是欧拉图C、4阶以上的完全图都是欧拉图D、4阶以上的完全图都是哈密顿图9、下列关于欧拉图的描述正确的是()A、K4是欧拉图B、K5是欧拉图C、完全图都是欧拉图D、K6是欧拉图13、一棵无向树有5片树叶,3个2度结点,其余都是3度结点,这棵树的结点数是()A、10B、11C、12D、1314、G是有n个结点,m条边的连通图,要确定G的一棵生成树,必须删去G的多少条边()A、m-n+1B、m-nC、m+n+1D、n-m+115、一个n阶图不一定是树的是()A、无回路的连通图B、无回路且有n-1条边C、n阶连通图D、有n-1条边的连通图16、下列6阶无向树的度数序列,对应不止一棵同构树的是()A、1,1,1,1,2,4B、1,1,1,2,2,3C、1,1,2,2,2,2D、1,1,1,1,3,31、设5阶简单连通图G所有结点的度数之和为18,则G的结点的最大度数为_____,最小度数为______2、4阶完全图K4是平面图,其面数r为_____,记结点数为n,边数为m,则n-m+r=_______3、一个简单无向连通图,有n个结点,m条边,则边数m的最大值为_________,最小值为_______4、7阶无向简单图G,最多有________条边5、连通平面图G的每个面至少由5条边围成,则G的边数m与顶点数n满足的不等式关系为______________6、连通平面图G共有8个顶点,其平面表示中共有6个面,则边数为______7、如题的9阶无向图,需要添加边使其称为欧拉图,至少需要添加_____________和______________8、一棵n(n>2)阶无向树T,其最大度数⊿(T)的最小值为_____,最大值为________9、一棵7阶树T,其分支点最多有____个,最多有____片树叶10、无向完全图K8,需要删掉______条边才能得到生成树;无向完全图K9,需要删掉______条边才能得到生成树11、无向树有4个3度分支点,2个2度分支点,其余为树叶,则树叶数为______12、设无向树有8片树叶,1个4度分支点,其余都是3度分支点,则该树共有______个结点1、研究4阶完全图K4,判断其是否存在欧拉回路?是否存在哈密顿回路?如果存在,共有多少个非同构的回路?2、9阶无向图G中,每个结点的度数不是5就是6,证明:G中至少有5个6度结点或至少有6个5度结点。
离散数学考试试题及答案
离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。
离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。
下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。
1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。
答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。
答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。
答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。
答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。
答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。
答案:是永真式。
(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。
请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。
答案:是真命题。
4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。
《离散数学》图论部分习题
《离散数学》图论部分习题《离散数学》图论部分习题1.已知⽆向图G有12条边,6个3度顶点,其余顶点的度数均⼩于3,问G⾄少有⼏个顶点?并画出满⾜条件的⼀个图形. (24-3*6)/2 +6=92.是否存在7阶⽆向简单图G,其度序列为1、3、3、4、6、6、7.给出相应证明.不存在;7阶⽆向简单图G中最⼤度≤63.设d1、d2、…、d n为n个互不相同的正整数. 证明:不存在以d1、d2、…、d n为度序列的⽆向简单图.Max{d1,d2,…,dn}≥n,n阶⽆向简单图G中最⼤度≤n-14.求下图的补图.5.1)试画⼀个具有5个顶点的⾃补图2)是否存在具有6个顶点的⾃补图,试说明理由。
对于n阶图,原图与其补图同构,边数应相等,均为(n*(n-1)/2)/2,即n*(n-1)/4且为整数,n=4k或n=4k+1,不存在6阶⾃补图。
6.设图G为n(n>2且为奇数)阶⽆向简单图,证明:G与G的补图中奇度顶点个数相等.n(n>2且为奇数),奇度点成对出现7.⽆向图G中只有2个奇度顶点u和v,u与v是否⼀定连通.给出说明或证明。
只有2个奇度顶点u和v,如果不连通,在u和v在2个连通分⽀上,每个分⽀上仅有⼀个奇度顶点,与握⼿引理相⽭盾。
8.图G如下图所⽰:1)写出上图的⼀个⽣成⼦图.2)δ(G),κ(G),λ(G).δ(G)=2,κ(G)=1,λ(G)=2.说明:δ(G)=min{ d(v) | v V } ;κ(G)=min{ |V’| |V’是图G的点割集} ;λ(G)=min{ |E’| |E’是图G的边割集} 9.在什么条件下⽆向完全图K n为欧拉图?n为奇数时10.证明:有桥的图不是欧拉图.假设是欧拉图:桥的端点是u和v,并且图各顶点度均为偶数;桥为割边,删除桥,图不再连通,u和v应该在2各不同的连通分⽀上;且u和v度数变为奇数;由于其他顶点度数均为偶数,则u和v所在的连通分⽀上只有⼀个奇度顶点,与握⼿引理⽭盾。
离散数学经典考题难题
离散数学经典考题难题本文档旨在提供一些离散数学中的经典考题难题。
以下是一些具有挑战性的问题,旨在锻炼你的思维和解决问题的能力。
1. 图论问题问题:给定一个无向图G,图中有n个节点和m条边。
请计算图G 中的联通分量个数。
提示:可以使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来解决这个问题。
2. 命题逻辑问题问题:考虑以下命题逻辑公式:(P ∧ Q) ∨ ¬R。
请使用真值表的方法确定此命题逻辑公式的真假。
提示:可以通过创建真值表来逐个计算每个可能的命题真值,然后确定整个命题逻辑公式的真假。
3. 集合论问题问题:给定集合A和集合B,两个集合的基数分别为m和n,其中m < n。
请计算集合A的幂集和集合B的幂集的交集的基数。
提示:集合A的幂集包含所有A的子集,集合B的幂集包含所有B 的子集。
通过计算A和B的幂集的交集,可以确定交集的基数。
4. 组合数学问题问题:有10个人参加一场比赛,其中前三名可获得奖品。
请计算共有多少种可能的获奖方式。
提示:这是一个组合数学的问题,可以使用组合公式来计算不同的获奖方式的数量。
5. 图论问题问题:给定一个有向图G和两个节点A和B,图中的边表示节点之间的关系。
请确定是否存在一条从节点A到节点B的路径。
提示:可以使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来检查从节点A到节点B是否存在路径。
以上只是一些离散数学中的经典考题难题,希望能够对你的学习和思考有所帮助。
如果你有更多问题,可以随时向我提问。
4~离散数学习题解答习题六(第六章 图论)6
15.给出有向图如下所示:
1)求它的邻接矩阵A;
2)求A2,A3,A4,指出从v1到v4长度为1,2,3,4的路径各有几条?
3)求AT,ATA,AAT,说明ATA和AAT中元素(2,3)和(2,2)的意义;
4)求A(2),A(3),A(4)及可过矩陈R;
(v2)=v2′(v2,v3)=(v2′,v3′)
(v3)=v3′(v3,v4)=(v3′,v4′)
(v4)=v4′(v4,v5)=(v4′,v5′)
(v5)=v5′(v5,v6)=(v5′,v6′)
(v6)=v6′(v6,v1)=(v6′,v1′)
(v1,v4)=(v1′,v4′)
(v2,v5)=(v2′,v5′)
若存在着一个项点v∈V,使得deg(v)=0,则图G中各项点的度最大不超过n-2。因此n个项点的度在集合{0,1,2,…,n-2}里取值,而这个集合只有n-1个元素,因此,根据鸽笼原理,必有两个项点的度相同。
若不存在一个度为零的项点,则图G中各项点的度最大不超过n-1。因此n个项点的度在集合{1,2,…,n-1}中取值,这个集合只有n-1个元素,因此,根据鸽笼原理,必有两具项点的度相同。
m=m1+m2+…mk
=(n-1)· ·((n1-1)+(n2-1)+…+(nk-1))
= (n-1)((n1+n2+…+nk)-k)
= (n-1)(n-k)
≤ (n-1)(n-2) (k≥2)
这与已知M> (n-1)(n-2)矛盾。
因此假设错误,G是连通图。
11.设G=(V,E)是无向完全图(无自环),|V|=n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学图论与系中有图题目————————————————————————————————作者:————————————————————————————————日期:图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。
Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。
例1 分别求右面两图的色数(1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。
(2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。
又因为此图的最大度()4G ∆=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤∆=,因而()4G χ=。
(对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ∆=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着色,每个图至少需要几种颜色。
答案:(1)()2G χ=;(2)()3G χ=;(3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T要放进贮藏室保管。
出于安全原因,下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B,4个结点、6个结点和8个结点的三次正则图(2)(1)(3)(2)(1)P-D, S-C ,S-D ,问贮藏这8种药品至少需要多少个房间?解 以8种药品作为结点,若两种药品不能贮在同一个室内,则它们之间有一条边,这样得右图,转化为图的正常着色问题。
(1)对各结点按度数的递减顺序排列为SRDPCTAB ;(2)对S 及不与之相邻点A ,B 着1c 色;(3)对R 及不与之相邻点D 着2c 色;(4)对P 和C 着3c 色。
故着色数()3G χ≤;又因为因S,D,P 为3K 子图,故着色数()3G χ≥,从而()3G χ=。
因此贮藏这8种药品至少需要3个房间。
贮藏方式之一为SAB, RDT, PC 。
(考试排考或老师排课让选修的学生避免冲突的问题类似处理!)二、强连通一定单向连通,单向连通一定弱连通!强连通图强连通图强连通图单向连通图单向连通图弱连通图弱连通图、单向连通图和强连通图三、均不是哈密顿图哈密顿图欧拉图欧拉图同构的有向图同构的无向图1、设G 为无向欧拉图,求G 中一条欧拉回路的Fleury 算法如下:第1步,任取G 中的一SR D P CT B A AB TC P DR S K 1K 2K 3K 9K 7K 4K 8K 5K 6J 1B 1B 3J 2B 4B 2J 3B 5J 4个结点0v ,令00P v =;第2步,假设0112i i i P v e v e v e =L 已选好,按下面方法从{}12,,,i E e e e -L 中选1i e +:(1)1i e +与i e 相关联,(2)除非无别的边可供选择,否则1i e +不应该是{}12,,,i i G G e e e =-L 的断边;第3步,当第2步不能执行时,算法停止。
(有向欧拉图的欧拉回路可类似求出,可用于解决邮路问题)邮路问题用图论的概念描述如下:在一个带权图G 中,怎样找到一条回路C ,使得C 包含G 中的每一条边至少一次,而且回路C 具有最小权。
C 分以下三种情况:(1)如果G 是欧拉图,必定有欧拉回路,C 即可找到;(2)如果G 是具有从i v 到j v 的欧拉通路的半欧拉图,C 的构造如下:找到从i v 到j v 的欧拉通路及i v 到j v 的最小权通路(即最短路径)--这两条通路和并在一起就是最小权回路;(3)如果G 不是半欧拉图,一般说来,G 中包含多条边的回路,其中夫的边数与奇数结点数目有关,若奇数结点多于2,则回路中会出现更多的重复的边。
问题是怎样使重复边的权综合最小。
在理论上已证明:一条包括G 的所有边的回路C 具有最小权当且仅当:(1,每条边最多重复一次,(2,在G 的每个回路上,有重复边的权之和小于回路权的一半。
例:求右图所示的带权图中最优投递路线,邮局在D 点。
解 先观察奇度结点,此图中有E,F 两个。
用标号法求出其间最短路径EGF ,其权为28。
然后将最短路径上的边重复一次,于是得欧拉图*G ,求从D 出的一条欧拉回路,如DEGFGEBACBDCFD ,其权为281=35+8+20+20+8+40+50+30+19+6+12+10+23。
2、求接近最小权哈密顿回路的“最邻近”算法:设,,G V E W =<>是有n 个顶点的无向完全图,(1)任取0v V ∈作为始点,令L 为0v ,0k =;(2)令()(){},min ,k k w v x w v v v L =不在中,置1k v x +=。
置011,1k L v v v k k +==+L ;(3)若1k n <-,转(2);(4)置010k L v v v v =L ,结束。
(可近似解决货郎担问题) 例1 用最邻近算法求下图的最短哈密尔顿回路。
105566148714abcd e147655edcb a107865edcba所得长度为14+6+5+5+7=37,与最短7+8+5+10+6=36很接近了!10408202335126193050AB CFEGD例2 求下图的最短哈密尔顿回路。
1112141018147101112187ad cbad cbadcb三条比较,最小权为47。
例3 已知A,B,C,D,E,F,G7个人中,A 会讲英语,B 会讲英语和汉语,C 会讲英语、意大利语和俄语,D 会讲日语和汉语,E 会讲意大利语和德语,F 会讲俄语,G 会讲俄语、日语和法语。
能否将他们的座位安排在圆桌旁,使得每个人都能与他身边的人交谈? (按哈密尔顿回路安排就是了!)例4 11个学生要共进晚餐,他们将坐成一个圆桌,计划要求每次晚餐上每个学生有完全不同的邻座,这样能攻进晚餐几天?(11K 共有()11111552-=条边,每条哈密尔顿回路有11条边,因而共有5条没有公共边的哈密尔顿回路,可吃5天!分别用2,3,4,5与11互素,以它们为步长能找到!) 半哈密顿图与哈密顿图补例:补充内容:设G 是无向完全图,若对G 的每条边指定一个方向,所得的图称为竞赛图。
证明:在无又向回路(或有向圈)的竞赛图()(),D V D E D =<>中,对任意()()(),,u v V D du d v ++∈≠(用反证法,见于《离散数学习题与解析》胡辛启清华第2版)可以证明:对于每个竞赛图D ,至多改变一条边的方向后就可以变成哈密尔顿图。
四、求最小生成树 1、破圈法过程演示(1)令E E '=;(2)选取E '中的一条简单回路C, 设C 中权最大的边为e ,令{}E E e ''=-;(3)重复步骤(2), 直到1E V '=-为止。
10714181211bcd aA B C FG ED 1092468135711彼德森图题目108765431119122 最后结果29135688653111922911135681010876531119229111345678102、Kruskal 算法过程演示(1)首先将边按权值由小到大排成序列S, 令1,{[1]}i E S '==;(2)令1,i i =+选取边[]S i 与E '中的边不构成简单回路,则令{[]}E E S i ''=U ;(3)重复步骤(2), 直到1E V '=-为止。
8213566531253123121213、Prim 算法过程演示(1)从V 中任意选取结点0v ,令0{}V v '=;(2)在V '与V V '-之间选一条权最小的边(,)i j e v v =,其中,i j v V v V V ''∈∈-并且令{},{}j E E e V V v ''''==U U ;(3)重复步骤(2),直到V V '=为止。
8653192853192851928519859899增加破圈法一例演示:1253345216125433452716618725434、求下列最小生成树的权值24231C(T)=1+2+3=656413312C(T)=1+2+3+1=72015317232836916841C(T)=1+3+4+8+9+23=4897638105421C(T)=1+2+3+5+7=18716681231361717C(T)=3+6+6+7=226816613491157C(T)=4+5+6+7=2267108323121154910v 2v 3v 4v 1v 5v 6v 7C(T)=2+3+4+5+6+10=30233476510021C(T)=2+2+3+5+6+100=1182015121098874C(T)=8+9+4+7=285576412331C(T)=1+3+3+2+1=1081612949785555879491216812663354455445336621C(T)=1+2+3+5+7=18102457893611111163987542105、在右图所示的带权图中,共有多少棵生成树,他们的权各为多少?,其中哪些是图中的最小生成树?43221adcb五、求最优二叉树对给定的实数序列12t w w w ≤≤≤L ,构造最优r 元树的递归算法:1、求最优二元树的Huffman 算法:第一步,连接以12,w w 为权的两片树叶,得一个分支点及其所带的权12w w +;第二步,在123,,,t w w w w +L 中选出两个最小的权,连接它们对应的结点(不一定都是树叶),又得分支结点及其所带的权;重复第二步,直到形成1t -个分支点,t 片树叶为止。