6 完全平方公式 教案 表格版 (2)

合集下载

《完全平方公式》第二课时参考教案

《完全平方公式》第二课时参考教案

《完全平方公式》第二课时参考教案第一篇:《完全平方公式》第二课时参考教案1.8 完全平方公式(二)●教学目标(一)教学知识点1.通过有趣的分糖情景,使学生进一步巩固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.2.运用完全平方公式进行一些有关数的简便运算.3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.(二)能力训练要求1.在进一步巩固完全平方公式同时,体会符号运算对解决问题的作用.2.进一步熟练乘法公式,提高最基本的运算技能,并且明白每一步的算理.(三)情感与价值观要求1.鼓励学生算法多样化,提高学生合作交流意识和创新精神.2.从有趣的分糖游戏中,提高学习数学的兴趣.●教学重点1.巩固完全平方公式,区分(a+b)2与a2+b2的关系.2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.●教学难点1.区分(a+b)2与a2+b2的关系.2.熟练乘法公式的运用,体会公式中字母a、b的广泛含义.●教学方法活动探究法.●教具准备投影片四张第一张:提出问题,记作(§1.8.2 A)第二张:分糖游戏,记作(§1.8.2 B)第三张:例2,记作(§1.8.2 C)第四张:例3,记作(§1.8.2 D)●教学过程/ 7Ⅰ.创设情景,引入新课[师]上节课我们推导出了完全平方公式,现在我们来看一个问题:出示投影片(§1.8.2 A)一个正方形的边长为a厘米,减少2厘米后,这个正方形的面积减少了多少厘米2?[生]原来正方形的面积为a2平方厘米,边长减少2厘米后的正方形的面积为(a-2)2平方厘米,所以这个正方形的面积减少了a2-(a -2)2平方厘米,因为a2-(a-2)2=a2-(a2-4a+4)=a2-a2+4a-4=4a-4,所以面积减少了(4a-4)平方厘米.[师]很好!这节课我们继续巩固完全平方公式.Ⅱ.讲授新课[师]下面我们来做一个“分糖游戏”.出示投影片(§1.8.2 B)一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一块去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?[生]根据题意,可知第一天有a个男孩去了老人家,老人给每个孩子发a块糖,所以一共发了a2块糖.第二天有b个女孩去了老人家,老人给每个孩子发b块糖,所以一共发了b2块糖.第三天有(a+b)个孩子去了老人家,老人给每个孩子发(a+b)块糖,所以一共发了(a+b)2块糖.[生]前两天他们得到的糖果总数是(a2+b2)块,因为(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.由于a>0,b>0,所以2ab>0.2 / 7由此可知这些孩子第三天得到的糖果数比前两天他们得到的糖果总数要多,多2ab块糖果.[师]为什么会多出2ab块糖果呢?同学们可分组讨论多出2ab块糖的原因.(老师可参与到学生的讨论,撞击他们思想的火花)[生]对于a个男孩来说,每个男孩第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.[师]不错!而这个游戏又充分说明了(a+b)2与a2+b2的关系,即(a+b)2≠a2+b2.下面我们再来看一个例题,你会有更多的发现.出示投影片(§1.8.2 C)[例2]利用完全平方公式计算:(1)1022;(2)1972.如果直接计算1022,1972会很繁.根据题目的提示使我们想到1022可以写成(100+2)2,1972可以写成(200-3)2,这样计算起来会简单的多,我们不妨试一试.[生]解:(1)1022=(100+2)2=1002+2×2×100+22=10000+400+4=10404.(2)1972=(200-3)2=2002-2×3×200+32=40000-1200+9=38809 [师]我们可以发现运用完全平方公式进行一些有关数的运算会很简便,也更进一步体会到符号运算对解决问题的作用.下面我们再来看一个例题(出示投影片§1.8.2 D)[例3]计算:(1)(x+3)2-x2;(2)(a+b+3)(a+b-3);(3)(x+5)2-(x-2)(x-3).分析:(1)题可用完全平方公式计算,也可以逆用平方差公式计算;(2)题虽然每个因式含有三项,但可以利用加法的结合律整理成能用平方差公式计算的多项式相乘的形式;(3)题要注意运算顺序,减号后面的积算出来一定先放在括号里,然后再去括号,就可以避免符号上面出错.注意要为学生提供充分交流的机/ 7会.解:(1)方法一:(x+3)2-x2 =x2+6x+9-x2——运用完全平方公式 =6x+9 方法二:(x+3)2-x2=[(x+3)+x][(x+3)-x]——逆用平方差公式=(2x+3)×3 =6x+9(2)(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32 =a2+2ab+b2-9(3)(x+5)2-(x-2)(x-3)=x2+10x+25-(x2-5x+6)=x2+10x+25-x2+5x-6 =15x+19 [例4]已知x+y=8,xy=12,求x2+y2的值.分析:由完全平方公式(x+y)2=x2+2xy+y2,可知x2+y2=(x+y)2-2xy,故可将x+y=8,xy=12整体代入求值.解:x2+y2=(x+y)2-2xy 把x+y=8,xy=12代入上式,原式=82-2×12=64-24=40 Ⅲ.随堂练习1.(课本P45)利用整式乘法公式计算:(1)962(2)(a-b-3)(a-b+3)解:(1)962=(100-4)2 =10000-800+16=9216(2)(a-b-3)(a-b+3)=[(a-b)-3][(a-b)+3]/ 7=(a-b)2-32=a2-2ab+b2-9 2.试一试,计算:(a+b)3分析:利用转化的思想和逆用同底数幂的乘法得(a+b)3=(a+b)2·(a+b),可以使运算简便.解:(a+b)3=(a+b)2·(a+b)=(a2+2ab+b2)(a+b)=a3+a2b+2ab2+2a2b+ab2+b3 =a3+3a2b+3ab2+b3 3.已知x+1=2,求x2+xx1x2x的值.解:由x+1=2,得(x+1)2=4.x2+2+1x2=4.所以x2+1x2=4-2=2.Ⅳ.课时小结[师]一节课在紧张而又活泼的气氛中度过了,你有何收获和体会,不妨和大家共享.[生]在有趣的分糖情景中,不仅巩固了完全平方公式,而且更进一步理解了(a+b)2与a2+b2的关系.[生]通过实例,我更进一步体会到完全平方公式中的字母a,b的含义是很广泛的,它可以是数,也可以是整式.…… Ⅴ.课后作业1.课本P45,习题1.14.Ⅵ.活动与探究Λ9×999Λ9+199Λ9 化简9991424314243123n个n个n个[过程]当n=1时,9×9+19=102 当n=2时,99×99+199=104 当n=3时,999×999+1999=106 ……于是猜想:原式=102n/ 7[结果]原式=(10n-1)(10n-1)+(2×10n-1)=(10n-1)2+2×10n-1 =102n-2×10n+1+2×10n-1 =102n ●板书设计§1.8.2 完全平方公式(二)一、糖果游戏(1)a2(2)b2(3)(a+b)2(4)(a+b)2的总数较多,多2ab.结果:(a+b)2≠a2+b2二、例题讲解例2.利用完全平方公式计算(1)1022(2)1972 例3.计算:(1)(x+3)2-x2(2)(a+b+3)(a+b-3)(3)(x+5)2-(x-2)(x-3)●备课资料参考练习1.选择题(1)下列等式成立的是()A、(a-b)2=a2-ab+b2 B、(a+3b)2=a2+9b2 C、(a+b)2=a2+2ab+b2 D、(x+9)(x-9)=x2-9(2)(a+3b)-(3a+b)计算结果是()A.8(a-b)2 B.8(a+b)2 C.8b2-8a2 D.8a2-8b2(3)(5x2-4y2)(-5x2+4y2)运算的结果是()A.-25x4-16y4 B.-25x4+40x2y2-16y4 C.25x4-16y2 D.25x4-40x2y2+16y4(4)运算结果为x4y2-2x2y+1的是()/ 72A.(x2y2-1)2 B.(x2y+1)2 C.(x2y-1)2 D.(-x2y-1)2 2.填空题(1)(4a-b2)2=.(2)(-1m-1)22=.(3)(m+n+1)(1-m-n)=.(4)(7a+A)2=49a2-14ab2+B,则A= ,B=.(5)(a+2b)2-=(a-2b)2.3.用乘法公式计算:(1)9992;(2)20022-4004×2003+20032.4.已知,a+b=8,ab=24.求12(a2+b2)的值.5.已知x+1=4,求证x2+ 1xx2.6.已知:x2-2x+y2+6y+10=0,求x+y的值.答案:1.(1)C(2)C(3)B(4)C 2.(1)16a2-8ab2+b4(2)1m24+m+1(3)1-m2-2mn-n2(4)-b2 b4(5)8ab 3.(1)998001(2)1 4.8 5.14 6.-2 7 / 7 第二篇:完全平方公式教案学习周报专业辅导学生学习完全平方公式在代数、几何中的两点运用完全平方公式是中学阶段运用较为广泛的一个公式.除了在一般计算过程中直接运用完全平方公式外,在一些代数、几何问题中,还会利用其进行解题,这也是各年中考中的一个必考知识点.另外,在公式的一些使用过程中,还结合了整体思考的数学思想,同时还对学生的逆向思维提出一定要求.主要体现在以下两个方面.一、利用完全平方公式结合整体转化思想求代数式的值.有一类例1 已知a2+b2=1,a-b=分析:要求(a+b)4,直接求12,求(a+b)4的值.a,的值有一定的困难,因而可利用整体思想,设法求出(a+b)2,结合题目条件a2+b2=1,只需求出ab值.解:把a-b=a-2ab+b2212=两边同时平方,得34又因为a2+b2=1,所以2ab=a+2ab+b4222=1+491634 即(a+b)=74所以(a+b)=.22例3 已知x-3x+1=0,求(1)x+1x2;(2)x+1x41x4.分析:观察所求代数式的特征,x+21x2可由x+1x平方后整理得到.因而解题的关2键在于利用题目条件x-3x+1=0求出代数式x+的值.此处,再次利用了整体思考的数学思想.解:把x-3x+1=0两边同时除以x,得x-3+1x=0,即x+1x=3.2把x+21x=3两边同时平方,得1x+1x2x+2⋅x⋅=9,即 x+21x2=7学习周报专业辅导学生学习再把x2+421x2=7两边同时平方,得1x2x+2⋅x⋅+1x21x4=49,即x+441x144=47.=47.所以(1)x2+(2)x+=7;x二、利用完全平方式判断三角形形状例4 已知三角形的三边a,b,c满足a2+b2+c2-ab-ac-bc=0,请你判断这个三角形是什么三角形.分析:判断形状的三角形一般都是特殊三角形,而进行判断的关键是分析角或边的关系.本题所给的条件和边有关,因而可把目标定为证明边相等,即证明等腰或等边三角形.结合条件的形式,联想到完全平方式的非负性,从而可利用完全平方公式进行证明.解:由a2+b2+c2-ab-ac-bc=0两边同时乘以2,整理可得(a2-2ab+b22)+(a2-2ac+c22)+(b2-2bc+c2)=0所以(a-b)+(a-c)+(b-c)=02因为(a-b)≥0,(a-c)≥0,(b-c)≥0 222所以(a-b)=0,(a-c)=0,(b-c)=0 222所以a=b,a=c,b=c 即a=b=c.所以这个三角形是等边三角形.例5 已知a,b,c是∆ABC的三边长,且a+2b+c-2b(a+c)=0,判断∆ABC222的形状.分析:与例4相类似,也是利用完全平方公式将条件进行变形,从而得出三角形三边的关系.解:由a+2b+c-2b(a+c)=0变形,得 222(a2-2ab+b22)+(b2-2bc+c2)=02所以(a-b)+(b-c)=0因为(a-b)≥0,(b-c)≥0 学习周报专业辅导学生学习所以(a-b)=0,(b-c)=0 22所以a=b,b=c 即a=b=c 所以∆ABC是等边三角形第三篇:完全平方公式教案人教新课标八年级上15.2完全平方公式表格式教案一、复习旧知探究,计算下列各式,你能发现什么规律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知1.计算:(a+b)2 和(a-b)2 ;并说明发现的规律。

数学教案-完全平方公式(教案)

数学教案-完全平方公式(教案)

数学教案-完全平方公式(教案)教案概述主题:完全平方公式年级:高中数学课时:1课时教学目标: 1. 理解完全平方公式的概念和原理; 2. 掌握应用完全平方公式解决相关数学问题的方法; 3. 培养学生的逻辑思维和解决问题的能力。

教学重点:理解和运用完全平方公式解决问题。

教学难点:将实际问题转化为代数表达式,运用完全平方公式求解。

教学准备: 1. 教师准备: - 多媒体设备及教学软件; - 针对完全平方公式的教学演示素材; - 教案和课件。

2.学生准备:–课前自主学习相关概念和知识点;–准备笔记和纸张。

教学步骤步骤一:导入新知(5分钟)1.教师通过简单的问题导入完全平方公式的概念:–“通过以下例子,找出一个规律:(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2你能发现什么?”2.学生应思考并提出完全平方公式的一般形式:–“我们是否能总结出一般的表达式呢?”–学生回答后,教师予以确认和解释。

步骤二:讲解与演示(20分钟)1.教师通过多媒体展示完全平方公式的推导过程:–通过展示展示两个公式的推导过程,解释完全平方公式的由来和原理。

2.教师演示如何应用完全平方公式求解具体问题:–通过展示几个简单的数学问题,运用完全平方公式进行求解。

–强调思维和方法,并给予学生提示和指导。

步骤三:学生合作与练习(30分钟)1.学生分成小组合作,解决一系列练习题:–给出一些实际问题,要求学生将其转化为代数表达式,并运用完全平方公式求解。

–鼓励学生积极讨论和分享解题思路。

2.教师巡视并指导学生的合作与练习:–教师及时指正学生的错误,引导学生正确运用完全平方公式。

步骤四:学生展示与总结(15分钟)1.学生代表小组进行问题展示和解答:–学生依次展示他们的问题和解题步骤,其他学生对其提问和评价。

–教师在学生展示结束后提出问题或改进意见。

2.教师总结完全平方公式的应用以及解题思路:–总结完全平方公式的具体用途和解题方法。

完全平方公式优秀教案

完全平方公式优秀教案

完全平方公式优秀教案
一、教学目标
1、认识完全平方公式的概念;
2、掌握完全平方公式的使用;
3、正确应用完全平方公式解方程组。

二、教学准备
1、讲义;
2、黑板、白板;
3、实验用草稿纸和毛笔。

三、教学过程
(1)板书讲解:
(a)完全平方公式的定义:一元二次方程的完全平方公式有三种形式,分别为:
ax2 + bx + c = 0;
x2 + bx = c;
x2 + c = 0;
其中a、b、c为实数,且b2 - 4ac ≥ 0。

(b)完全平方公式的求解:
① 将二次方程化为完全平方公式;
②利用完全平方公式将问题分解为两个相等的完全平方;
③ 把每一个完全平方分解为两个和式;
④ 将每个和式求出根,最后得到结果。

(2)解题演示:
接下来,我就利用以上四步法来解一道完全平方公式的方程组。

让我们来看看方程:x2 + 2x = 8。

解:
① 将二次方程化为完全平方式:
x2 + 2x = 8
② 利用完全平方公式将问题分解为两个相等的完全平方:
x2 + 2x = 8
(x + 1)2 = 9
③ 把每一个完全平方分解为两个和式:
x + 1 = 3
x + 1 = -3
④ 将每个和式求出根,最后得到结果:
x = 2, -4 。

(3)习题训练:
最后,进行习题训练,教师根据学生的实际上课情况,提供适量的习题。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。

引导学生通过实际例子发现完全平方公式的规律。

1.2 教学内容完全平方公式的定义和表达式。

完全平方公式的推导和证明。

1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。

1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。

观察学生在练习中的表现,及时给予指导和帮助。

第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。

引导学生通过证明理解完全平方公式的正确性。

2.2 教学内容完全平方公式的推导方法。

完全平方公式的证明过程。

2.3 教学方法使用图表和动画演示完全平方公式的推导过程。

引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。

2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。

观察学生在证明过程中的思路和推理是否清晰。

第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。

引导学生通过完全平方公式简化计算过程。

3.2 教学内容完全平方公式在实际问题中的应用。

完全平方公式在简化计算过程中的作用。

3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。

使用图表和动画演示完全平方公式在计算过程中的应用。

3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。

观察学生在解题过程中的思路和计算是否准确。

第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。

引导学生通过完全平方公式的扩展形式解决更复杂的问题。

4.2 教学内容完全平方公式的扩展形式。

完全平方公式的扩展形式在解决问题中的应用。

4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。

使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。

4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。

2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。

3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。

二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。

2. 教学难点:运用完全平方公式进行整式的乘法运算。

三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。

2. 知识讲解:讲解完全平方公式的推导过程和结构特点。

(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。

3. 练习环节:学生进行练习,教师进行个别指导。

4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。

5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。

五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。

在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。

不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2

2024北师大版数学七年级下册1.6.2《完全平方公式》教案2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1章第6节的内容,本节课主要让学生掌握完全平方公式的概念和运用。

完全平方公式是初中数学中的一个重要概念,也是解决二次方程和二次不等式问题的关键。

通过对完全平方公式的学习,学生可以更好地理解和运用二次方程和二次不等式,为后续的学习打下基础。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、完全平方数等知识,对于二次方程和二次不等式有一定的了解。

但学生对于完全平方公式的理解和运用还不够熟练,需要通过本节课的学习来进一步掌握。

三. 教学目标1.让学生理解完全平方公式的概念,掌握完全平方公式的运用。

2.培养学生解决二次方程和二次不等式的能力。

3.培养学生合作学习、积极思考的能力。

四. 教学重难点1.完全平方公式的概念和运用。

2.解决二次方程和二次不等式。

五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式。

2.采用案例分析法,让学生通过具体案例理解完全平方公式的运用。

3.采用小组合作学习,培养学生合作学习的能力。

六. 教学准备1.PPT课件2.相关案例和练习题3.笔记本和文具七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的完全平方现象,如正方形的面积公式等,引导学生对完全平方公式产生兴趣,激发学生的学习热情。

2.呈现(10分钟)通过PPT课件,呈现完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。

3.操练(10分钟)让学生通过PPT上的练习题,运用完全平方公式进行计算,巩固对完全平方公式的理解和运用。

4.巩固(10分钟)让学生分组讨论,总结完全平方公式的运用方法和注意事项,加深对完全平方公式的理解和运用。

5.拓展(10分钟)通过PPT上的案例分析,让学生运用完全平方公式解决实际问题,提高学生解决二次方程和二次不等式的能力。

6.小结(5分钟)让学生对自己在本节课中学到的知识进行总结,提高学生的自我学习能力。

公开课教案2(完全平方公式)-精品

公开课教案2(完全平方公式)-精品

公开课教案2(完全平方公式)-精品2020-12-12【关键字】方法、难点、公开、开拓、提升、发展、特点、思想、精神、基础、重点、能力、方式、结构、激发、鼓励、创新、提高、规范教学目标(一)教学知识点完全平方公式的推导及其应用。

完全平方公式的几何解释。

(二)能力训练要求经历探索完全平方公式的过程,进一步发展符号感和推理能力。

(三)情感与价值观要求在灵活应用公式的过程中激发学习数学的兴趣,培养创新能力和探索精神。

重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.难点:理解完全平方公式的结构特征并能灵活应用公式进行计算.教学准备教师:多媒体课件边长分别为a,b的两个正方形纸片和两个一边为a,一边为b 的矩形纸片。

学生:边长分别为a,b的两个正方形纸片和两个一边为a,一边为b的矩形纸片。

教学过程一、探究1、以小组为单位,能用下列四个图形拼合成一个正方形吗?如果能,正方形的面积有几种表达方式?两种表达方式得到(a+b)2=a2+2ab+b2如果上面四个图形中去掉边长为b的小正方形,按如下方式摆放,图中的阴影部分是正方形吗?如果是,它的面积又有几种表达方式?学生讨论后得到两种表达方式,得到(a-b)2=a2-2ab+b22、利用多项式乘以多项式计算(a+b)2、(a- b)2 看得到的结果与前面得到的结果是否相同?(学生独立完成)3、结论由图形和多项式乘以多项式都可以得到(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2(体现了数形结合的数学思想)二、(乘法的)完全平方公式1、数学表达(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2这两个等式在数学中有广泛的应用,所以作为公式来使用,因为左边是完全平方的形式,所以被称为(乘法的)完全平方公式。

2、公式的结构特征(由学生讨论后得出)(1)左边是一个二项式的完全平方(2)右边的积有三项,其中两项是左边二项式中两项的平方和,另一项是左边二项式中两项乘积的两倍(3)字母a,b可以代表数字,也可以代表单项式、多项式。

完全平方公式教案

完全平方公式教案

完全平方公式教案教案-完全平方公式目标: 学生能够理解、应用和解决基于完全平方公式的数学问题。

学习目标:- 理解完全平方公式- 学会使用完全平方公式解决问题- 运用完全平方公式找出给定数值的完全平方根教学过程:1. 引入: 激发学生对完全平方公式的兴趣- 在黑板上写下一个完全平方数,例如16。

- 询问学生是否知道这个数的平方根是多少。

- 引导学生通过计算或者试探的方法得出答案。

- 介绍完全平方公式可以方便地计算这个问题。

2. 解释完全平方公式- 在黑板上写下完全平方公式的表达式: (a + b)^2 = a^2 + 2ab + b^2- 解释各个符号的含义,如(a,b为实数)- 与学生一起通过展开和整理推导出完全平方公式,并解释每一步的原因。

3. 解决问题的例子- 给出一段话或问题,例如:如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?- 将问题转换成使用完全平方公式进行计算的形式,即求6的平方。

- 学生独立计算,并得出面积36平方厘米的答案。

- 提醒学生平方根可以使用完全平方公式进行计算。

4. 复习和巩固- 设计一些练习题让学生练习使用完全平方公式解决问题。

- 给出关于面积、边长、数量等方面的问题。

- 鼓励学生尝试不同的方法,包括使用完全平方公式和其他数学知识进行计算。

5. 总结- 确保学生对完全平方公式有了充分的理解。

- 强调完全平方公式在数学中的应用和重要性。

- 激发学生继续探索数学知识的兴趣。

评估:- 观察学生在课堂上解决问题的能力。

- 检查学生使用完全平方公式解决问题的准确性。

拓展:- 鼓励学生应用完全平方公式解决更复杂的问题。

- 引导学生通过解决实际问题来进一步巩固和应用完全平方公式。

- 探讨其他与完全平方公式相关的数学概念,如二次方程和因式分解。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案教案主题:完全平方公式的教学教学目标:1.理解完全平方的概念;2.掌握完全平方公式的运用;3.能够解决与完全平方公式相关的问题。

教学内容:1.完全平方的概念;2.完全平方公式的推导与运用;3.完全平方公式的应用。

教学步骤:一、导入(10分钟)1.引导学生回忆平方根的概念,并通过例子解释完全平方的概念。

2.提问:什么是完全平方?请举例说明。

二、概念讲解(15分钟)1.介绍完全平方公式的概念和用途。

2.解释完全平方公式的推导过程,通过几个例子说明。

三、公式推导(20分钟)1.运用代数运算的基础知识,推导完全平方公式。

2.解释推导过程中的每一步骤和思路,确保学生理解。

四、公式运用(20分钟)1.通过例题演示完全平方公式的运用。

2.引导学生思考并解答完全平方公式相关的问题。

五、练习与巩固(15分钟)1.分发练习题,让学生独立完成。

2.收集学生的答案,并进行讲解和讨论。

六、拓展与应用(15分钟)1.提供一些拓展问题,让学生运用完全平方公式解决实际问题。

2.引导学生思考其他与完全平方公式相关的数学问题。

七、小结与反思(10分钟)1.回顾本节课的主要内容和学习收获。

2.引导学生思考和总结完全平方公式的重要性和应用价值。

教学资源:1.幻灯片或黑板;2.教材和练习题。

教学评估:1.教师观察学生在课堂上的参与和回答问题的表现;2.课后布置练习题,检查学生对完全平方公式的掌握程度;3.对学生的作业进行批改和评价。

教学反思:本节课通过引导学生回忆和理解平方根的概念,引出了完全平方的概念,并通过推导完全平方公式的过程,让学生理解完全平方公式的运用。

教学过程中,教师使用了多种教学方法,例如提问、讲解、演示等,以提高学生的学习兴趣和参与度。

通过课堂练习和拓展问题,学生能够更好地巩固和应用所学的知识。

在教学评估中,可以及时发现学生的问题和困难,以便进行针对性的辅导和指导。

整体来说,本节课的教学效果良好。

完全平方公式教案

完全平方公式教案

完全平方公式教案完全平方公式教案一、引言完全平方公式是数学中的一个重要概念,它在解决二次方程和展开二次多项式等问题中起着关键作用。

本文将介绍一份完全平方公式的教案,旨在帮助学生更好地理解和运用这一公式。

二、教学目标1. 理解完全平方公式的概念和含义;2. 掌握完全平方公式的推导过程;3. 能够运用完全平方公式解决实际问题。

三、教学内容1. 完全平方公式的定义完全平方公式是指一个二次多项式可以被写成两个平方项的和的形式。

即:(a+b)² = a² + 2ab + b²。

2. 完全平方公式的推导过程为了帮助学生理解完全平方公式的推导过程,可以通过几何图形的方法进行讲解。

首先,画一个边长为a的正方形,然后在每条边上加上长度为b的小正方形。

这样,整个图形的面积就是(a+b)²。

接下来,可以将这个图形分解成一个边长为a的正方形、两个边长为a的长方形和一个边长为b的正方形。

这样,整个图形的面积就可以表示为a² + 2ab + b²。

通过这个几何图形的分解过程,就可以得到完全平方公式。

3. 完全平方公式的运用完全平方公式在解决二次方程和展开二次多项式的问题中起着关键作用。

例如,当我们需要解决一个形如x² + 2ax + a² = 0的二次方程时,可以利用完全平方公式将其转化为(x + a)² = 0的形式,进而得到x = -a。

此外,在展开二次多项式的过程中,完全平方公式也可以起到简化计算的作用。

四、教学方法1. 演示法:通过几何图形的演示,让学生直观地理解完全平方公式的推导过程。

2. 举例法:通过实际问题的举例,让学生运用完全平方公式解决问题,加深对公式的理解和掌握。

五、教学步骤1. 引入完全平方公式的概念,向学生解释公式的含义和作用。

2. 通过几何图形的演示,让学生理解完全平方公式的推导过程。

3. 给学生提供一些实际问题,引导他们运用完全平方公式解决问题。

完全平方公式教案设计

完全平方公式教案设计

完全平方公式是小学数学中一个重要的知识点,也是解决二次方程的一个关键方法之一。

因此,在小学数学教学中,教师需要对完全平方公式进行深入浅出的讲解,使学生能够掌握这个知识点,为以后的数学学习打下坚实的基础。

本篇文章将从以下几个方面来讲解完全平方公式教案设计:一、教材分析完全平方公式是小学数学中的一个重要知识点,通常出现在六年级下学期数学教材中。

总体而言,这个知识点分为两个部分:一是完全平方公式的公式说明,二是应用完全平方公式解题。

在公式说明部分,教材通常会给出完全平方公式的具体形式,即(a+b)^2=a^2+2ab+b^2。

同时还会通过例题的形式,让学生模仿计算、比较东西数量等概念,进一步理解完全平方公式的具体应用。

在应用完全平方公式解题的部分,教材通常会以一些常见的数学问题为例,让学生通过运用完全平方公式来解决这些问题,帮助学生更好地掌握这个知识点。

二、教学目标1、知识目标:掌握完全平方公式的定义和公式推导过程,能够准确使用完全平方公式进行数学计算。

2、能力目标:培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力和计算能力。

3、情感目标:激发学生对数学学习的兴趣和热情,培养学生自主学习的能力,提高学生的自信心和自主意识。

三、教学重点和难点1、教学重点:精讲完全平方公式的定义和公式推导过程,帮助学生深刻理解完全平方公式的具体应用;2、教学难点:帮助学生分析和解决更复杂的数学问题,以培养学生的数学思维能力。

四、教学方法1、启发式教学法:通过问答、引导、启示等方法,帮助学生发现问题和解决问题的方法,培养学生的探究精神和创造能力。

2、案例教学法:通过实际案例,帮助学生更加深入地理解完全平方公式的应用,并能够在实际问题中进行运用。

3、问题解决法:帮助学生分析问题解决方法,从而培养学生思考问题、解决问题的能力。

五、教学过程1、导入环节:结合实际问题引导学生发现完全平方公式的应用(例如:一个方形花坛周长为32米,求出它的面积),让学生在实际问题中理解完全平方公式的原理。

完全平方公式的应用.6完全平方公式(第2课时)教案(新版)北师大版

完全平方公式的应用.6完全平方公式(第2课时)教案(新版)北师大版

6完全平方公式(第2课时)教学目标是:1.知识与技能:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.2.过程与方法:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美.一、教学过程设计本节课设计了七个教学环节:回顾与思考、做一做、简单应用、综合应用、课堂小结、布置作业、联系拓广.第一环节回顾与思考活动内容:复习已学过的完全平方公式.1.完全平方公式:(a+b)2 = a2 + 2ab + b2(a-b)2 = a2 - 2ab + b22. 想一想:(1)两个公式中的字母都能表示什么? 数或代数式(2)完全平方公式在计算化简中有些什么作用?(3)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?活动目的:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,同时经过本环节中的第三个问题的思考,也使学生明确了本节课学习的初步目标,起到了承上启下的作用.实际教学效果:在复习过程中,学生能够顺利地回答出完全平方公式的内容,同时第三个问题的设计适合学生的思维过程,又不难回答,但是却为后面的学习进行了铺垫,起到了很好的效果.第二环节做一做活动内容:出示幻灯片,提出问题.有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?活动目的:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,同时帮助学生进一步理解了(a+b)2与a2+b2的关系.同时通过问题串的形式,层层递进,适合学生的思维梯度,学生通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.实际教学效果:问题提出后,学生能够主动的去寻找问题的答案.同时问题串的设计具有梯度,在不自觉中学生一步步的对知识得以深入理解,并在解决问题过程中体会到了完全平方公式的作用.同时在教学过程中教师还可以引导学生进一步讨论多出2ab的原因:对于这a个男孩,每个男孩第三天得到的糖果数多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.在整个探索过程中老师只是在提出问题和引导学生解决问题,学生通过独立思考与讨论的方式得出了答案,整个过程中学生的自主性得到了充分的体现,课堂气氛平等融洽.第三环节简单应用活动内容:1.例题讲解例2 利用完全平方公式计算:(1) 1022 ; (2) 1972(1)把 1022改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1022 =(100+2)2=1002+2×100×2+22=1000+400+4=10404(2)把 1972改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1972 =(200-3)2=2002-2×200×3+32=4000-1200+9=388092. 随堂练习利用整式乘法公式计算:(1) 962; (2) 2032活动目的:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.实际教学效果:此环节的设计符合学生的认知水平和认知过程.虽然问题本身难度不大,学生容易解决,但是通过在解题之前的观察与思考,使学生养成认真审题的好习惯,同时对于知识的掌握更有深度,也为后面乘法公式的综合应用奠定了良好的活动基础.第四环节综合应用活动内容: 1.例题讲解例3 计算:(1) (x+3)2 - x2解: (1) 方法一完全平方公式→合并同类项(x+3)2-x2=x2+6x+9-x2=6x+9解: (1) 方法二平方差公式→单项式乘多项式.(x+3)2-x2=(x+3+x)(x+3-x)=(2x+3)·3=6x+9(2)(x+5)2–(x-2)(x-3)解: (2)(x+5)2-(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19温馨提示:1. 注意运算的顺序.2. (x−2)(x−3)展开后的结果要注意添括号.(3) (a+b+3)(a+b-3)解:(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9温馨提示:将(a+b)看作一个整体,解题中渗透了整体的思想2.巩固练习(1)(a-b+3)(a-b-3)(2)(x-2)(x+2)-(x+1)(x-3)(3)(ab+1)2-(ab-1)2(4)(2x-y)2-4(x-y)(x+2y)活动目的:使学生进一步熟悉乘法公式的运用,同时进一步体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第三个题目体会整体思想,同时渗透添加括号的思想.实际教学效果:对例题1(1),学生经过独立思考容易想到方法一从而借助于完全平方公式来解决问题,但是不容易想到借助逆向使用平方差公式来进行计算,在教师的引导下部分学生可以理解借助平方差公式的方法.虽然此题两种方法解题难度上差别不大,但是在随后练习中的第三小题学生会感悟到借助逆向使用平方差公式更为简单.从而既达到了巩固练习的目的,还使学生有了优化选择的意识.对例题1(2),当整式乘法之间用减号连接时,此时应特别注意后面部分的计算结果应该加上括号,这是学生非常容易出错的地方,应给予强调,并在随后练习中的二、四小题有所体现.对例题1(3),在前面学习中就已经有所渗透整体的思想,此题让学生进一步感悟公式中的“a”“b”除了可以代表数与字母之外,还可以代表代数式,并体会添加括号的思想.第五环节课堂小结活动内容:归纳小结1. 完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号.2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.同时本节课更多的属于练习巩固及综合应用,所以应让学生更多的谈在这节课中解题上所获得的收获与体会.实际教学效果:通过学生的畅所欲言,教师在其中能够发现学生掌握较为薄弱的地方,从而在今后教学中可以得以弥补.同时学生谈了更多在某个题目上所获的经验和方法,此时教师应给予总结,进一步明确所涉及的数学思想和数学方法.第六环节布置作业活动内容:1.基础训练:教材习题1.12 .2.扩展训练:联系拓广活动目的:课下将所学知识进一步巩固,并得以反馈.第七环节联系拓广1.(1)如果把完全平方公式中的字母“a”换成“m+n”,公式中的“b”换成“p”,那么 (a+b)2变成怎样的式子?怎样计算(m+n+p)2呢?(m+n+p)2=[(m+n)+p]2=(m+n)2+2(m+n)p+p2=m2+2mn+n2+2mp+2np+p2=m2+ n2 +p2+2mn+2mp+2np(2)把所得结果作为推广了的完全平方公式,试用语言叙述这一公式:三个数和的完全平方等于这三个数的平方和,再加上每两数乘积的2倍.(3)仿照上述结果,你能说出(a−b+c)2所得的结果吗?2. 已知:a+b=5,ab=-6,求下列各式的值(1)(a+b)2 (2)a2+b2若条件换成a-b=5,ab=-6,你能求出a2+b2的值吗?活动目的:对于本节课的进一步拓广,培养学生的探究意识,让学有余力的同学进一步加深对本节课的理解.实际教学效果:确实引起了班内数学较突出同学的兴趣,并能够积极主动地去探究,从而达到了由“小课堂”到课下“大课堂”的目的,培养了学生学习数学的兴趣.四、教学设计反思1. 遵循课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念,教学中力求使“自主探索、动手实践、合作交流”成为学生学习的主要方式.2. 为了充分展示数学问题的发生、发展及变化过程,本课采用计算机辅助教学.在整个新课的教学中,采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”,这样做,体现了素质教育下塑造“创新”型人才的优势.最后,结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.。

教学设计 《完全平方公式》教案

教学设计 《完全平方公式》教案

《完全平方公式》教案一、教学目标(一)知识目标1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力目标1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感目标1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.二、教学重难点(一)教学重难点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.(二)教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.三、教学方法引导学生从面积入手发现并猜测完全平方公式,通过合作探索讨论用所学的知识对公式进行验证.四、教学过程(一)创设情景[师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(二)自主学习(同学们开始动手在练习本上画图,寻求解决的途径)[师]你能把你的结果展示给大家吗?学生发表自己的见解.如图1所示,这就是我改造后的试验田,可以种植四种不同的新品种.[师]你能用不同的方式表示试验田的面积吗?法一:改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.法二:也可以把试验田的总面积看成四部分的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.(三)合作探究1.推导完全平方公式[师]我们通过对比试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料表明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度利用多项式的乘法运算推导出这样的公式呢?想一想:(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗?(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)用多项式乘法法则可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2[师]你能用语言描述这个公式吗?(引导学生用语言描述公式,学生齐读)两个数的和的平方等于这两个数的平方和加上它们积的2倍.(2)(a-b)2等于什么?你是怎样想的.(学生讨论,探索结论,学生自己回答解决方法)(学生很容易模仿上面的方法用多项式乘法来解决,老师可以适当的引导学生利用刚才验证的公式来解决整个问题,寻求一个问题的多种解法)法一:(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.法二:因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b”代替公式中的“b”,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2[师]你能用语言描述这个公式吗?(学生模仿上面公式的描述试着自己描述,请学生回答)两个数的差的平方等于这两个数的平方和减去它们积的2倍.(四)巩固练习1、利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.2、学生PK活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.(五)反思评价活动内容:通过今天这堂课的学习,你有哪些收获?(六)布置作业:(略)。

完全平方公式(第二课时)

完全平方公式(第二课时)

完全平方公式(第二课时)教学目标知识与技能目标:1.熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算。

2.理解公式中a,b的意义,会在单项式,多项式的混合运算中,正确运用完全平方公式进行运算。

3.能利用公式变形解决求型问题过程与方法目标:能够运用完全平方公式解决简单的实际问题,并在活动中培养学生的建模意识及应用数学知识解决实际问题的能力。

情感态度与价值观目标:在学习中使学生体会学习的乐趣,培养学生学习数学的信心,感受数学的内在美。

学习重点:1.进一步巩固完全平方公式,能正确理解与之间的关系。

2.熟悉乘法公式的运用,体会公式中字母a和b的广泛意义。

学习难点:灵活运用完全平方公式和平方差公式简化运算。

学情分析:学生通过前面几节课的学习,已经经历了探索和推导平方差公式和完全平方公式的过程,基本掌握了整式的乘法公式,并能运用平方差公式和完全平方公式进行简单的计算。

与此同时学生也已经有了一定的独立探究的意识,通过实践培养了一定的符号感和推理能力,这些知识和学习经验为本节课的学习奠定了良好的知识和技能基础。

教学过程:一故事导入有一个国王的公主被妖怪抓到了森林里,两个农夫一起去森林打猎,打死了妖怪救出了公主。

国王要赏赐他们,这两个农夫原来各有一块边长为a米的正方形土地。

第一个农夫就说:“你可不可以再给我一块边长为b米的土地呢?”国王答应了他。

国王问第二个农夫:“你是不是跟他一样啊?”第二个农夫说:不,我只要您把我原来的那块土地的边长增加b米就好了。

”国王想了想,那不是一样吗?设计意图:由学生感兴趣的故事引入新课,贴近学生生活,从实际问题出发,激发学生的学习兴趣,体会课件展示:用动画展示两个农夫现有土地变化情况第一个农夫的土地第二个农夫的土地aa b22a b+2)a b+(22a b+222()a b a b+≠+设计意图:从动态的角度,利用数形结合,加深学生对 的理解,从而引入新课设计意图:复习完全平方公式,强化公式结构。

6 第2课时 完全平方公式的运用 一等奖创新教案

6 第2课时 完全平方公式的运用 一等奖创新教案

6 第2课时完全平方公式的运用一等奖创新教案6.完全平方公式(二)教学设计一、课题:1.6(2)完全平方公式的运用二、学情分析学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了幂的运算、整式的乘法、平方差公式,完全平方公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式和完全平方公式的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.三、教学任务分析整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.四、教学目标分析:1.知识与技能:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.2.过程与方法:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美.教学重点:灵活运用完全平方公式、平方差公式、多项式乘法等进行运算.教学难点:几个公式的综合运用.五、授课类型:新授课六、教具:多媒体电子白板七、教学设计分析本节课设计了个6教学环节:情境引入、知识回顾、探索新知、目标检测、课堂小结、延伸迁移教学中应坚持的几个理念:1、教学要紧紧围绕两个学习目标来进行,公式的运用不能简单地以老师讲解为主,要充分体现学生的主体作用,给学生足够的探索新知的时间,先让学生自己探究,然后再小组合作交流,最后学生再归纳出如何巧妙使用公式的方法.2、突破教学重点,教师要有多种预案,要顺其自然,引领学生用自己的办法去解决问题.八、教学过程设计第一环节情景引入活动内容:出示幻灯片,提出问题.(教师提问学生解答的方式进行)有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数一样吗?你能用所学过的公式解释吗?设计意图:通过分糖问题激发学生学习兴趣和探知欲,同时引出今天的课题,而且让学生体会a +b 与(a+b) 的不同,从而更加巩固完全平方公式,并且也为以后运用公式变形解决问题埋下伏笔.第二环节复习回顾1.平方差公式:2.完全平方公式:(教师提问,学生回答,并单独提问学生分析两个公式的区别)设计意图:通过对两个公式的复习,引发学生对两个公式结构的辨析,为下面两个公式的灵活运用打下坚实的基础.3.利用完全平方公式计算(1)(2x+3y) (2)(2x-3y) (3)(-2x+3y) (4)(-2x-3y)设计意图:通过几道简单题的训练,让学生熟练完全平方公式,并且通过几个运算结果的比较,让学生总结出结果的符号规律.第三环节探索新知—完全平方公式的运用例1.思考:怎样计算1022,992更简便呢?(1) 102 ;(2) 99 .(学生自己做,教师找错误的运用白板展示,进一步矫正学生运用公式时可能出现的错误,让学生在辨析中熟练公式).设计意图:让学生体会完全平方公式在一些数的简便运算中的作用,并且让学生感悟出公式中的字母可以代表数字.例2. 运用乘法公式计算:(1) (x+2y-3)(x-2y+3) (2)(x+3) -(x-3)(3) (2x-y) -4(x-y)(x+2y)(找三个学生演板,其他学生自己做,然后再四人学习小组合作交流不同做法,兵教兵,会的给不会的教会,最后学生归纳一题多法,和不同方法的优劣.)设计意图:这几个例题是本节课的重点,也是难点,是对几个公式的综合运用的考察,公式中这几个题先通过学生自己的探究考察了学生综合运用公式的能力,同时也通过一题多法的探讨,让学生体会可以通过适当添加括号,变成符合公示的结构形式,可以巧妙的使计算更加简便.也让学生再次体会公式中的字母原来还可以代表单项式,多想式,甚至扩充到任何一个代数式.让学生在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.第四环节课堂检测—完全平方公式的运用(变式训练1)计算10.2(变式训练2)计算(x-2y-3)(x-2y+3)(变式训练3)计算(x-2y) -(x+2y) .(学生独立完成)设计意图:当堂检测,及时反馈学习效果.通过完成练习使学生进一步提升公式的综合运用能力第五环节课堂小结你知道了什么?你学会了什么?你还有哪些疑惑?(请学生发言总结)设计意图:课堂总结,发展潜能第六环节延伸迁移利用公式的变形进行代数式的化简和求值已知a+b=7,ab=10,求a2+b2,(a-b)2的值.思考:若把题中的条件a+b=7换成a-b=7,怎么计算呢?(课后思考)设计意图:拓宽学生思路,让学生体会运用公式的变形也可以进行计算.九、教学反思1. 本节课始终遵循课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念.2.教学中,采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,充分体现学生的主体性,让教师退在幕后,极大的调动了学生的学习兴趣和探知欲,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”,这样做,体现了素质教育下塑造“创新”型人才的优势.最后,结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.整节课学生亮点非常多,尤其对两个公式结构的探讨,学生错题的辨析,一题多法的探讨,课堂小结的知识归纳,以及学生提出的困惑的解答都让课堂增色很多.不足之处是例二中第三小题的设计难度过大,导致没有时间在课堂上进行变式训练的检测,有些遗憾.。

完全平方公式教案

完全平方公式教案

《完全平方公式》教学设计了吗?提出问题:财主和阿凡提的土地的面积分别是多少?通过平移比较出图形面积的大小让学生总结出和的完全平方公式2 这就是我们今天学习的另一组公式——完全平方公式,你还能有其他方法证明这个公式吗?几何意义可以直观的看出:222)(baba+≠+学生推导公式:(a+b)²=a²+ab+ab+b²=a²+2ab+b²回答:还可以通过多项式乘法进行计算222222))(()(babababababababa++=+++=++=+两数和的完全平方公式:两数和的平方等于它们的平方和,再加上它们积的2倍。

方法一:想一想:2)(b a -等于什么?你能用文字语言叙述公式的意义吗?问题:你能用几何图形来说明这个公式的意义吗?教师总结: 两数和与两数差的完全平方公式,统称为完全平方公式。

其中,公式中的a 和b 表示数或式子。

探求规律:在模仿运222222))(()(b ab a b ab ab a b a b a b a +-=+--=--=-方法二:[]2222222)(2)()(b ab a bb a a b a b a +-=+-•+=-+=-文字语言:两数差的完全平方等于它们的平方和,减去它们积的2倍。

(a ±b)²=a ²±2ab+b ²结构特征能充分培养学生对问题的独立思考能力,也能激发起他们的创新意识和数学思维的灵活性,而对比总结更能加深他们对两个公式的认识。

通过几何图形,再次渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;并能通过图形很好的记忆公式。

方法一可以使学生了解完全平方公式是多项式乘法的特例,方法二是对两数和的完全平方公式的巩(首±尾)²=首²±2*首*尾+尾²用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.6 完全平方公式 第1课时 完全平方公式
一、探索公式
问题1.利用多项式乘多项式法则,计算下列各式,你又能发现什么规律?
(1)()()()=++=+1112p p p __________________________. (2)()____________22=+m =_______________________. (3) ()()()=--=-1112p p p _____ _______________. (4) ()____________22=-m =_________________________. (5) ()____________2=+b a =_________________________ .
(6) ()____________2=-b a =________________________. 问题2.上述六个算式有什么特点?结果又有什么特点? 问题3.尝试用你在问题3中发现的规律,直接写出()2b a +和()2b a -的结果.
即:2()a b += 2()a b -= 问题4:问题3中得的等式中,等号左边是 ,等号的右边: ,把这个公式叫做(乘法的)完全平方公式 问题5. 得到结论:
(1)用文字叙述: (3)完全平方公式的结构特征:
问题6:请思考如何用图15.2-2和图15.2-3中的面积说明完全平方公式吗?
问题8. 找出完全平方公式与平方差公式结构上的差异 二、例题分析
例1:判断正误:对的画“√”,错的画“×”,并改正过来. (1)(a +b )2=a 2+b 2; ( ) (2)(a -b )2=a 2-b 2; ( )
(3)(a +b )2=(-a -b )2; ( ) (4)(a -b )2=(b -a )2. ( ) 例2.利用完全平方公式计算 (1) ()
2
4n m + (2)2
21⎪
⎭⎫

⎛-y (3) (x +6)2 (4)
(-2x +3y )(2x -3y )
例3.运用完全平方公式计算:
(5) 2102 (6) 299
三、达标训练
1、运用完全平方公式计算:
(1) (2x -3)2 (2) (13
x +6y )2 (3)(-x + 2y )2
(4)(-x - y )2 (5) (-2x +5)2 (6) (34
x -23
y )2
2.先化简,再求值:()()()211
2322,
,22
x y x y x y x y +-+-==-
其中
3.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值
4.已知5=+b a 3ab =,求22b a +和 2)(b a -的值。

相关文档
最新文档