线性代数知识点总结第二章
线性代数知识点总结
线性代数知识点总结线性代数知识点总结第一章行列式行列式是线性代数中的重要概念之一。
行列式的定义包括二三阶行列式和N阶行列式。
其中,N阶行列式是由行列式中所有不同行、不同列的n个元素的乘积的和构成的。
行列式的计算需要用到奇偶排列、逆序数和对换等概念。
行列式还具有多种性质,如行列式行列互换其值不变,行列式中某两行(列)互换,行列式变号等。
通过这些性质,我们可以推论出行列式中某两行(列)对应元素相等,则行列式等于零等结论。
行列式还有一些特殊的形式,如转置行列式、对称行列式、反对称行列式、三线性行列式和上(下)三角形行列式等。
行列式在解线性方程组中应用广泛,如克莱姆法则。
非齐次线性方程组的系数行列式不为零时,有唯一解;而齐次线性方程组的系数行列式为1时,只有零解。
第二章矩阵矩阵是线性代数中另一个重要概念。
矩阵是由数个数排成的矩形阵列,其中包括零矩阵、负矩阵、行矩阵、列矩阵、n阶方阵和相等矩阵等。
矩阵的运算包括加法、数乘和乘法。
其中,加法和数乘都满足交换律和结合律。
而矩阵的乘法需要满足行数等于列数的规则。
矩阵的乘法运算需要用到矩阵的元素之间的乘积和求和。
在矩阵的运算中,我们需要注意矩阵的类型和是否有意义。
一般情况下,矩阵乘法不满足消去律。
即使已知AB=0,也不能得到A=0或B=0.对于矩阵A,它的转置等于A乘以A加B。
即transpose(A)=A(A+B)。
对于标量k和矩阵A,有(kA)=kA和(AB)=BA(反序定理)。
对于方幂A^k,有(A^k)=(A^1+k/2)+(A^2+k/2)。
有几种特殊的矩阵,如对角矩阵、数量矩阵、单位矩阵、上下三角形矩阵、对称矩阵、反对称矩阵、阶梯型矩阵和分块矩阵。
对于分块矩阵,加法、数乘和乘法的规则类似,而转置需要对每个子块进行转置。
矩阵的逆矩阵指的是存在一个N阶矩阵B,使得AB=BA=I。
如果矩阵A是可逆的,则称它是非奇异矩阵,否则称为奇异矩阵,其行列式为0.初等变换不会改变矩阵的可逆性,而初等矩阵都是可逆的。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
线性代数知识点总结第二章doc资料
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。
扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。
单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。
第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+=⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。
(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。
线性代数-知识点总结part 2
线性代数知识点总结—part 2三、向量组的线性相关与线性方程组(1)n 维向量记为a=(a 1,a 2……a n )第i 个a i 称为a 的得i 个分量或坐标有几个向量就是几维向量。
(2)向量加减法按照对应项相加减。
(3)若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组0 ,0 ,,,;,0 ,,,,,,, 3.42122112122112121。
可以推出称为线性无关,如果由一向量组则称该向量组线性相关使全为零的数如果存在不给定向量组定义=====+++=+++m m m m mm m m k k k k k k k k k k k k ΛρΛΛρΛΛΛαααααααααααα(4)向量组线性相关的充分必要条件是至少有一个向量可由其他向量线性表示。
(5)部分向量组线性相关,则整个向量组线性相关;整个向量组线性无关,则部分向量组线性无关。
(6)线性无关组添加相同数量个分量所得的向量组仍线性无关;线性相关组减少相同位置相同数量个分量所得的向量组仍线性相关。
唯一表示。
可由线性相关,则,线性无关,而设mm m αααββαααααα,,,,,,,,, 212121ΛΛΛ向量组⎪⎪⎪⎪⎪⎫⎛=⎪⎪⎪⎪⎪⎫⎛=n n T T a a aa a a A M MML L M 222211121121αα(7)若(8)若向量组A 和B 能相互线性表示就称A 和B 等价;(9)一个向量组T ,从中选出r 个向量a 1,a 2,…..a r 满足它们线性无关,并且T 中任意一个向量都可以用a 1,a 2…..a r 线性表示 那么我们就称a 1,a 2,…..a r 是T 的最大向量无关组(10)向量组的最大线性无关组所含向量的个数,称为向量组的秩. (11)矩阵A 的秩等于它的列向量组的秩,也等于行向量组的秩 (12)设向量组(I)的秩为r1,向量组(II)的秩为r2,且(I)能由(II)线性表示,则r1<=r2(13)等价的向量组有相同的秩。
线性代数重点知识总结
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
线性代数 第二章总结
第二章 矩阵及其运算矩阵是线性代数主要研究对象,是求解线性方程组的一个有力工具,它在自然科学、工程技术及经济问题等各个领域中都有广泛的应用。
本章的教学基本要求:理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,了解求逆矩阵的伴随矩阵法;熟练掌握利用逆矩阵求解矩阵方程的方法;了解单位矩阵、对角矩阵、对称矩阵及其性质;了解分块矩阵及其运算。
本章的重点及难点:矩阵的各种运算及其运算规律,尤其矩阵的乘法;逆矩阵存在的条件,利用伴随矩阵法会求逆矩阵,主要是二阶和特殊的三阶矩阵的逆矩阵;用逆矩阵求解矩阵方程。
§ 1 矩阵的概念一、内容提要1.矩阵定义 由n m ⨯个数排成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211称为一个m ×n 矩阵,其中ij a 表示位于数表中第i 行第j 列的数(m i ,,2,1 =;n j ,2,1=)。
ij a 又称为矩阵的元素。
规定,1×1矩阵 a a =)(。
矩阵也可表示为)(ij a 或n m ij a ⨯)( 。
如果不需要表示出矩阵的元素,通常用大写英文字母表示矩阵,如:A ,B ,...,或n m A ⨯,n m B ⨯,...。
元素都是实数的矩阵称为实矩阵;有复数元素的矩阵称为复矩阵。
若两个矩阵的行数、列数分别相等,则称它们是同型矩阵。
矩阵A =()n m ij a ⨯,B =()n m ij b ⨯是同型矩阵。
若它们的对应元素相等,即ij ij b a = ()n j m i 2,1;2,1== 那么称矩阵A 与矩阵B 相等,记作:A = B 。
2.特殊矩阵零矩阵 所有元素都为零的矩阵称为零矩阵。
如一个n m ⨯的零矩阵为nm ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛000000000记为0n m ⨯。
在不会引起混淆的情形下,也可记为0。
线性代数超强总结
考试重点第一章: 行列式的定义、行列式的计算;第二章: 1、求矩阵的逆阵(伴随矩阵法、初等变换法); 2.求矩阵的秩(用初等变换法);3.求矩阵方程: Ax=B, xA=B, AxB=C ; 第三章: 证明向量组的线性相关性; 第四章: 方程组Ax=0, Ax=b 求解; 第五章: 1、会求特征值与特征向量; 2.相似矩阵的性质;3.实对称矩阵的对角化; 第六章: 1.用正交变换把二次型化为标准形;2.二次型的秩, 二次型正定的定义; 3、矩阵正定的判断方法:(1)各阶顺序主子式都大于零;(2)每个特征值都大于零()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A BB οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线: √ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 设 , 对 阶矩阵 规定: 为 的一个多项式.√ 设 的列向量为 , 的列向量为 , 的列向量为 ,√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 判断 是 的基础解系的条件: ① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ④ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑤ ()0r A A ο=⇔=.⑥ 若 线性无关, 而 线性相关,则 可由 线性表示,且表示法惟一. ⑦ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑧ 矩阵的行初等变换不改变矩阵的秩,且不改变列 、行向量间的线性关系.⑨ 矩阵 与 等价 作为向量组等价,即: 秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.向量组 可由向量组 线性表示 ≤ .向量组 可由向量组 线性表示,且 , 则 线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑩ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑪ 任一向量组和它的极大无关组等价.⑫ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑬ 若两个线性无关的向量组等价,则它们包含的向量个数相等. 若 是 矩阵,则 ,若 , 的行向量线性无关;若 , 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦51212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解6线性方程组解的性质:√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:② 对称性: ③ 双线性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)c c c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化: T AA E =.√ 是正交矩阵的充要条件: 的 个行(列)向量构成 的一组标准正交基.√ 正交矩阵的性质: ① ; ② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若 ,则 一定可分解为 = 、 ,从而 的特征值为: , .√ 若 的全部特征值 , 是多项式,则: ① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ,A *的全部特征值为12,,,n A AAλλλ.√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.. 相似于对角阵的充要条件: 恰有 个线性无关的特征向量.这时, 为 的特征向量拼成的矩阵, 为对角阵,主对角线上的元素为 的特征值. √ 可对角化的充要条件: 为 的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵)√ 相似矩阵的性质: ① 若 均可逆 ② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ; ④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性.① √ 成为正定矩阵的充要条件(之一成立):②正惯性指数为n;③A的特征值全大于0;④A的所有顺序主子式全大于0;⑤大于0).√成为正定矩阵的必要条件: ;.11。
线性代数知识点总结
第一章 线性方程组的解1.线性方程组的定义、齐次与非齐次方程组2.方程组的线性组合:3.初等变换:4.用消元法解方程组5.矩阵的定义与表示方法实矩阵、复矩阵、方阵、行/列向量、零矩阵等概念。
注意:不同阶数的零矩阵不等。
6.系数矩阵与增广矩阵7.通解与特解:8.线性方程组求解的一般过程:一般线性方程组Ax=B,把增广矩阵进行初等行变换,化成行最简形。
解的讨论:上边是解的自由未知量形式,其中,x r+1, x r+2,….,x n 称为自由向量。
还可以表示成参数形式:或表示成向量形式:9.数域:第二章向量空间2.1线性相关与线性无关1.n维向量的定义、实向量、复向量、零向量2.向量空间:3.n维向量的运算:加法、数乘、负向量、减法、内积、向量范数、单位化、向量间的夹角、向量的正交4.线性组合6.线性相关与线性无关:一条很重要的性质:7.线性相关性判定定理:2.2 向量组的秩1.极大线性无关组与秩的定义:2.用初等变换求向量组的秩和极大无关组:注意:如果只求矩阵的秩,不需要求矩阵的哪几行(列)线性无关,那么行、列变换都可以,因为矩阵行秩=列秩。
但求向量组的秩和极大无关组,只能做一种变换。
3.向量组的等价:等价三公理:反身性、对称性、传递性(但逆命题不一定成立,秩相等的向量组不一定等价)2.3 基1.向量空间定义:若V 是向量空间,则V 必含有零向量2.子空间(向量空间属于线性空间,对子空间的定义请看2.5节:线性空间)3.等价向量组生成相同的向量空间4.向量组生成的向量空间可由其任何一个极大无关组生成5.基与向量组的维数(看2,5节)6.只含零向量的向量空间,维数为0 注意:两个不同概念:7.设V 是由n 维向量构成的r 维向量空间,则: (1)V 的任意r+1个向量必定线性相关(2)V 的基是向量组的一个极大无关组,从而dimV=V 秩(3)V 中任意r 个线性无关向量都可作为V 的一个基(4)V 可由基α1,α2,…, αr 所生成,即 V=L (α1,α2,…, αr ) (5) (6)(7)(8)(9)8.9.基变换与过渡矩阵(见2.5节)2.4 线性方程组解的结构1.解空间定义齐次方程组的若干个解向量的任意线性组合仍是此线性方程组的解向量2.解空间的维数Ax=b的通解可表示为:2.5 线性空间1.线性空间的定义(8个条件)说明:凡满足以上8条规律的加法和乘数运算,称为线性运算。
线性代数知识点总结
线性代数知识点总结线性代数知识点总结「篇一」第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化。
线性代数矩阵行列式向量知识点总结
线性代数第一章:行列式1.排列:任意两数字先大后小为一个逆序;一组无序数组逆序个数为奇数就是奇排列;反之为偶排列。
且一个数组任意两个数字调换,则奇偶调换。
排列决定行列式某一项的正负,若行标按标准次序,则列标的逆序数是奇数此项为负。
n n np p p p p p r a a a D ....)1(21)2121...(-∑=,每一项是n 个元素的乘积,每个元素取自不同的行不同的列。
行列式展开共有n!项,一半正,一半负。
注意:λλλλnD ....21=为矩阵的特征值2.nnnnnna a a a a a a a a ...... (221122211211)= 11,212)1(11,22111211..)1(................n n n n n n n na a a a a a a a a ----=3.行列式的性质:(1)行列式与其转置行列式值相等;(所以行的性质也是列的性质)(2)交换两行对应元素,行列式值变号。
(3)任意两行对应元素相等,成比例行列式值为0。
(4)例:nx yx nc ya dm bx dc b a nm c yx a dm c bx a nd m c yb x a +++=+++++=++++(5)把某行的k 倍加到另一行对应元素,行列式值不变。
4.余子式ij M :去掉第i 行第j 列剩下的元素构成行列式的值。
代数余子式ij j i ij M A +-=)1(5.定理,行列式某行的代数余子式×另一行的对应元素值为0。
6.范德蒙德行列式)....)...()()()...()((.........................1. (1112242311312113121)12232221321x x x x x x x x x x x x x x x x x x x x x x x x n n n nn n n nn ------==---- 例:240)32)(12)(13)(12)(13)(11(842149112311111184212793111111111=--+-+-----=----=----7.,00,0()0)in n i n n D A X b x D DA X D R n D n ⨯⨯==≠=≠==<。
线性代数第二章矩阵及其运算
ann 0
0
5. 形如 下面两个矩阵 的方阵称为下三角矩阵(lower triangular matrix).
a11 0 a21 a22
an1
an2
0 0
0
0
ann
an1
0 a1n
a2n1
a2n
ann1 ann
6. 若方阵 A (aij )n 中 aij a ji , 则称为对称矩阵 (symmetric matrix). 即
一、线性方程组
定义1 设有 n 个未知数 m 个方程的线性方
程组
a11 x1 a12 x2 L a1n xn b1 ,
a21 x1 a22 x2 L LLL
a2n xn L
b2 ,
am1 x1 am2 x2 L amn xn bm .
(1)
其中aij 表示第i个方程第j个未知数的系数(coefficient), bi 是第i个方程的常数项(constant),i=1,2,…,m, j =1,2,…, n.
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
L
L
L
L
称为单位阵(unit
matrix),
记作 En . 0 0 L 1
4. 形如 下面两个矩阵 的方阵称为上三角矩阵(upper triangular matrix).
a11a12 0 a22
0 0
a1n
a2n
ann
a11 a1n1 a1n
a21
a2n1
0
a11 a12 L a1n
线性代数知识点总结
线性代数知识点总结线性代数知识点总结「篇一」第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幕知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
线性代数知识点归纳
第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1. 行列式的计算:① (定义法)1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ a b -型公式:1[(1)]()n a b b b b a bban b a b b b a b b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ij m n A a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mn m n AA A +=, ()()m n mn A A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵T A =.A 是反对称矩阵T A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ij nnnn A A A A A A AA A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AAA A A E ==,1*n A A -=, 11A A --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1A B B A E A B-==⇒=) 3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:①对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;②对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式(存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法 6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解 ②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解 ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3 推论♣ 线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一 4. 最大无关组相关知识向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B .12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数. (4) 求非齐次线性方程组Ax = b 的通解的步骤 (5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1.②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量.②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ=⑤12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素. ⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O=⇒A 的任何一个特征值必满足()i f λ=0②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法 (1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ.(2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. ①1P AP B -= (P 为可逆矩阵) ②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量.②A B =tr tr ③A B = 从而,A B 同时可逆或不可逆④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1PAP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭. ② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAAE =正交矩阵的性质:① 1TAA -=;② TT AAA A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10. 11.123,,ααα线性无关,单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。
线性代数知识点总结第二章
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。
线性代数知识点总结 大一线性代数知识点
线性代数知识点总结大一线性代数知识点线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
下面是想跟大家分享的线性代数知识点总结,欢迎大家浏览。
第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断。
线性代数复习总结(重点精心整理)
线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
大学线性代数2矩阵代数知识点总结
2矩阵代数1. 设A,B为可以相乘的矩阵,AB的每一列都是A的各列的线性组合,以B的对应列的元素为权。
同样,AB的每一行都是B的各行的线性组合,以A的对应行的元素为权。
例如,AB的第m列是以B的第m列为权的A的各列的线性组合;AB的第n行是以A的第n行为权的B的各行的线性组合。
2. 矩阵乘法恒等式:I m A = A = AI n3. 逆矩阵的概念仅对方阵有意义。
4. 若A可逆,则对每一R n中的b,方程Ax=b有唯一解x=A-1b5. 初等矩阵:将单位矩阵进行一次初等行变换所得的矩阵。
6. 对mxn矩阵A进行初等行变换所得的矩阵,等于对单位矩阵进行相同行变换所得初等矩阵与A相乘的结果。
设对单位矩阵I m进行初等行变换所得初等矩阵为E,对A进行相同初等行变换的结果可写为EA。
因为初等行变换可逆,所以必有另一行变换将E变回I。
设该“另一行变换”对应初等矩阵为F,结合上一行,F对E的作用可写为FE=I。
因此,每个初等矩阵均可逆。
7. 当n阶方阵A行等价于I n时,A可逆。
此时,将A变为I n的一系列初等行变换同时将I n变为A-1。
8. 求A-1:将增广矩阵[A I] 进行行化简,若A可逆,则[A I] ~ [I A-1]将 [A I] 行变换为[I A-1]的过程可看作解n个方程组:Ax=e1, Ax=e2, ... Ax=e n这n个方程组的“增广列”都放在A的右侧,就构成矩阵[A e1 e2 ... e n] = [A I]如果我们只需要A-1的某一列或某几列,例如需要A-1的j列,只需解方程组Ax=e j,而不需要求出整个A-1。
[注:根据此条可以导出利用克拉默法则求逆矩阵的公式]9. 可逆矩阵定理对于n阶方阵,以下命题等价:a) A可逆b) A与n阶单位矩阵等价c) A有n个主元位置d) 方程Ax=0仅有平凡解e) A各列线性无关f) 线性变换x|->Ax是一对一的g) 对R n中任意b,Ax=b至少有一个解(有且仅有唯一解?)h) A各列生成R ni) 线性变换x|->Ax将R n映上到R nj) 存在nxn阶矩阵B,使AB=BA=Ik) A T可逆l) A的列向量构成R n的一个基m) ColA=R nn) dim(Col(A))=no) rank(A)=np) Nul(A)=0q) dim(Nul(A))=0r) det(A)≠0 <=> A可逆s) A可逆当且仅当0不是A的特征值t) A可逆当且仅当A的行列式不等于零再次强调,以上命题仅对n阶方阵等价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。
扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。
单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。
第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。
(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。
(课本P33) 数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律(设A B 、为m n ⨯矩阵,,λμ为数)()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+。
(课本P33) 矩阵相加与数乘矩阵统称为矩阵的线性运算。
矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A与矩阵B的乘积是一个m n ⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1。
A 与B 能相乘的条件是:A 的列数=B 的行数。
2。
矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵。
3。
对于n 阶方阵A 和B ,若AB=BA ,则称A 与B 是可交换的。
矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯==()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即k k A A A A =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数。
规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠(但也有例外)(课本P36)纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍。
且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的。
(课本P36) 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528TA ⎛⎫⎪= ⎪ ⎪⎝⎭。
转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =。
(课本P39) 方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或记住这个符号)注意 矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n阶行列式则是这些数按一定的运算法则所确定的一个数。
运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===(课本P40)对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij ji a a i j n ==那么A 称为对称阵。
说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的。
即反对称矩阵A =(a ij )中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵。
性质 AA A A A E **==(易忘知识点)(课本P ? ) 总结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算。
(2)只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律。
(3)矩阵的数乘运算与行列式的数乘运算不同。
第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵。
1A A -的逆矩阵记作,1A B -=即。
说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵。
3.若A 是可逆矩阵,则A 的逆矩阵是唯一的。
定理1矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=(重要)(证明见课本P ? ) 奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵。
即0A A A ⇔⇔≠可逆为非奇异矩阵。
推论若(A=E)AB E =或B ,则1B A -=(证明见课本P ? )求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。
更好的求逆矩阵的方法--chapter3初等变换法(A,E) 逆矩阵的运算性质()()1111,,A AAA ---=若可逆则亦可逆且()()1112,0,,A A A A λλλλ--≠=若可逆数则可逆且。
()1113,,,A B AB AB B A ---=若为同阶方阵且均可逆则亦可逆且()。
(以上证明见课本P43)()()()114,,TT T A A A A --=若可逆则亦可逆且。
()115,A A A --=若可逆则有。
总结逆矩阵的计算方法()1待定系数法;()12A A A*-=利用公式;()()3初等变换法下一章介绍第四节 矩阵分块法矩阵分块 将矩阵A 用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A 的子块,以子块为元素的形式上的矩阵称为分块矩阵。
分块的目的是为了简化运算。
分块矩阵的运算规则 加法 A 与B 同型,且A 、B 的分块方法相同,则A 与B 的和定义为对应子块相加。
数乘()ij A A λλ=。
转置112111121312222122231323,T T TT T T T A A AA A A A A A A A A A A ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭设则。
(先外转再内转) 乘法 首先AB 有意义,其次A 的列的分法与B 的行的分法相同。
,,A m l B l n ⨯⨯设为矩阵为矩阵分块成()1212,,(),()t n B BA A A AB B ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭即列向量组即行向量组,1212,,,,,,,i i it j j tj A A A B B B 其中的列数分别等于的行数那么1111r s sr C C AB C C ⎛⎫⎪=⎪ ⎪⎝⎭,()11,,;1,,tij ik kjk C A B i s j r ====∑其中。
结论分块矩阵之间与一般矩阵之间的运算性质类似。
分块对角阵(准对角矩阵)设A 为n 阶矩阵,若A 的分块矩阵只有在主对角线上有非零子块,其余子块都为零矩阵,且非零子块都是方阵,即12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,()1,2,iA i s =其中都是方阵,则有:121)s A A A A =。
122)0,,i s A A A A A A ⎛⎫⎪⎪≠= ⎪ ⎪ ⎪⎝⎭若每个则可逆且有,()1111121,2,,,,,i s A A i s A diag A A A ----⇔==可逆可逆且(diag (A )表示对角阵A )(课本P ? )有用的结论 TA A O,A O P?==设则(证明见课本)线性方程组的分块表示线性方程组1111221121122222m11m22m ..............................................n n n n n n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,111112112221222212......A (), , , ...n nij n m m m mnm x b a a a b x b a a a b a x b B x b a a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭记, 其中A 为系数矩阵,x 称为未知数向量,b 称为常数向量,B 称为增广矩阵。