1 概率分布图

合集下载

概率论随机变量的分布函数ppt课件

概率论随机变量的分布函数ppt课件

因此, A 是不可能事件
P{A} 0.
ppt课件
12
例1: 设随机变量X具有概率密度
ke 3 x
x0
f (x)
0 x0
(1)试确定常数k,(2)求F(x),(3)并求P{X>0.1}。
解: (1)由于
f (x)dx
ke3xdx k 1
,解得k=3.
0
3
于是X的概率密度为
f
(
x)
O
x
(3) 在 x= 处曲线有拐点,且以x轴为渐近线 ;
(4) 对固定的,改变的值,图形沿Ox轴平移;
(5) 对固定的,改变, 越小,图形越尖.
正态分布的分布函数为: F ( x)
ppt课件
1
2
e dt x
(t )2 2 2
28
标准正态分布
当=0, =1时,称X服从标准正态分布,记作X~N(0,1).
例3 设电阻值R是一个随机变量,均匀分布在800欧~1000
欧,求R的概率密度及R落在850欧~950欧的概率.
解: 由题意,R的概率密度为
1 f (r) 1000 800
, 800 r 1000
0
, 其它
950 1
而 P{850 X 950}
dr 0.5
200 ppt课件
850
18
2. 指数分布
注 (4)式及连续性随机变量分布函数的定义表示 了分布函数与概率密度间的两个关系.利用这些 关系,可以根据分布函数和概率密度中的一个推 出另一个.
ppt课件
10
连续型随机变量的分布函数与概率密度的几何意义:
1. F(x)等于曲线f(x)在(-∞,x]上的曲边梯形的面积。

01分布的期望和方差

01分布的期望和方差

01分布的期望和方差
01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np (1-p)。

一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。

图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。

可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。

当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。

[x]为取整函数,即为不超过x的最大整数。

01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np(1-p)。

一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。

图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。

可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。

当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。

[x]为取整函数,即为不超过x的最大整数。

分布函数

分布函数

分布函数分布函数(Cumulative Distribution Function, CDF)是概率统计中重要的函数,正是通过它,可用的方法来研究随机变量。

1.伯努利分布伯努利分布(Bernoulli distribution)又叫做两点分布或者0-1分布,是一个离散型概率分布,若伯努利实验成功,则伯努利随机变量取值为1,如果失败,则伯努利随机变量取值为0。

并记成功的概率为p,那么失败的概率就是1p-,概率p p-,则数学期望为p,方差为(1)密度函数为2.二项分布二项分布即重复n次独立的。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互,与其它各次试验结果无关,事件发生与否的概率在每一次中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

假设每次试验的成功概率为p,则二项分布的密度函数为:二项分布函数的数学期望为np,方差为(1)X B n p。

概率密度分布图如下所np p-,记为~(,)示。

3.正态分布正态分布(Normal distribution)又名高斯分布(Gaussian distribution),若X服从一个为μ、为σ2的高斯分布,记为:X~N(μ,σ2),则其为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

通常所说的标准正态分布是μ = 0,σ = 1的正态分布。

分布曲线特征:图形特征集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。

即频率的总和为100%。

关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。

概率分布2-二项分布、样本分布

概率分布2-二项分布、样本分布

样本分布之一——渐近正态
1、总体分布已知——正态,总体方差已知, 样本平均数的分布为正态。
样本平均数的分布 平均数的分布的参数:
x ,2x n2(x标准 S误 E )
样本平均数分布图
总体正态分布低阔, 样本平均数分布高 狭——n
上尖下沉 相同测量分数、相同
z标准分X数 i X
总体分布非正态时
平均数μ np 标准差δ npq
np 2 npq
二项分布的应用
三种主要问题类型举例
182页:例6-6——是非题 182页:例6-7——单项选择题 196页:第17题——多项选择题
第四节 样本分布
样本分布:样本统计量的分布,统计推论的基 础。
学习必要性:我们的需要是归纳整个一类个 体——总体的某种属性。能测量到的只是它的 一部分,我们需要根据样本对总体作出推断。
Z分数的线性转换
正态分布图
正态分布曲线图
坐标的意义 X:在+∞可能性中,x事件出现 Y: x事件出现的概率密度
Z分数及其线性转换T=KZ+C
抽样
研究样本 简单随机抽样:相互独立 随机数字表法 抽签法
等距抽样:个体间变异大、分布均匀时 分层抽样:总体已有的与研究有关的特征 整群抽样:自然群体抽取。分层整群抽样
二项分布与正态分布
在n次独立的二项试验中,若在每次试验 中成功的概率为p,失败的概率为q (p+q=1)
P=q=0.5,n无穷大时,二项分布为正 态分布——正态分布是二项分布的极限
p<q, np≥5,或p>q ,nq≥5时,二项分布 接近正态分布, 随机变量x近似服从的正 态分布。
二项分布的参数
又称为又称贝努里分布,是一种常用的 离散型随机变量的分布。

概率分布与统计图表

概率分布与统计图表
1. 关于
心,左右对称。 2. 在 在 处取得概率密度函数的最大值, 处有拐点,表现为 钟形曲线。即正
对称。即态分布以均数为中
态曲线在横轴上方均数处最高。
2018/10/26
6
3. 正态分布有两个参数,即均数µ 和标准差σ。
µ 是位置参数,σ是变异度参数(形状参数)。常用
N(µ ,σ2)表示均数为μ ,标准差为σ的正态分布;用
( 2)
2018/10/26
16
( 3)
查附表1,标准正态分布曲线下左侧面积为0.10所对应
的Z值为-1.28,所以80%的8岁男孩身高值集中在
X 1.28S 区间内,即116.9cm~129.2cm
2018/10/26
17
练习:
查附表,求标准正态分布曲线下的面积。 (-∞,-1.96),( -∞ ,-2.58), (-1.96,1.96),(-1,1),( -∞ ,0.00)。

S=4.79 cm ,估计(1)该地8岁男孩身高在130 cm以上者占该地8岁 男孩总数的百分比;(2)身高界于120cm~128cm者占该地8岁男孩
总数的比例;(3)该地80%男孩身高集中在哪个范围?
先做标准化变化:
理论上该地8岁男孩身高在130 cm以上者占该地8岁男孩 总数的7.21%。
2018/10/26 15
分析:正常人的血红蛋白过高过低均为异常,要制
定双侧正常值范围。
该指标的95%医学参考值范围为
2018/10/26 21
例4 某地调查110名正常成年男子的第一秒肺通 气量,得均数为4.2 L,标准差为0.7 L ,试估计该地 正常成年男子第一秒肺通气量的95%参考值范围。
分析:正常人的第一秒肺通气量近似正态分布,且只

概率论 常用统计分布

概率论  常用统计分布

由中心极限定理得
n
lim P {
n
2 n n
2n
x}
x
lim P{ i 1
n
2 X i n
n
x}


1 2
t2 e 2 dt
即 2分布的极限分布是正态 分布,也即当 n
很大时,
2 n n
2n
2 服从N (0,1), 进而 n N ( n,2n).
Y12
Y22
~ 2 ( 2)
则C1 1 2 , C2 1 4 .
2. t 分布 历史上,正态分布由于其广泛的应用背景 和良好的性质,曾一度被看作是“万能分布”, 在这样的背景下,十九世纪初英国一位年轻 的酿酒化学技师Cosset. WS, 他在酒厂从事试验 数据分析工作,对数据误差有着大量感性的认 识,我们知道在总体均值和方差已知情况下, 样本均值的分布将随样本量 增大而接近正态分布,
n
x
1 2

e dt .
t2
2
2 证 由假设和定义5.6, n X i2 , 其中X 1 , X 2 ,, X n i 1
2 2 2 独立且每个X i ~ N (0,1),因而X1 , X2 ,, X n 独立同分布,

E( X i2 ) 1, D( X i2 ) 2 (i 1,2,, n)
(3) T的数字特征
E (T ) 0,
n D(T ) n2
( n 2).
例3 设总体X和Y相互独立, 且都服从N(0,9)
X 1 , X 2 ,, X 9和Y1 ,Y2 ,,Y9来自总体X ,Y的样本,
求统计量T的分布,其中
T Xi /

(卫生统计学)第四章 常用概率分布

(卫生统计学)第四章 常用概率分布

第二节 Poisson分布的概念与特征
一、Poisson分布概念与特征
若某一随机变量X的取值为0,1,2,…,且X=k 的概率为:
P(X k) k e
k!
记作 X~P( λ )
其中 自然数e≈2.7182; λ 是大于0的常数,称X服从以λ 为参数的Poisson分布。
Poisson分布主要用于描述在单位时间(空间)内稀有事件的发生数。例如:放 射性物质在单位时间内的放射次数、单位容积内充分摇匀的水中的细菌数、染色 体异变数等。
350 300 250 200
人数
150 100
50 0
109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
不同参数µ和σ下的正态分布曲线
正态分布函数
1.Gauss函数 (Gauss, 1777~1855 德国人)
某地正常成人心率(次/分)的频率分布
频数 1 5 12 13 26 31
组段 75~ 80~ 85~ 90~ 95~ 100~105
频数 24 15 9 7 5 2
心率频数分布
35
30
25
20
人数
15
10
5
0
45
50
55
60
65
70
75
80
85
90
95 100~105
正态曲线
例4-10 某地1986年120名8岁男孩身高频数图
百分位数法
例4-13
282名正常人尿汞值(g/L)测量结果
尿汞值 0~ 8.0~
16.0~ 24.0~ 32.0~ 40~ 48.0~ 56.0~ 64.0~72.0

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

1.5 概率论——离散型随机变量的概率分布

1.5 概率论——离散型随机变量的概率分布

1
即,kk00
np np
p p
1
因此 np p 1 k0 np p
于是
np p k0 np p 1
[np p]
当np p是整数时 当np p是整数时
其它
二项分布的概率计算;
B(k;n, p) P( X k) Cnk pk (1 p)nk
1.直接计算; n 较小 2.查表 n 较大时,p不太大或小时 3.利用泊松分布; n 较大, p较小 4.利用中心极限定理; n 较大
二项分布的概率最大值(众数); 二项分布中 X 可以取值 0,1,2, , n,使概率 Pk 取最大值
的 k记作 k0 , 称 k0为二项分布的最可能取值。已知 n, p 来求 k0
np p k0 np p 1
[np p]
当np p是整数时 当np p是整数时
其它
设P( X k0 )为最大,则有下面不等式组:
因此 X概率分布为 X -1
0
1
2
P 0.3 0.3 0.2 0.2
P( X 1 X 0) P( X 1, X 0) P( X 0)
P( X 1) 0.3 3 1 P( X 0) 0.7 7
二、常见离散型随机变量
1.退化分布
P{X a} 1
2.Bernoulli分布(两点分布,0-1分布) 记为X ~ B(1,p)
(1)P( X 10) 0.9510 0.599
(2)P( X 8) C180 0.958 0.052 0.075 (3)P( X 9) C190 0.959 0.05 0.9510 0.914
4.超几何分布
模型: 一般地,如果有 N个元素分为两大类,第一类 N1个 元素,第二类 N2个元素(N1 N2 N ), 采用不重复抽样, 从N个元素中取出n个元素,那么所取到的第一类元素的 个数 X的分布称为超几何分布。

概率分布及概率分布图

概率分布及概率分布图

概率密度函数图
总结词
概率密度函数图是一种展示连续概率分布的图形,通过曲线的高低表示概率密度的大小。
详细描述
概率密度函数图是连续概率分布的图形表示,它通过曲线的高低表示概率密度的大小。在概率密度函数图中,曲 线下方的面积表示事件发生的概率。这种图形可以帮助我们了解连续随机变量的分布情况,并用于估计和预测未 来的事件。
02 离散概率分布
二项分布
01
02
03
定义
二项分布是描述在n次独 立重复的伯努利试验中成 功的次数的概率分布。
公式
$B(n, p) = C(n, k) p^k (1-p)^{n-k}$,其中C(n, k)是组合数,表示从n个 不同项中选取k个的方法 数。
应用场景
例如,抛硬币的结果(正 面或反面),或者给定数 量的独立事件中成功事件 的次数。
泊松分布
定义
泊松分布是描述在单位时间内(或单 位面积内)随机事件的次数,当这些 事件以小概率发生,并且这些事件之 间是独立的。
公式
应用场景
例如,放射性衰变或者网络中同时发 生的请求数。
$P(X=k) = frac{e^{lambda}lambda^k}{k!}$,其中 $lambda$是事件的平均发生率。
05 概率分布及概率分布图的 应用实例
在统计学中的应用
1 2 3
描述性统计
概率分布图可以用来描述数据的分布情况,如频 数分布图、直方图等,帮助我们了解数据的集中 趋势、离散程度等。
假设检验
在假设检验中,概率分布图可以用来表示样本数 据和理论分布之间的比较,帮助我们判断样本数 据是否符合预期的分布。
概率分布的种类
离散概率分布
描述离散随机变量的取值概率,如二项分布、泊 松分布等。

第4章 几种常见的概率分布

第4章 几种常见的概率分布

6. 正态分布的单双侧临界值
面积为,已知 上侧临界值 P(U> u )= α ,下侧临界值 P (U <- u )= α (附表 3 上侧临界值)
若将一定曲线下面积α,平分到两侧尾区,则每侧曲线下面积为α/2,
即 P(
U U 2
)=
α,
U 这时的
U
2
称为α的双侧临界值。
面积为,已知
u 称为的上侧临界值。 附表3 (256页)给出了u的值。
N(0,1)
x=0 时,φ(x) 达到最大值
(1) 关于点(0,0.5)对称,该点也
是它的拐点
(2)x 取值离原点越远,φ (x) 值越小 (2) 曲线以 y = 0 和 y = 1 为渐近线;
(3)关于 y 轴对称,即φ(x)= φ (- x)
(3) Ф(1.960)-Ф(-1.960) = 0.95
种变量有它各自的概率而组成一个分布。这个分布就叫做二项概率分布,或简称二项分布
(binomial distribution) 由此得到计算二项分布任何一项概率的通式为:p(x) =Cnx φ
x(1- φ)n-x
二项分布是一种离散型随机变量的概率分布
性质
n
Cnx x (1 )nx 1
x0
m
一指定时间范围内或在指定的面积或体积内某一事件出现的个体数的分布 泊松分布是一种离散型随机变量的概率分布
实例 调查某种猪场闭锁育种群仔猪畸形数,共记录 200 窝, 畸形仔猪数的分布情况如下表所
示。试判断畸形仔猪数是否服从泊松分布。 畸形仔猪数统计分布
解:根据泊松分布的平均数与方差相等这一特征,若畸形仔猪数服从泊松分布,则由观察数 据计算的平均数和方差就近于相等。样本均数和方差 S2 计算结果如下:

数学基础-概率论01(离散型分布)

数学基础-概率论01(离散型分布)

数学基础-概率论01(离散型分布)⽬录:1.离散型1.1 单点分布单点分布(one-point distribution)亦称⼀点分布,或称退化分布,是⼀种最简单的离散型分布。

假如随机变量X仅取数值a,即P{X=a}=1,则称随机变量X服从单点分布或退化分布。

单点分布的均值E(x)=a,⽅差Var(x)=0。

如果随机变量X有有限均值和零⽅差,则随机变量X服从单点分布。

概率函数:$$P(x)= \begin{cases} {1}, & \text {x=a} \\ 0, & \text{x!=a} \end{cases}$$期望值$E(X)=a$;⽅差 $Var(X)=0$特点:该分布下数据衡等于a1.2 两点分布两点分布( two-point distribution)即“伯努利分布”或者0-1分布,是⼀个离散型概率分布。

在⼀次试验中,事件A出现的概率为P,事件A不出现的概率为q=1-p概率函数:$$P(x)= \begin{cases} p, & \text {x=a} \\ q, & \text{x=b} \end{cases}$$两点分布的均值$E(X)=pa+qb$,⽅差$V(X)=pq(a-b)^2$。

特点:该分布下数据仅有两个可取值,且任意⼀次随机,取a或b的概率不变1.3 均匀分布离散型均匀分布是⼀个离散型概率分布,其中有限个数值拥有相同的概率,典型的如抛硬币,掷⾊⼦概率密度函数:期望:$E(X)=\int_{-\infty}^{\infty} xf(x) dx=\int_{a}^{b} \frac{x}{b-a}dx=\frac{b-a} {2}$⽅差:$V(X)=\frac {(b-a)^2} {12}$特点:1.4 ⼆项分布⼆项分布就是重复n次独⽴的伯努利试验,在每次试验中只有两种可能的结果,⽽且两种结果发⽣与否互相对⽴,并且相互独⽴,与其它各次试验结果⽆关,事件发⽣与否的概率在每⼀次独⽴试验中都保持不变,则这⼀系列试验总称为n重伯努利实验,当试验次数为1时,⼆项分布服从0-1分布。

常见的概率分布

常见的概率分布

常见的概率分布离散分布0-1分布(伯努利分布)它的分布律为:\[P\{X=k\}=p^k(1-p)^{1-k}, k=0,1, (0<p<1)\]0-1分布记作:\(X \sim b(1,p)\)期望:\(E(X)=p\)⽅差:\(D(X)=p(1-p)\)常⽤的场景:新⽣婴⼉性别的登记,招⽣考试的录取,产品的是否合格,硬币的正反⾯。

⼆项分布⼆项分布为\(n\)重伯努利实验的概率分布。

分布律为:\[P\{X=k\}=\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k},k=0,1,2,...,n,(0<p<1)\]\[\sum\limits_{k=0}^{n}P\{X=k\}=\sum\limits_{k=0}^{n}\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}=(p+1-p)^n=1\]⼆项分布记作:\( X \sim b(n,p)\)期望:\(E(X)=np\)⽅差:\(D(X)=np(1-p)\)常⽤的场景:⽐如⼀个⼈射击\(n\)次,其中\(k\)次命中的概率,抽查50台设备,其中10台出故障的概率等等。

从下⾯的图中,我们可以看到命中次数先增加,到了3达到最⼤,之后⼜逐渐减少,⼀般来说,对于固定的\(n,p\),都具有这⼀性质。

(1)当\((n+1)p\)不为整数时,⼆项概率\(P\{X=k\}\)在\(k=[(n+1)p]\)时达到最⼤值;(2)当\((n+1)p\)为整数时,⼆项概率\(P\{X=k\}\)在\(k=(n+1)p,k=(n+1)p-1\)时达到最⼤值。

%每轮射击10次,命中概率0.3,射击10000轮,x中返回的是每轮中命中的次数x=binornd(10,0.3,10000,1);%bin的数⽬为10hist(x,10);N=100;p=0.4;k=0:N;%事件发⽣k次的概率pdf=binopdf(k,N,p);%事件发⽣不⼤于k次的概率cdf=binocdf(k,N,p);plotyy(k,pdf,k,cdf);grid on;多项分布多项式分布是⼆项式分布的扩展,在多项式分布所代表的实验中,⼀次实验会有多个互斥结果,⽽⼆项式分布所代表的实验中,⼀次实验只有两个互斥结果。

第4章 概率及正态分布

第4章 概率及正态分布
σ2 = 总体方差 π =3.14159; e = 2.71828 x = 随机变量的取值 (-∝ < x < ∝) µ = 总体均值
正态分布的概率
概率是曲线下的面积! 概率是曲线下的面积!
ϕ (x )
P(a ≤ x ≤ b) = ∫ f (x)dx = ?
a
b
a
b
x
左右各一个标准差范围内的面积:68.27% 左右各一个标准差范围内的面积:68.27%; 左右各一个标准差范围内的面积:95.45% 左右各一个标准差范围内的面积:95.45%; 左右各一个标准差范围内的面积:99.73% 左右各一个标准差范围内的面积:99.73%;
第四节 大数定理与中心极限定理
大数定理
少量的随机现象是没有稳定性规律的; 少量的随机现象是没有稳定性规律的; 大量随机现象构成的总体,呈现的规律具有稳定性, 大量随机现象构成的总体,呈现的规律具有稳定性,有关 这一系列的定理, 大数定理; 这一系列的定理,称大数定理; 大数定理有:贝努里大数定理、切贝谢夫大数定理; 大数定理有:贝努里大数定理、切贝谢夫大数定理;P163 大数定理说明了大量现象的稳定规律:频率值趋于概率值, 大数定理说明了大量现象的稳定规律:频率值趋于概率值, 平均值趋于期望值。 平均值趋于期望值。 例如,一家一户,在自然的生育的情况下, 例如,一家一户,在自然的生育的情况下,生男生女纯属 偶然,但统计成千上万户的结果后,其性别比约为1/2将 偶然,但统计成千上万户的结果后,其性别比约为 将 是稳定的。 是稳定的。 所以,大数定理是把偶然性因素消除掉, 所以,大数定理是把偶然性因素消除掉,使共性表现出来 大数定理抽样调查的大样本( ≧ 大数定理抽样调查的大样本(n≧50)提供了理论基础 提供了理论基础

史上最全——概率分布期望方差以及分布图汇总

史上最全——概率分布期望方差以及分布图汇总
单点分布(退化
b0(, 1)
a
P(x = a)= 1
a
0
分布)
(0-1)分布(两点
b(1, )
0 < p < 1
P{ = }= (1 − )1−, = 0,1
p
1-p
分布或伯努利分
布)
二项分布
B(, )
0 < p < 1
P{ = }= (1 − )−
np
np(1-p)
2
超几何分布
H(, , )
N,M,n
(M≤N,n≤

P{ = }=−


k ∈ Z, max{0, − + }≤ ≤ min{, }


(1 −) ( −)
−1
N)
泊松分布
π()
> 0



P{ = }=!
K=0,1,2,…
−1−⁄, > 0
布)
f(x)= {Γ()
0,其它
指数分布(负指
Γ(1, )
> 0
1
−, > 0 f(x)= {
0,其它

2
数分布)
注:指数分布是Γ分布的特殊情况
χ2分布
2()
≥ 1
1
n
2n
2−1−2, > 0
f(x)= {2n⁄2Γ(⁄2)
f(x)= {√2
0 ,其它
μ+2
e2μ+2(2− 1)
e2
且Y = eX则Y
σ > 0
服从该分布
逆高斯分布
N−1(μ, λ)
λ, μ > 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档