小学五年级奥数 燕尾模型(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕尾模型(一)
模块一:基本的燕尾模型
1. 认识燕尾模型
2. 边长比推导面积比【例1】(★★)
如图,已知△ABD的面积是15 ,△ACD的面积是20,△BCD的面
积
是14. 求△CDE的面积是多少?
1. 二合一模型
2.燕尾模型:
ABE BD
ABD BD
AEC DC
ADC DC
【例2】(★★★)
如图,△ABC中,BD∶DC=2∶3,AE∶EC=5∶3,则ABG : AGC : BGC ________ 【例3】(★★★)
如图,已知BD=3 DC,EC=2AE,BE与AD相交于点O,则四
边形
OECD的面积占△ABC面积的几分之几?
找燕尾、化连比、求1份
【拓展】(★★★)
如图,△ABC中,BD DC=2 3,AE EC=5 3,则
AF: FB _____
1
【例4】(★★★)【例5】(★★★)
如图,E在AC上,D在BC上,且AE∶EC=2∶3,
B D∶DC=1∶2,AD与BE交于点F.四边形DFEC的面积等于22cm2,则三角形ABC的面积___. 在△ABD中,BD∶DC=3∶2,AE∶E
C =3∶1,求OB∶OE=?
【例6】(★★★★)
知识大总结两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三
.,,.
角形的面积分别是3,7,7,则四边形ADPE的面积是多少?
2.应用:线段比推导面积比.
3.结论:已知两条边长的线段比,必然可求三部分面积关系.
注意:份数的统一.
【超常大挑战】(★★★★)
【今日讲题】
请证明燕尾模型:ABE BD
AEC DC
例2,例3,例5,超常大挑战
【讲题心得】
__________________________________________________________________. 【家长评价】
________________________________________________________________.
2。