《离散数学课件》1-2集合基本概念

合集下载

离散数学课本定义和定理

离散数学课本定义和定理

第1章集合集合的基本概念1. 集合、元元素、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义子集:给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的一个子集;如果集合A和B满足,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的一个真子集;4. 定义幂集:给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为或集合的运算定义并集:设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B 的并集,记为.定义交集:A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B 的交集,记为.定义不相交:A和B是两个集合,如果它们满足,则称集合A和B是不相交的;定义差集:A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B的差集,记为.定义补集:若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为. 定义对称差:A和B是两个集合,则定义A和B的对称差为包含排斥原理定理设为有限集,其元素个数分别为,则定理设为有限集,其元素个数分别为,则定理设为有限集,则重要例题P11 例第2章二元关系关系定义序偶:若和是两个元,将它们按前后顺序排列,记为,则成为一个序偶;※对于序偶和,当且仅当并且时,才称和相等,记为定义有序元组:若是个元,将它们按前后顺序排列,记为,则成为一个有序元组简称元组;定义直接积:和是两个集合,则所有序偶的集合,称为和的直接积或笛卡尔积,记为.定义直接积:设是个集合,,则所有元组的集合,称为的笛卡尔积或直接积,记为.定义二元关系若和是两个集合,则的任何子集都定义了一个二元关系,称为上的二元关系;如果,则称为上的二元关系;定义恒等关系:设是上的二元关系,,则称是上的恒等关系;定义定义域、值域:若是一个二元关系,则称为的定义域;为的值域;定义自反:设是集合上的关系,若对于任何..,都有即则称关系是自反的;定义反自反:设是集合上的关系,若对于任何,都满足,即对任何都不成立,则称关系是反自反的;定义对称:设是集合上的关系,若对于任何,只要,就有,那么称关系是对称的;定义反对称:设是集合上的关系,若对于任何,只要并且时,就有,那么称关系是对称的;定义传递设是集合上的关系,若对于任何,只要并且时,就有,则称关系是传递的;定理设是集合上的关系,若是反自反的和传递的,则是反对称的;关系矩阵和关系图定义无定理无关系的运算定义连接:设为上的关系,为上的关系,则定义关系称为关系和的连接或复合,有时也记为.定义逆关系:设为上的关系,则定义的逆关系为为上的关系:.定理设和都是上的二元关系,则下列各式成立12345定理设为上的关系,为上的关系,则闭包运算定义自反闭包:设是集合上的二元关系,如果是包含的最小自反关系,则称是关系的自反闭包,记为.定义对称闭包:设是集合上的二元关系,如果是包含的最小对称关系,则称是关系的对称闭包,记为.定义传递闭包:设是集合上的二元关系,如果是包含的最小传递关系,则称是关系的传递闭包,记为或.定理设是集合上的二元关系,则(1)是自反的,当且仅当.(2)是对称的,当且仅当.(3)是传递的,当且仅当.定理设是集合上的二元关系,则. “恒等关系”定理设是集合上的二元关系,则. “逆关系”定理设是集合上的二元关系,则. “幂集”定理设是一个元集,是上的二元关系,则存在一个正整数,使得.等价关系和相容关系定义覆盖、划分:是一个集合,,如果,则称是的一个覆盖;如果,并且,则称是的一个划分,中的元称为的划分块;定义等价关系:设是上的一个关系,如果具有自反性、对称性和传递性三个性质,则称是一个等价关系;设是等价关系,若成立,则称等价于.定义等价类:设是上的一个等价关系,则对任何,令,称为关于的等价类,简称为的等价类,也可以简记为.定义同余:对于整数和正整数,有关系式:如果,则称对于模同余的,记作定义商集:设是上的一个等价关系,由引出的等价类组成的集合称为集合上由关系产生的商集,记为. “等价类的集合”定理若是上的一个等价关系,则由可以产生唯一的一个对的划分; “商集”定义相容关系:设是上的一个关系,如果是自反的和对称的,则称是一个相容关系;相容关系可以记为.所有的等价关系都是相容关系,但相容关系却不一定是等价关系;定义最大相容块:设是一个集合,是定义在上的相容关系;如果,中的任何两个元都有关系,而的每一个元都不能和中所有元具有关系,则称是的一个最大相容块;偏序关系定义偏序关系:是定义在集合上的一个关系,如果它具有自反性、反对称性和传递性,则称是上的一个偏序关系,简称为一个偏序,记为.更一般地讲,若是一个集合,在上定义了一个偏序,则我们用符号来表示它,并称是一个偏序集;定义全序/链:是一个偏序集,对任何,如果或这两者中至少有一个必须成立,则称是一个全序集或链,而称是上的一个全序或线性序;定义盖住:是一个偏序集,,若,并且不存在,使并且,则称盖住. “紧挨着”定义最小元、最大元:是一个偏序集,如果中存在有元,对任何都满足,则称是的最小元;如果中存在有元,对任何都满足,则称是的最大元; 定义极小元、极大元:是一个偏序集,如果,而中不存在元,使,则称是的极小元;如果,而中不存在元,使,则称是的极大元;定义上界、下界、上确界、下确界:是一个偏序集,,如果对于所有的,都有,则称是的一个上界;如果对于所有的,都有,则称是的一个下界;如果是的一个上界,对于的任一上界,都有,则称是的最小上界上确界. 如果是的一个上界,对于的任一上界,都有,则称是的最大下界下确界.定义良序集:设是一个偏序集,对于偏序,如果的每个非空子集都具有最小元,则称是一个良序集,而称是上的一个良序;每个良序集都是全序集;第3章函数和运算函数定义映射、象:关系定义在上,如果对于每一个.....,使,...,都有唯一的一个则称是从到的一个函数或映射,记为.称为函数的变元,称为变元在下的值或象,记为.注意:(1)定义域,而不是.(2)每一个,有唯一的,使. 多值函数不符合定义(3)值域.定义受限、扩展:若是从到的一个函数,,则也是一个函数,它定义于到,我们称它是在上的受限;如果是函数的一个受限,则称是的一个扩展;★定义映上、映内、一对一、一一对应:若,则的值域时,称函数是映上的或满射;如果的值域时,则称函数是映内的;如果,则有,则称是一对一的单射即时,有.如果映上的,又是一对一的,则称是一一对应的或双射;定义复合运算:若,则定义和的复合运算为:即.注:逆函数若要存在需要满足以下条件:1函数是映上的2函数必须是一对一的定义恒等函数函数称为恒等函数;定理,则的充分必要条件是,并且运算定义二目运算:若是一个集合,是从到的一个映射函数,则称为一个二目运算;一般地,若是从到的一个映射是正整数,则称是一个目运算;运算的封闭:运算的结果总是集合中的一个元,因此这个定义保证了运算的施行,这种情况又称为集合对于该种运算是封闭的;定义可交换:若是一个运算,对于任何,都有,则称运算是可交换的或者说,服从交换律.定义可结合:若是一个运算,对于任何,都有,则称运算是可结合的或者说,服从结合律.定义可分配:若是一个运算,是一个运算,对于任何,都有,则称运算对于运算是可分配的或者说,对于服从分配律定义左单位元、右单位元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左单位元;如果中存在有一个元,对于任何,有,则称是运算的右单位元;定理若是上的一个运算,和分别是它的左、右单位元,则,并且是唯一的因此,称为运算的单位元.定义左零元、右零元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左零元;如果中存在有一个元,对于任何,有,则称是运算的右零元.定义等幂:若是上的一个运算,,对于运算,有,则称元对于运算是等幂的;定义左逆元、右逆元:若是上的一个运算,它具有单位元,对于任何一个,如果存在有元,使,则称是的左逆元;如果存在有元,使,则称是的右逆元;定理若是上的一个运算,它具有单位元,并且是可结合...的,则当元可逆时,它的左、右逆元相等,并且唯一的此时称之为的逆元,并且记为.定义可消去:若是上的一个运算,对于任何,如果元满足:则;或则,则称元对于运算是可消去的;第4章无限集合基数★定义等势:若和是两个集合,如果在和之间可以建立一个一一....对应关系,则称集合和等势,并记为;定理令是由若干个集合为元所组成的集合,则上定义的等势关系是一个等价关系;定义有限集、无限集:若是一个集合,它和某个自然数集等势,则称是一有限集,不是有限集的集合称为无限集;定理有限集的任何子集都是有限集定理有限集不与其任何真子集等势定理自然数集是无限集可列集定义可列集:若是一个集合,它和所有自然数的集合等势,则称是一个可列集;可列集的基数用符号表示;定理若是一个集合,可列的充分必要条件是可以将它的元排列为的序列形式;定理任何无限集必包含有可列子集;定理可列集的子集是有限集或可列集记为:定理若是可列集,是有限集,并且,则是可列集记为:.定理若和都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集记为:定理设都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集.定理所有有理数的集合是可列集;不可列集定理区间中所有实数构成的集合是不可列的;定义连续基数:开区间中所有数组成集合的基数记为,具有基数的集合称为连续统,称为连续基数;推论:集合的基数也是.定理所有实数的集合是不可列的,它的基数是.定理对于任何数,若,则区间,以及都具有连续基数定理一个无限集和一个可列集作并集时,并集的基数等于集的基数;推论一个无限集和一个有限集的并集,其基数等于集的基数;基数的比较定义设集合的基数是.如果与的真子集等势,而和不等势,则称的基数小于的基数,记为.定理:是两个集合,若与的某一子集等势,与的某一子集等势,则.定理:是任意两个集合,的基数为,的基数为,则下列三个关系:中必有一个且只有个成立;定理:若是有限集的基数,则.定理:若是无限集合,则定理:若是可列个互不相交的集合,它们的基数都是,则的基数是记为:定理:可列集的幂集,其基数是记为:定理:若是一个集合,是的幂集,则.此定理说明:不存在最大的基数;补充:第5章形式语言文法和语言定义产生式:一个产生式或重写规则是一个有序对,通常写成,其中,是一个符号,而是一个符号的非空有限串,是这个产生式的左部,而是产生式的右部.产生式将简称为规则;定义非终极符号、字母表、终极符号、开始符号:一个文法是一个四元组.其中,是元语言的语法类或变元的集合,它生成语言的串,这些语法类或变元成为非终极符号,是符号的非空有穷集合,称为字母表,的符号称为终极符号.是之一,是词汇表的一个识别元素,称为开始符号.是产生式的集合;定义直接产生、直接推导,直接规约:设是一个文法,如果,而中有规则,就称串直接产生串,或称是直接推导出来的,或直接规约到,记为.定义产生、规约到、推导:设是一个文法,如果存在产生式序列,使得,而,就说产生规约到,或是的推导,记为.定义句型:令是一个文法,如果串可从开始符号推导出来,即如果,则称为一个句型;补充:若,则,其中是空串,不含空串文法的类型定义0-型文法:在上的0-型文法由以下组成:(1)不在中的不同符号的非空集合,称为变量表,它包含一个纲符号,称为开始变量; (2)产生式的有限集合;由产生的所有字集称为由产生的语言;定义0-型语言:在上可由某一0-型文法产生的字集称为0-型语言;定义1-型文法:如果在0-型文法中,对于中的每个产生式,要求,则这文法称为1-型文法或上下文敏感文法.定义2-型文法:设文法,对于中的每一个产生式有且有的人要求,则此文法叫2-型文法或前后文无关文法;定义3-型文法:设为一文法,又设中的每一个产生式都是或,其中和都是变量,而为终极符号,而此文法为3-型文法或正规文法;第1章代数系统代数系统的实例和一般性质定义代数系统:若是序偶,是一个非空集合,是定义在上的某些运算的非空集合,则称是一个代数系统,或称代数;代数系统的类型:(1)代数系统的类型是,其中代表目运算符; (2),分别为目运算符,则的类型为.同态和同构定义同态象、同态映射:和是两个同类型的代数系统,映射和也构成一一对应.如果对于任意目运算,及其对应的运算,当时,都有,则称代数是的同态象,称是从到的一个同态映射;定义同态象、同态映射:若和是两个同类型的代数系统,和都是二目运算,映射.如果对于任何,都有,则称是的一个同态象,称是从到的一个同态映射;注:如果就是,则映射是从到它自身;当上述条件仍然满足时,我们就称是的一个自同态映射;定义同构、同构映射、自同构映射:如果和是同态的,映射不仅是同态映射,而且是一一对应....的,则称和同构,称是从到的一个同构映射;如果就是,则称是上的一个自同构映射定义同余关系:设是一个代数系统,是上的一个等价关系,如果存在,当时,成立,则称是上的一个同余关系;定理:设~是上的一个等价关系,如果存在同态映射,使得当时,当且仅当,则~是上的同余关系;商代数与积代数定义子代数:设是一个代数系统,在运算下封闭的,则称是的一个子代数;定义直接积:设到是两个同类型的代数系统,如果对任意的和,定义运算于,称是和的直接积,称和为的因子;第2章半群和群半群和有幺半群定义半群、有幺半群:是一个非空集合,如果中定义了一个二目运算,对于任何,都有,则称是一个半群.如果半群中具有单位元,使得对任何,都有,则称是一个有幺半群;1是一个由有限个符号组成的集合,其中的元称为字母;表示所有的字构成的集合,表示非空串组成的集合;2自由半群:半群的各元相互间没有任何关系;说明:半群是一个定义了二目运算,并且服从结合律的代数系统;有幺半群则是具有单位元的半群;群和循环群定义群:在代数系统中,如果二目运算满足1对于任何,有;2中存在单位元,对任何,有;3对于任何,存在有逆元,使则称是一个群;注:对于群来说,单位元是唯一的,每个元的逆元也是唯一的;“存在逆元的有幺半群叫做群”定义阶数:若是一个群,当是有限集时,则称中元的个数为群的阶数,记为.定理若是一个群,,则,其中即.定义幂:是一个群,,则记个的积为,称为幂,记为表示单位元;定理指数律:若和是整数,则.定理若则定义次数:若是一个群,,使的最小正整数,称为元的次数;定理若是一个群,,的次数为,则都是中不同的元;定义循环群、生成元:由一个单独元素的一切幂所组成的群称为循环群,称为这个群的生成元;定理在阶数为的循环群,由生成元所产生的元次数为,即是生成元的充分必要条件是和互质;定理若和不是互质的,则的次数是,其中的是和的最小公倍数;定义阿贝尔群:如果群中的元对于运算满足交换律,则称这个群是一个阿贝尔群; “满足交换律的群叫做阿贝尔群”循环群是一个阿贝尔群;定理若和都是有限的阿贝尔群,定义则是一个阿贝尔群;最简单的一个阿贝尔群是群,为按位加二面体群、置换群二面体群是从图形的变换中到处,这些图形都是比较正规的图形;定理更一般地讲,定义置换:若是一个非空的有限集合,则上任何一个到它自身的一一对应的映射,都称为上的置换;定理两个置换的乘积仍是一个置换,并且置换的乘积服从结合律;的恒等映射也是一个置换称为单位置换;上所有置换的集合,对于置换乘法构成一个群,这个群称为对称群,记为,是中元的个数;定义阶置换群若是非空有限集合,是上的个置换所构成的群,则称是一个阶置换群; 定理任何一个阶群都同构于一个阶置换群;子群、群的同态定义子群:是一个群,,如果1单位元2若,则的逆元3若,则则称是的一个子群;定理是一个群,,是一个子群的充分必要条件是:若,则定义同态象、群同态映射:和是群,.若对任何,有群的同态映射具有下列性质:1将单位元映射为单位元2将逆元映射为逆元3对运算封闭,即对任何,有定理若和是群,是一个群同态映射,则将的子群映射为的子群;定义同态核:若是一个群同态映射,是的单位元,则中所有满足的元的集合,称为同态核,记为.定理同态核是一个子群;定理若是群的子群,则定义了上的一个划分因而也定义了上一个等价关系. 群子集:假定都是群中的元构成的集合称之为群子集,定义特别地,当是一元集时,我们简记为,则定理若是群的子群都是群的子群,则是一个群的充分必要条件是.陪集、正规子群、商群定义左陪集:若是群的子群,对于,称称为的一个左陪集. 定理若是群的子群,则的所有左陪集构成的一个划分;定理拉格朗日定理每个左陪集的元和中的元都是一样多;推论子群中元的个数一定是群中元的个数的因子;定义正规子群:若是群的子群,对于任何,都满足,则称是群的一个正规子群.一个阿贝尔群的任何子群都是正规子群;当是群的正规子群时,对于关于的陪集.定义运算为考虑所有关于的陪集组成的集合和运算构成的系统为一个群;这个群称为关于的商群,记为.定理若是从群到群的映上的同态映射,则核是正规子群,商群同构于.群同态基本定理:商群是由陪集构成的群,也是同余类的集构成的群,所以它同构于象代数,即同构于.如果群没有真正的正规子群,则该群为单群;正规群的任何子群都是正规子群;第3章格和布尔代数格定义格:表示一个偏序集,如果对于中的任何两个元和,在中都存在一个元是它们的上确界,存在一个元是它们的下确界,则称是一个格;对于中的元,它们的上确界常常记为,它们的下确界常常记为,前者又称为和析取或和或,后者又称为和的合取或积或或;定理若是一个格,则对于任何,有(1)的充分必要条件是.(2)的充分必要条件是.定理保序性若是一个格,则对于任何,当时,有引理若是一个格,,则定理分配不等式:若是一个格,则对于任何,定理模数不等式若是一个格,则对于任何,的充分必要条件是定理若是一个代数系统,和是上的二目运算,它服从交换律、结合律和吸收律.则是一个格.定义子格是一个格,,当且仅当对于运算和是封闭的,运算结果和在中相同时,则称代数系统是的一个子格;定义直接积若和是两个格,则称为这两个格的直接积,其中的运算和定义为:对于任何的,定义同态映射设和是两个格,.如果对任何,有则称是到的一个同态映射.特别地,当是一个一一对应时,称是一个同构映射,并且称格和同构的;如果是格上一个同态映射,则称是一个自同态映射.如果是一个同构映射,则称是一个自同构映射.定义完备:对于一个格,如果它的每一个非空子集在格中都具有一个上确界和下确界,则这个格称为完备的;显然每个有限的格都是完备的;对于一个格,它的上确界和下确界如果存在,我们称它们为这个格的边界,并分别记为1和0,因此有时这种格称为有界格;定义补元:是一个有界格,,如果存在元,使且,则称为的补元;定义补格:中的每个元都至少具有一个补元,则称这个格是一个补格;定义分配格:是一个格,如果对任何,有则称是一个分配格;定理任何两个分配格的直接积是分配格;定理若是一个分配格,则对于任何,如果,并且,则推论如果一个格是分配格,同时又是补格,则它的每一个元都具有唯一的一个补元;布尔代数定义布尔代数一个既是补格,又是分配格的格,称为布尔代数;定义对偶命题如果是一个布尔代数,是关于中变元的一个命题,它可以由中变元元通过运算来表示.如果对的表示式进行下列代换:代换为;代换为;代换0;0代换为1,则这样代换后也将得到一个命题,它成为命题的对偶命题,简称为对偶;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算来表示,则对它的对偶命题也在任何一个布尔代数中成立;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算和关系来表示,则将中的运算代换为;代换为;0代换为1,代换0;换为,换为,所得到的对偶命题也在任何一个布尔代数中成立;定理若和是两个布尔代数,是一个同态映射,则在中的同态象是的一个子布尔代数;定义基元:是一个布尔代数,,如果中不存在元,使,则称是的一个基元;如果对于任何都存在有基元,则称这个布尔代数是基元的; 定理若是一个布尔代数,,则下列命题是等价的;1是一个基元2对于所有的,若,则或3对于所有的,推论若和是不同的基元,定理是一个基元的布尔代数,是其基元的集合,对任一令,则,并且作为基元的析取式,这个表达式是唯一的;定理若是一个非空有限的布尔代数,是它的所有基元构成的集合,则同构.推论一个有限的布尔代数具有个元,其中的是它的基元的个数;推论对于任意正整数,具有个元的布尔代数是同构的;其他代数系统定义环若代数系统满足下列条件:1对于二目运算是一个可交换的加法群;2对于二目运算即乘法是封闭的;3乘法结合律成立,即对中任何三个元和,有4分配律成立,即对中任何元和,有则称是一个环;定义交换环一个环中的任何两个元,如果都满足,则称是一个交换环;定义逆元、零元一个环中如果存在有元,使得对中任何一个元都有,则称是的一个单位元;定义逆元、零元在一个有单位元的环里,如果和是环中的元,满足,则称是。

《离散数学》集合的基本概念和运算

《离散数学》集合的基本概念和运算

(2)若AB,BC,则AC
解 错误。举反例如下:设A={a},
B={{a},b},C={{a},b,{c}},显然AB, BC,但A不是C的子集。因为aA,但aC。
定义3.7 A、B是任意集合,由属于A或属于B的
所有元素组成的集合称为A与B的并集,记
3.2 作 A B 。即

A B u | u A或u B
推论 空集是惟一的. 证 假设存在1和2,则12 且12,因此
1=2 全集 在一个具体问题中,如果所涉及的集合都是某个
集合的子集,则称这个集合为全集,记作E
全集具有相对性
在给定问题中,全集包含任何集合,即A (AE )
三、幂集(PowerSet)
定义1.2.2 给定集合A,以A的所有子集为元素
- 命题演算法 - 包含传递法

- 等价条件法

- 反证法
(A B) A B
算 对偶原理:把一个等式中的中的∪,∩,E和
的分别代以∩,∪,和E后得到另一等式
二、对称差运算的性质:
① AA= ②A =A ③ A E= A
3.2 ④A B=B A
集 ⑤(A B) C A (B C)
合 ⑥A I (B C) (A I B) (A I C)
一、集合运算的十条定律
3.2
对于全集合E的任意子集A、B、C,有:
集 交换律 AB B A AB B A
合 的 结合律 A(B C) (A B) C

A(B C) (A B) C
本 分配律 A(B C) (A B) (AC)
运 算
A(B C) (A B) (AC)
概 念
(5)A ( )

1.1-集合的基本概念(离散数学)

1.1-集合的基本概念(离散数学)

幂集的性质
1.
为有穷集, 若A为有穷集,|A|=n,则 为有穷集 , |2A | = Cn0 + Cn1 + … + Cnn =2n 。 x∈ρ 当且仅当 A。 ∈ρ(A)当且仅当 ∈ρ 当且仅当x 。 是两个集合, 当且仅当 设 A、 B是两个集合 , AB当且仅当 、 是两个集合 ρ(B); ρ(A)ρ ; ρ
多样性
集合中的元素可以是任意的对象, 集合中的元素可以是任意的对象,相 互独立, 互独立,不要求一定要具备明显的共 同特征。 同特征。 例如: 例如: A={a,{a},{{a},b},{{a}}, 1} A={1,a,*,-3,{a,b},{x|x是汽车 地球 是汽车},地球 是汽车 地球}
罗素悖论(Russell’ paradox) 罗素悖论(Russell’s paradox)
集合的表示法
列举法;将集合中的元素一一列举, 列举法;将集合中的元素一一列举, 或列出足够多的元素以反映集合中元 素的特征,例如: 素的特征,例如:V={a,e,i,o,u} 或 B={1,4,9,16,25,36……}。 。 描述法 ;通过描述集合中元素的共同 特征来表示集合,例如: 特征来表示集合,例如: V= {x|x是元 是元 音字母} 是自然数} 音字母 ,B= {x|x=a2 , a是自然数 是自然数
空集、 空集、全集
约定,存在一个没有任何元素的集合, 约定,存在一个没有任何元素的集合, 称为空集(empty set) ,记为φ,有时也用{} ) 记为φ 有时也用{} 来表示。 来表示。 约定, 约定,所讨论的对象的全体称为全集 (universal set),记作 或U,我们所讨论 ,记作E或 , 的集合都是全集的子集 全集是相对的。 的集合都是全集的子集 。全集是相对的。 全集

离散数学PPT课件

离散数学PPT课件
定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理

离散数学 第1章 集合的基本概念和运算

离散数学 第1章 集合的基本概念和运算
定义3.1.1 设A,B为集合,如果B中的每个元素都是A中的元 素,则称B为A的子集合,简称子集。这时也称B被A包含,或A包 含B。记作B⊆A。包含的符号化表示为
B A ( x) ( x B x A)
例:设A={1,2,3,4,5,6,}, B={2,4,5,}及C={1,2,3,4,5} 定义3.1.2(外延性原理)设A,B为集合,如果B⊆A且A⊆B, 则称A与B相等,记作A=B。相等的符号化表示为
x 则 x A B或x A C , A且x B或x A且x C ,即 x A且x B C, 于是x A ( B C ) 所以 ( A B) ( A C ) A ( B C ) 因此 ( A B) ( A C ) A ( B C )
离散数学
第一章 集合的基本集合的基本概念和运算
1.1 1.2 1.3 1.4 集合的基本概念 集合的基本运算 集合中元素的计数 笛卡尔乘积
1.1 集合的基本概念
集合是不能精确定义的基本的数学概念,直观地讲,集合是 由某些可以相互区别的事物汇集在一起所组成的整体。对于给定 的集合和事物,应该可以断定这个特定的事物是否属于这个集合。 如果属于,就称它为这个集合的元素。 集合通常用大写的英文字母来表示。 集合有两种表示方法:枚举法和谓词表示法。前一种方法是 将集合中的所有元素罗列出来,元素之间用逗号隔开,并把它们 用花括号括起来。例如 A {a, b, c} , {1, 2, 3, ...}, {春, 秋, },都是合法的表示。 C 夏, 冬 B 谓词表示法是用谓词来概括集合中元素的属性,例如 2 } F D {x | x是学生 , {x | x是整数 , {x | x R x 1 0} } E 一般的 A={x︱R(x)} R(x)表示x具有性质R,表示任何谓词 集合的元素是彼此不同的,如果同一个元素在集合中多次出现 应该认为是一个元素。集合的元素也是无序的,元素的排列顺序 对集合没有影响。

离散数学教程——集合的基本概念

离散数学教程——集合的基本概念

集。记为P(A)。
例 1.1(已知A,求幂集)
定理 1.3 | P(A) |=2|A|
证明方法:组合的方法
求幂集 —— 代数法
P13 习题1.13 设A={a, {a}},问: (1) {a}P(A)? {a}P(A)? (2) {{a}}P(A)? {{a}}P(A)? (3) 又设A={a, {b}},重复(1)、(2)。 解: (1, 2)首先求P(A),代数法:
反证法的思想 / 思维过程
“结论不成立”与“结论成立”必有一 个正确。
“结论不成立”会导致出现错误,推理 过程、已知条件、公理和已知定理没有错 误,惟一有错误的是一开始接假定的“结 论不成立”,所以“结论不可能不成立”, 即“结论成立”。
1.2 集合的子集
六 定义1.5(幂集):
A的所有子集组成的集合称为A的幂
离散数学教程
——集合的基本概念
1.1 集合的表示 1.2 集合的子集 1.3 笛卡尔积 1.4 集合的运算 1.5 罗素悖论
引言:什么是集合?
一些自行车 在计算机系车棚内的自行车
一些自行车 不是集合,无法确定范围和性质
在计算机系车棚内的自行车 是集合,可以确定范围和性质
1.1 集合的表示
(1) 分配律
B(A1A2…An)=(BA1) (BA2) … (BAn) B(A1 A2… An)= (BA1) (BA2)…(BAn) (2) 狄•摩根律
n i 1
Ai
n i 1
Ai
n i 1
Ai
n i 1
Ai
1.4 集合的运算
六、广义并、广义交 1. 定义(广义并)
设Ǽ为一个集合族,称由Ǽ中全体元素的元 素组成的集合成为的Ǽ广义并集,记作Ǽ ,

《离散数学教案》课件2

《离散数学教案》课件2

《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义介绍离散数学的概念和特点强调离散数学在计算机科学中的应用1.2 离散数学的重要性解释离散数学在算法设计、编程和计算机科学其他领域的应用强调离散数学对于解决问题和逻辑思维的重要性1.3 离散数学的基本概念介绍集合、图、逻辑、组合等基本概念解释这些概念在离散数学中的作用和相互关系第二章:集合论2.1 集合的基本概念定义集合、元素、集合之间的关系介绍集合的表示方法:列举法和描述法2.2 集合的运算介绍集合的并、交、差、补等基本运算解释集合运算的性质和规律2.3 集合的推理和公理化介绍集合论的基本公理和公理化体系解释集合论的公理化意义和作用第三章:逻辑与布尔代数3.1 逻辑的基本概念定义逻辑联结词、命题、真值表等基本概念介绍逻辑推理和论证的基本方法3.2 布尔代数的基本概念介绍布尔代数的基本元素和运算解释布尔代数在计算机科学中的应用3.3 逻辑与布尔代数的关系解释逻辑和布尔代数之间的联系和转化举例说明逻辑表达式和布尔代数表达式的相互转化第四章:图论4.1 图的基本概念定义图、顶点、边等基本概念介绍图的表示方法和图的类型4.2 图的运算和性质介绍图的连通性、路径、圈等基本概念解释图的运算和性质的应用和意义4.3 图的应用介绍图在计算机科学中的应用:算法设计、网络结构等举例说明图的应用实例和解决实际问题的方法第五章:组合数学5.1 组合数学的基本概念定义组合、排列、组合数等基本概念介绍组合数学的基本原理和方法5.2 组合计数原理介绍排列组合计数原理及其应用解释组合计数原理在离散数学中的重要性5.3 图着色和组合优化问题介绍图着色问题的定义和解决方案举例说明组合优化问题及其解决方法第六章:算法设计与分析6.1 算法的基本概念定义算法、输入、输出、有效性和可读性等基本概念解释算法在解决问题中的重要性6.2 算法设计技术介绍常用的算法设计技术:贪心法、分而治之、动态规划等解释每种技术的应用场景和特点6.3 算法分析与复杂性介绍算法分析和时间复杂度、空间复杂度的概念解释常用算法分析方法和评价标准第七章:数理逻辑与命题逻辑7.1 数理逻辑的基本概念介绍数理逻辑中的基本概念:命题、联结词、逻辑运算等解释数理逻辑在计算机科学中的应用7.2 命题逻辑的推理规则介绍命题逻辑中的推理规则:蕴含式、否定式、De Morgan定律等解释这些规则在逻辑推理中的应用和意义7.3 数理逻辑与计算机科学解释数理逻辑在计算机科学中的重要作用:编程语言、形式验证等举例说明数理逻辑在计算机科学中的应用实例第八章:集合论与数理逻辑的应用8.1 集合论在计算机科学中的应用介绍集合论在计算机科学中的应用:数据结构、数据库等解释集合论在计算机科学中的重要性和作用8.2 数理逻辑在计算机科学中的应用介绍数理逻辑在计算机科学中的应用:形式语言、编译原理等解释数理逻辑在计算机科学中的重要性和作用8.3 集合论和数理逻辑在其他领域的应用介绍集合论和数理逻辑在其他领域的应用:数学、哲学等解释集合论和数理逻辑在其他领域的重要性第九章:图论的应用9.1 社交网络与图论介绍社交网络中的图论应用:网络结构、关系分析等解释图论在社交网络分析中的作用和意义9.2 路径与圈的应用介绍路径和圈在图论中的应用:最短路径、环路检测等解释路径和圈在解决实际问题中的重要性9.3 网络流与匹配问题介绍网络流和匹配问题的定义和解决方案解释网络流和匹配问题在计算机科学中的应用第十章:组合数学的应用10.1 组合数学在计算机科学中的应用介绍组合数学在计算机科学中的应用:数据存储、编码理论等解释组合数学在计算机科学中的重要性和作用10.2 组合优化问题介绍组合优化问题的定义和解决方案解释组合优化问题在离散数学中的重要性和应用10.3 组合数学在其他领域的应用介绍组合数学在其他领域的应用:生物学、经济学等解释组合数学在其他领域的重要性第十一章:离散数学与计算机科学11.1 离散数学与算法强调离散数学在算法设计和分析中的作用解释如何使用离散数学工具解决算法问题11.2 离散数学与数据结构探讨离散数学在数据结构设计中的应用解释离散数学概念如何帮助优化数据结构11.3 离散数学与编程语言讨论离散数学在编程语言设计和实现中的角色举例说明离散数学在编程语言特性中的应用第十二章:离散数学与实际应用12.1 离散数学与网络科学介绍离散数学在网络科学中的应用解释图论和其他离散数学概念在网络结构和分析中的重要性12.2 离散数学与密码学探讨离散数学在密码学中的核心作用解释离散数学如何帮助设计和分析密码系统12.3 离散数学与讨论离散数学在领域的应用解释离散数学在知识表示、推理和问题解决中的作用第十三章:离散数学的实践项目13.1 离散数学项目的设计与实施介绍如何设计离散数学实践项目强调项目实施的重要性和方法13.2 离散数学项目的案例分析分析成功的离散数学项目案例从中提炼经验教训,为今后的项目提供参考13.3 离散数学项目的评价与反馈讨论离散数学项目评价的标准和方法强调项目反馈在持续改进和学习中的重要性第十四章:离散数学与数学逻辑14.1 离散数学与数理逻辑探讨离散数学与数理逻辑的紧密联系解释数理逻辑在离散数学问题求解中的作用14.2 离散数学与模型论介绍模型论及其在离散数学中的应用解释模型论在形式系统验证和解释中的重要性14.3 离散数学与计算理论讨论离散数学在计算理论中的应用强调计算理论在理解计算过程和设备中的价值第十五章:离散数学的未来发展15.1 离散数学的新兴研究领域介绍离散数学新兴研究领域和发展趋势强调跨学科合作在离散数学研究中的重要性15.2 离散数学在新技术中的应用探讨离散数学在云计算、大数据等新技术中的应用解释离散数学在未来信息技术发展中的关键作用15.3 离散数学教育的挑战与机遇讨论离散数学教育面临的挑战和机遇强调离散数学教育在培养创新人才中的重要性重点和难点解析重点:1. 离散数学的基本概念和特点2. 集合论、逻辑、图论和组合数学的核心理论和方法3. 离散数学在计算机科学中的应用,如算法设计、数据结构、网络科学、密码学等4. 离散数学实践项目的设计、实施和评价5. 离散数学教育的挑战与机遇难点:1. 集合论、逻辑、图论和组合数学的高级理论和复杂应用2. 算法设计和分析中的数学建模与优化3. 离散数学在跨学科领域中的应用,如生物学、经济学等4. 离散数学教育中的教学方法和策略设计5. 离散数学研究的前沿领域和未来发展趋势希望本文的重点和难点解析能对学习离散数学的教案有所帮助。

集合的概念和表示法-PPT课件

集合的概念和表示法-PPT课件
2019/3/28
首页
上页
返回
下页
结束

7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束

6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束

3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束

4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束

12

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的概念离散数学是研究离散结构及其性质的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用计算机科学:图论在网络设计、算法分析中的应用,集合论在数据结构设计中的应用等。

数学逻辑:计算机程序设计中的逻辑判断,布尔代数在电路设计中的应用等。

二、集合论2.1 集合的基本概念集合的定义:由明确的元素构成的整体。

集合的表示法:列举法、描述法。

2.2 集合的运算并集、交集、补集的定义及运算性质。

集合的幂集。

三、逻辑与布尔代数3.1 命题逻辑命题、联结词、复合命题的真值表。

命题逻辑的推理规则。

3.2 谓词逻辑个体、谓词、量词。

谓词逻辑的推理规则。

3.3 布尔代数布尔代数的基本运算:与、或、非。

布尔表达式的化简。

四、图论4.1 图的基本概念图的定义:节点和边的集合。

无向图、有向图、多重图、加权图等。

4.2 图的运算图的遍历:深度优先搜索、广度优先搜索。

图的连通性:强连通、弱连通。

4.3 特殊图二分图、树、路径、圈。

网络流、最短路径问题。

五、组合数学5.1 排列组合排列、组合的定义及计算公式。

分布计数原理。

5.2 计数原理鸽巢原理、包含-排除原理。

二项式定理、多项式定理。

5.3 组合设计区块设计、拉丁方、Steiner系统等。

组合设计的性质和构造方法。

《离散数学教案》课件六、数理逻辑与计算逻辑6.1 数理逻辑的基本概念命题、联结词、逻辑代数。

真值表和逻辑等价式。

6.2 计算逻辑形式语言和自动机。

编译原理中的逻辑分析。

七、组合设计与编码理论7.1 组合设计的基本概念区块设计、拉丁方、Steiner系统。

组合设计的性质和构造方法。

7.2 编码理论线性码、循环码、汉明码。

编码的纠错能力和应用。

八、图的同态与同构8.1 图的同态图的同态的定义和性质。

同态定理和同态的应用。

8.2 图的同构图的同构的定义和性质。

同构定理和同构的应用。

九、树与森林9.1 树的基本概念树的定义和性质。

精品课程《离散数学》PPT课件(全)(1)

精品课程《离散数学》PPT课件(全)(1)
13
1.1 命题符号化及联结词
命题与命题变项象程序语言中常量与变量的关系一样。
例:5是一个常量,是一个确定的数字,而x是一个变量, 赋给它一个什么值它就代表什么值,即x的值是不定的。
例3:判断下列句子是否为命题?
1.张校长的头发有一万根。
(是)
2.我所说的是假的。
(否)
14
1.1 命题符号化及联结词
式公式。 (2)称A是n+1(n≥0)层公式是指下列情况之一:
(a) A= B,B是n层公式; (b)A=B∧C,其中B,C分别为i层和j层公式,且n=max(i,j) ; (c) A=B ∨ C,其中B,C的层次及n同(b); (d) A=B ∨ C,其中B,C的层次及n同(b); (e) A=B C,其中B,C的层次及n同(b); (f) A=B C,其中B,C的层次及n同(b);
4
第一章 命题逻辑
❖ 数理逻辑是研究推理(即研究人类思维的形式 结构和规律)的科学,起源于17世纪,它采用 数学符号化的方法,因此也称为符号逻辑。
❖ 从广义上讲,数理逻辑包括四论、两演算—— 即集合论、模型论、递归论、证明论和命题演 算、谓词演算,但现在提到数理逻辑,一般是 指命题演算和谓词演算。本书也只研究这两个 演算。
6
第一章 命题逻辑
❖ 数理逻辑与计算机学、控制论、人工智能的相 互渗透推动了其自身的发展,模糊逻辑、概率 逻辑、归纳逻辑、时态逻辑等都是目前比较热 门的研究领域。
❖ 本篇我们只从语义出发,对数理逻辑中的命题 演算与谓词演算等作一简单的、直接的、非形 式化的介绍,将不涉及任何公理系统。
7
1.1 命题符号化及联结词
运算规则:
p
q
p q

离散数学教程集合的基本概念

离散数学教程集合的基本概念

离散数学教程集合的基本概念标题:离散数学教程——集合的基本概念离散数学是数学的一个重要分支,它研究的是数学中离散对象的性质和结构。

在这些离散对象中,集合是最基本的概念之一。

集合是由一些互不相同的、可以区分的对象组成的整体,这些对象可以是数字、字母、图形等。

在离散数学中,集合的概念被广泛地应用于各种不同的领域,包括计算机科学、信息论、统计学等。

一、集合的基本定义1、集合是由一些特定对象组成的整体,这些对象可以是任何类型,如数字、字母、图形等。

2、集合中的对象必须是互不相同的,即集合中的每个对象都是独一无二的,不能有两个或更多的对象重复。

3、集合的元素具有可区分性,即可以根据一定的规则或性质将集合中的对象区分开来。

二、集合的表示在数学中,通常用大写字母来表示集合,如A、B、C等。

如果集合中有多个元素,则可以用列举法或描述法来表示集合。

1、列举法:将集合中的所有元素一一列举出来,用大括号括起来。

例如,A={1, 2, 3}表示集合A包含1、2和3这三个元素。

2、描述法:用特定的符号或语言来描述集合的性质或特征。

例如,B={x|x是正方形}表示集合B包含所有的正方形。

三、集合的运算在离散数学中,集合的运算是最基本的概念之一。

常见的集合运算包括交集、并集、补集等。

1、交集:如果集合A和B的元素都有共同的属性或特征,则称A和B有交集。

记作A∩B或A.B,表示A和B的交集。

2、并集:如果集合A和B的所有元素都属于另一个集合C,则称A 和B的并集为C。

记作A∪B或A.B,表示A和B的并集。

3、补集:如果集合A中存在一些不属于B的元素,则称B为A的补集。

记作∁AB,表示A的补集。

四、集合的性质1、空集:没有任何元素的集合称为空集。

记作∅。

空集是所有集合的子集。

2、全集:包含所有可能元素的集合称为全集。

记作U。

全集是所有集合的超集。

3、幂集:给定一个集合A,A的幂集是指包含A的所有子集的集合。

记作P(A)。

4、子集:如果一个集合B的所有元素都属于另一个集合A,则称B为A的子集。

集合的基本概念(离散数学)

集合的基本概念(离散数学)

并集
01
并集是将两个或多个集合中的 所有元素合并到一个新集合中 。
02
并集运算可以用符号"∪"表示, 例如,A∪B表示集合A和集合B 的并集。
03
并集运算满足交换律和结合律, 即A∪B=B∪A, (A∪B)∪C=A∪(B∪C)。
交集
01
交集是两个或多个集合中共有的元素组成的集合。
02
交集运算可以用符号"∩"表示,例如,A∩B表示集合A和集合 B的交集。
集合的运算
并集
两个集合中所有元素的集合。
交集
两个集合中共有的元素组成的集合。
差集
从一个集合中去除另一个集合中的元素后得到的集合。
03
集合的性质
空集
定义
不含有任何元素的集合称为空集。记作∅。
性质
空集是任何集合的子集,即对于任意集合A,都有∅⊆A。
应用
在数学逻辑和集合论中,空集常用于作为其他集合的基底或参考点。
06
集合的应用
在数学中的应用
在概率论中的应用
集合是概率论的基本概念,用来 表示随机事件。概率论中的许多 概念,如事件的并、交、差等, 都是基于集合运算的。
在几何学中的应用
集合论为几何学提供了统一的数 学语言。在几何学中,点、线、 面等基本元素都可以被视为集合。
在逻辑学中的应用
集合论为逻辑学提供了形式化的 工具,使得逻辑推理更加严谨。 集合论中的集合关系和集合运算, 可以用来表示逻辑中的命题和推 理。
并集
两个或多个集合中所有元素的 集合。
集合
由确定的、不同的元素所组成 的总体。
子集
一个集合中的所有元素都属于 另一个集合,则称这个集合是 另一个集合的子集。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1. 离散数学的定义和意义2. 离散数学与其他数学分支的区别3. 离散数学在计算机科学和信息技术领域的应用4. 学习离散数学的目标和要求二、逻辑与集合1. 逻辑基础命题与联结词逻辑推理与证明2. 集合的基本概念集合的表示方法集合的运算集合的性质3. 集合的运算律和集合恒等式4. 集合的分类和应用三、图论基础1. 图的基本概念图的定义和表示方法图的类型和例子2. 图的运算邻接矩阵和邻接表子图、补图和连通性3. 路径和圈路径和圈的概念最短路径问题环的性质和应用4. 树和森林树的概念和性质树的表示方法树的算法四、组合数学1. 组合的基本概念排列和组合的定义组合数的计算公式2. 组合计数原理包含-排除原理鸽巢原理和球和箱子问题3. 组合设计区块设计和平面设计拉丁方和Steiner系统4. 组合数学的应用组合数学在计算机科学中的应用组合数学在其他领域的应用五、离散数学的应用实例1. 布尔代数和逻辑电路布尔代数的基本概念逻辑电路的设计和分析2. 计算复杂性理论计算复杂性的基本概念时间和空间复杂性的分析方法3. 信息论和编码理论信息论的基本概念编码理论和错误纠正码4. 离散数学在其他领域的应用实例离散数学在生物学中的应用离散数学在经济学中的应用六、关系与函数1. 关系的基本概念关系的定义和表示关系的性质和分类2. 关系的运算关系的复合和逆关系关系的闭包和分解3. 函数的基本概念函数的定义和表示函数的性质和分类4. 函数的运算和性质函数的复合和反函数函数的连续性和differentiability七、组合设计与计数1. 组合设计的基本概念区块设计和平面设计-拉丁方和Steiner系统2. 组合计数原理包含-排除原理鸽巢原理和球和箱子问题3. 代数结构群、环和域的基本概念群的作用和群的分解八、图论进阶1. 欧拉图和哈密顿图欧拉图的定义和性质哈密顿图的定义和性质2. 网络流和匹配网络流的基本概念和定理最大流和最小费用流问题匹配的概念和算法3. 树的同构和唯一分解定理树的同构概念唯一分解定理的证明和应用九、离散数学在计算机科学中的应用1. 计算理论和算法计算模型的基本概念算法的描述和分析2. 数据结构和算法基本数据结构常见算法和分析方法3. 形式语言和编译原理形式语言的基本概念编译器的设计和实现1. 离散数学的主要概念和定理2. 离散数学在不同领域的应用3. 离散数学的发展趋势和未来展望重点和难点解析一、引言难点解析:离散数学与其他数学分支的区别,学习离散数学的目标和要求。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1. 课程介绍离散数学的概念:研究离散结构及其相互关系的数学分支课程目标:培养学生掌握离散数学的基本概念、原理和方法,提高解决问题的能力2. 课程内容离散数学的主要内容:集合论、图论、逻辑、组合数学、数理逻辑等各章节安排:第一章:集合论第二章:图论第三章:逻辑与数理逻辑第四章:组合数学第五章:算法与复杂性二、集合论1. 集合的基本概念集合的定义:由不同元素构成的整体集合的表示方法:列举法、描述法、区间表示法等2. 集合的关系子集、真子集、非空子集的定义与性质集合的幂集及其性质3. 集合的运算并、交、补集的定义与运算规律集合的德摩根定理4. 应用实例集合的表示与运算在计算机科学中的应用集合论在图论、逻辑等领域中的应用三、图论1. 图的基本概念图的定义:由顶点集合和边集合构成的数学结构图的表示方法:邻接表、邻接矩阵等2. 图的性质与分类无向图、有向图、weighted 图的定义与特点连通性、路径、圈的概念及性质3. 图的算法深度优先搜索(DFS)与广度优先搜索(BFS)算法最短路径算法:Dijkstra算法、Floyd-Warshall算法最小树算法:Prim算法、Kruskal算法4. 应用实例图论在网络优化、社交网络、交通规划等领域中的应用图论在计算机科学中的重要作用,如图灵机、网络流等四、逻辑与数理逻辑1. 命题逻辑命题与命题联结词的概念逻辑推理规则:蕴含、逆否、德摩根定理等命题逻辑的等值转换与推理2. 谓词逻辑量词:全称量词、存在量词谓词与谓词联结词:合取、析取、非、蕴含等谓词逻辑的等值转换与推理3. 数理逻辑公理化逻辑:ZF公理体系形式演算:命题演算、谓词演算逻辑电路与布尔代数4. 应用实例逻辑在计算机科学中的应用:逻辑门、逻辑电路、计算机网络中的协议等数理逻辑在数学基础研究中的应用五、组合数学1. 组合数学的基本概念组合与排列的概念及其区别组合数的计算公式:二项式定理、组合恒等式等2. 组合计数原理鸽巢原理、包含-排除原理、函数等计数方法3. 图的着色问题顶点着色、边着色及其相关性质着色问题的算法及其复杂性分析4. 应用实例组合数学在计算机科学中的应用:算法设计、数据结构等组合数学在其他领域中的应用,如运筹学、统计学等六、算法与复杂性1. 算法的基本概念算法的定义:解决特定问题的步骤序列算法的特性:输入、输出、确定性、有穷性2. 算法设计技巧贪心算法、动态规划、分治法、回溯法等设计方法递归算法的概念与实现3. 算法分析与评价时间复杂度分析:大O符号、主定理等空间复杂度分析算法的效率与优化4. 应用实例排序算法:冒泡排序、快速排序、归并排序等搜索算法:线性搜索、二分搜索等算法在实际问题中的应用案例七、数理逻辑与集合论的应用1. 数理逻辑在计算机科学中的应用形式语言与自动机理论编译原理中的逻辑方法程序正确性证明2. 集合论在计算机科学中的应用数据结构:集合、映射、函数等数据库理论:关系模型、SQL语言等计算复杂性理论:问题的可计算性分析3. 应用实例计算机网络中的逻辑运算与协议设计软件工程中的需求分析与规格说明中的知识表示与推理八、图论的应用1. 社会网络分析社交网络中的图模型网络中心性指标:度中心性、介数中心性等社群发现与网络演化分析2. 网络流与最优化问题最大流与最小费用流问题匹配问题与网络设计运输问题与物流优化3. 应用实例交通网络中的路径规划与拥堵分析电信网络中的资源分配与调度生物信息学中的基因调控网络分析九、组合数学的应用1. 组合设计拉丁方、Steiner系统、区块设计等组合设计组合设计在编码理论、通信系统中的应用2. 排列组合在概率论中的应用随机事件的概率计算条件概率与贝叶斯定理随机过程的基本概念3. 应用实例彩票号码组合与概率分析统计学中的样本设计运筹学中的排程与调度问题十、总结与展望1. 离散数学在计算机科学中的重要性离散数学作为计算机科学基础的必要性离散数学在各个领域的应用趋势2. 离散数学的发展与挑战离散数学的新兴研究领域离散数学在理论与应用之间的桥梁作用3. 离散数学的未来方向离散数学在、大数据、云计算等领域的融合与应用离散数学教育与研究的挑战与机遇重点和难点解析一、集合论1. 集合的基本概念与表示方法:理解集合的定义及其表示方法是离散数学的基础。

离散数学_第7章 图论 -1-2图的基本概念、路和回路

离散数学_第7章 图论 -1-2图的基本概念、路和回路

第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 A={ a, {b,c}, d, {{d}} } {b,c}A b,cA {{d}}A {d}A dA
二、集合的表示
(1) 列举出这个集合中的所有元素。枚举法
♦ A={a,b,c} ♦ B={1,3,5}
(2) 利用元素所具有的性质来表示。
♦ D={x │x2-3x+2=0, x∈R } 描述法
3
康托 Georg Cantor,1845-1918
1845年3月3日生于彼得堡。 1856年全家迁居法兰克福。 先后就学于苏黎世大学、哥 廷根大学、法兰克福大学和 柏林大学,主要学习哲学、 数学和物理。
在柏林大学,他受到著名分析学家魏尔斯特拉斯的影 响,对纯粹数学产生了兴趣。1867年,他以求不定方 程ax2+by2+cz2= 0的整数解(其中,a、b、c为任意 整数)的博士论文获哲学博士学位。
11
6.1 集合的基本概念
集合是最基本的数学概念之一,由于它太基本 了,所以不能用更基本的概念来定义它。 集合是不能精确定义的数学概念。但是,这并 不影响我们去理解它和掌握它。
12
每一个人都知道许多集合
例如: ①逻辑值T, F可以组成一个集合, 记为{T, F} , 真值集。 ②数0,1可以组成一个集合, 记为{0,1} , 真值集。 ③数0, 1, 2, 3, 4, 5, 6, 7, 8, 9 可以组成一个集合, 阿拉
伯数字集。 ④数0,1, 3, 4可以组成一个集合。 ⑤二十六个英文字母可以组成一个集合, 英文字母集
13
一、集合与元素
集合:某些确定的、能够区分的对象的聚合。 元素:组成一个集合的那些对象称为这一集合
的元素和成员。 用大写字母代表集合, 用小写英文字母代表集合的元素。
14
常用的集合
• N代表自然数集, {0,1,2,…} • Z代表整数集, {…, -2, -1, 0, 1, 2,…} • Q代表有理数集 • R代表实数集 • R+={x│x∈R, x>0}是表示非负的实数集 • R2={(x,y) │x,y ∈ R}是XOY坐标平面上
我们都知道集合 K中什么元素也没有。
5
理发师难题
西班牙的塞维利亚有一个理发师,这位理发师 有一条极为特殊的规定:他只给那些“不给自 己刮胡子”的人刮胡子。
6
罗素悖论与第三次数学危机
“数学大厦的基石”竟然出现了明显的“裂缝 ”,那么人类耗费数千年心血建立起来的“数 学殿堂”,会不会倒塌呢?一时间,数学界众 说纷纭,这就是数学史上著名的“第三次数学 危机”。
20

{1,2} ⊆ {1,2,3} {1,3} ⊆ {1,3,2,4} {1} ⊆ {1,2} 1 ⊄ {1,2} 1 ∈ {1,2}
21
例:是否存在这样两个集合, 其中一个既是 另一个的子集, 又是它的元素?
{1} ∈{1, {1} } {1} ⊆{1, {1} }
22
空集Ø
设K是一个集合, K={x∊R│x2+1=0} 。
S是自己的元素,
S不是自己的元素,
二者居其一且只居其一。
容易说明我们假定S是集合是错误的。
19
三、集合的包含关系
定义1:A,B是二个集合, 对于任意的x ,若x∊A ,则 x∊B, 我们说集合A是集合B的子集, 也说集合B包含集合A, 记为A⊆B 。
若A不是B的子集, 记为A⊄B。 也说B不包含A 。
“裱糊匠”: 希尔伯特 …… 蔡梅罗: 找到摆脱困境的方法
7
ZF公理系统
数学家们创造了公理化集合论,明确提出形成 集合的原则,且规定只能按照这些确定的原则 形成集合,以避免已知的一些集合论的悖论。
最著名的一个系统是由蔡梅罗 (Ernst Zermelo) 1908年提出,后经弗兰克尔 (Abraham A. Fraenkel) 等人改进而建立的。人们称之为ZF系 统。
8
第二次数学危机: 关于微积分
在牛顿和莱布尼茨发现了微积分的年代里,老是 有那么几个敌对分子跟他们作对,其中有一位爱 尔兰的大主教贝克莱就讥讽牛顿的“一刹那” 是“已死量的幽灵”。
还有一位意大利的数学教授格兰蒂把
1/2=1-1+1-1+...=(1-1)+(1-1)+...=0
这样的式子看作是"从虚无创造万有"等等不一 而足.
4
罗素(Bertrand Arthur William Russell,1872-1970)
著名的英国数学家、逻辑学 家。 1890年剑挢大学学习数学和 哲学。 1901年开始与怀特海 (Whitehead)合作,经过10年 的奋战,写成3卷本巨著《 数学原理》。
罗素还是2l世纪最有影响的哲学家之一。 1920年应邀来中国讲学一年。1950年获诺贝尔 文学奖。1964年创设罗素和平基金会。
9
第一次数学危机: 发现了“无理数”
毕达格拉斯的一个弟子发现边长为1的正方形 的对角线是不能用任何比例来表示的。 对于毕氏学派来说, 这是天大的罪过,结果被 扔进海里喂了鲨鱼。
10
第六章 集合
6.1 集合的基本概念 6.1.1 集合的定义 6.1.2 集合的表示 6.1.3 集合的包含关系 6.1.4 集合的特点
点的集合。
15
集合与元素的关系
如果 a是集合A 的一个元素,就叫做 a属于 集合A,这时记为 a∊A 。
如果 a不是集合A中的一个元素,就叫做a 不属于A ,这时记为a∉A 。
对于任给的一个对象a和任给的一个集合A, 或者a属于A,或者 a不属于A, 二者必居其一,不可得兼。
16
隶属关系的层次结构
集合论
1
集合论部分
第6章 集合 第7章 (二元)关系 第8章 函数
2
康托集合论——公理集合论
德国数学家康托 (G. Cantor) 朴素集合论: 十九世纪七十年代 悖论 公理集合论: 在二十世纪初
✓ 数学思想的最惊人的产物,在纯粹理性的范 畴中人类活动的最美的表现。
✓ 可能是这个时代所能夸耀的最巨大的工作。
♦ E={x │ x是南京理工大学学生 }
一般地 ,S={a│a具有性质ξ} 表示 a ∊ S当且仅当 a具有性质ξ不以自身为元素的集合, 即A∉A}
S是集合吗? 如果S∊S,则与性质矛盾;
如果S∉S,则S满足性质,矛盾。
如果我们假定S是集合,那么
相关文档
最新文档