高考数学选择填空题强化训练及参考答案
全国统一高考数学练习卷及含答案 (5)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A.120B.168C.204D.2162.不等式|x+log2x|<|x|+|log2x|的解集为()A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知α、β以及α+β均为锐角,x=sin(α+β),y=sinα+sinβ,z=cosα+cos β,那么x、y、z 的大小关系是()A.x<y<z B.y<x<z C.x<z<y D.y<z<x4.过曲线xy=a2(a≠0)上任意一点处的切线与两坐标轴构成的三角形的面积是()A.a2B.C.2a2D.不确定5.若展开式的第3项为144,则的值是()A.2B.1C.D.06.正四面体的内切球和外接球的半径分别为r 和R,则r:R 为()A.1:2B.1:3C.1:4D.1:97.已知椭圆的中心在原点,离心率且它的一个焦点与抛物线y2=4x 的焦点重合,则此椭圆的方程为()A.B.C.D.22a 9)21(0x -)1211(lim 20---→x x x x 2113422=+y x 16822=+y x 1222=+y x 1422=+y x8.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1市场供给量单价(元/kg)22.4 2.83.2 3.64供给量(1000kg)506070758090表2市场需求量单价(元/kg)43.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间()A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内9.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为()A.41B.21C.2D.410.若曲线x x x f -=4)(在点P 处的切线平行于直线3x-y=0,则点P 的坐标为()A.(1,3)B.(-1,3)C.(1,0)D.(-1,0)11.已知函数)(x f y =是R 上的偶函数,且在(-∞,]0上是减函数,若)2()(f a f ≥,则实数a 的取值范围是()A.a≤2B.a≤-2或a≥2C.a≥-2D.-2≤a≤212.如图,E、F 分别是三棱锥P-ABC 的棱AP、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为()A.60°B.45°C.0°D.120°二、填空题(共4小题,每小题5分;共计20分)1.“面积相等的三角形全等”的否命题是______命题(填“真”或者“假”)2.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为_____3.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为_____万.(结果精确到0.01)4.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有____个,若把这些数按从小到大的顺序排列,则第100个数为______.三、大题:(满分70分)1.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.2.已知a,b,c 为正数,且满足abc=1.证明:(1)222111a b c a b c ++≤++;(2)333()()()24a b b c c a +++≥++.3.如图,长方体ABCD–A1B1C1D1的底面ABCD 是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.4.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.5.已知直线l 的极坐标方程为,圆C 的参数方程为为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.6.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.参考答案:一、选择题:1-5题答案:BAACC6-10题答案:BACAC11-12题答案:BA二、填空题:1、真2、33、0.994、126,24789三、大题:1.解:(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 113α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.2.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++.所以222111a b c a b c ++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.3.解:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D-xyz,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,1,1)CE =- ,1(0,0,2)CC = .设平面EBC 的法向量为n=(x,y,x),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n=(0,1,1)--.设平面1ECC 的法向量为m=(x,y,z),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩ m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m=(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.4.解:(1)X=2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–04)=05.(2)X=4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 5.参考答案:(1)由,得,∴y ,即.圆的方程为x2+y2=100.(2)圆心(0,0)到直线的距离d ,y=10,∴弦长l .6.参考答案:(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四边形ABCD 为矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系,∵AD=2,AB=AF=2EF=2,P 是DF 的中点,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),设异面直线BE 与CP 所成角的平面角为θ,则cosθ,∴异面直线BE与CP所成角的余弦值为.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),设平面APC的法向量(x,y,z),则,取x=1,得(1,﹣1,),平面ADF的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值为,∴|cos|,解得,∴P(0,,),∴PF的长度|PF|.。
高三二轮复习选填满分“8+4+4”小题强化训练第5练(原卷及答案)(新高考专用)
高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.RM N ⋂=B.M N⊆C.N M⊆D.RM N ⋃=2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.37.三棱锥P ABC-的所有顶点都在球O 的球面上.棱锥P ABC-的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====,则球O 的表面积为()A.28πB.29πC.30πD.31π8.已知0.40.7e ,eln1.4,0.98ab c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c>>C.b c a>>D.c a b>>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为12B.未出现“日落云里走”时,后半夜下雨的概率约为59C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n 层有n a 个球,从上往下n 层球的总数为n S ,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-=⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤ ⎥⎝⎦12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.R M N ⋂=B.M N⊆C.N M ⊆D.RM N ⋃=【答案】B【解析】根据题意,作出如下图韦恩图:满足∅=⋂N C M U ,即M N ⊆.故选:B.2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<【答案】C【解析】A .若a b >,当0c =时,22ac bc =,所以选项A 不成立;B .若a bc c>,当0c <时,则a b <,所以选项B 不成立;C .因为0ab <,将a b >两边同除以ab ,则11a b>,所以选项C 成立;D .如果2,1,a b ==-满足22a b >,但是11a b>,所以选项D 不成立.故选:C.3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.【答案】C【解析】22()()log ()log ()xx x x f x ee x e e xf x ---=+-=+=,()f x 为偶函数,排除AD ,又01x <<时,()0f x <,排除B .故选:C .4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为i e cos isin x x x =+,所以i e cos isin a a a =+,因为i a e 为纯虚数,所以cos 0a =,sin 0a ≠,故sin 22sin cos 0a a a ==,所以()()sin2111i 1i 11i 1i 1i 1i 1i 222a +--====-+++-,则复数sin211i a ++在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,则其在第四象限,故选:D.5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年【答案】B【解析】 碳14的半衰期为5730年,∴1573057305730111(1)(1)222x k k p p y k ⎛⎫⎛⎫=-⇒-=⇒= ⎪⎪⎝⎭⎝⎭,当55.2%y k =时,5730155.2%2x k k ⎛⎫= ⎪⎝⎭,1222log 0.552log 0.552,5730log 0.55249125730xx ∴==-=-≈, 2010年之前的4912年是公元前2902年,∴以此推断此水坝大概的建成年代是公元前2903年.故选:B.6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.3【答案】A【解析】设椭圆1C 、双曲线2C 的共同半焦距为c ,由椭圆、双曲线对称性不妨令点M 在第一象限,由椭圆、双曲线定义知:1212||||MF MF a +=,且212||||2MF MF a -=,则有112||MF a a =+,212||MF a a =-,在12F MF △中,由余弦定理得:22212121212||||||2||||cos F F MF MF MF MF F MF =+-∠,即222121212124()()2()()cos3c a a a a a a a a π=++--+-,整理得:2221243c a a =+,于是得2212222212123134a a c c e e e e =+=+≥=,当且仅当221213e e =,即21e =时取“=”,从而有12≥e e ,所以12e e.故选:A7.三棱锥P ABC -的所有顶点都在球O 的球面上.棱锥P ABC -的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====O 的表面积为()A.28πB.29πC.30πD.31π【答案】B【解析】由题意知:222PB PC BC +=,222PA PC AC +=,222PA PB AB +=,∴,,PA PB PC 两两垂直,即P ABC -为直三棱锥,∴若Rt PBC △的外接圆半径为r ,则522BC r ==,又PA ⊥面PBC ,∴外接球心O 到PA 的距离为52r =,故外接球半径2R ==,∴外接球表面积2429S R ππ==.故选:B.8.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c >>C.b c a>>D.c a b>>【答案】A【解析】构造()1=ln e f x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x '>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当2x =时,等号成立,当0.7x =时,220.98ln1.4(0.7)eln1.40.98e e<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为1 2B.未出现“日落云里走”时,后半夜下雨的概率约为5 9C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨【答案】AC【解析】对A,把频率看作概率,可得后半夜下雨的概率约为5011002=,故A判断正确:对B,未出现“日落云里走”时,后半夜下雨的概率约为255254514=+,故B判断错误;对C,由219.05 6.635χ≈>,知有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关,故C判断正确;易知D判断错误.故选:AC10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有n a个球,从上往下n层球的总数为n S,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 【答案】ACD【解析】因为11a =,212a a -=,323a a -=,……,1n n a a n --=,以上n 个式子累加可得:(1)1232n n n a n +=++++=,所以512345136101535S a a a a a =++++=++++=,故选项A 正确;由递推关系可知:11n n a a n +-=+,故选项B 不正确;当2n ≥,1(1)2n n n n n S S a -+-==,故选项C 正确;因为12112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12100111111112122223100101a a a ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭120021101101⎛⎫=-= ⎪⎝⎭,故选项D 正确;故选:ACD.11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦【答案】ABD【解析】A,∵7375,124126ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭,∴()f x 在73,124ππ⎛⎫⎪⎝⎭上单调,又73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,73212423πππ+=,∴203f π⎛⎫=⎪⎝⎭,故A 正确;B,区间75,126ππ⎛⎫⎪⎝⎭右端点56x π=关于23x π=的对称点为2x π=,∵203f π⎛⎫= ⎪⎝⎭,f (x )在75,126ππ⎛⎫ ⎪⎝⎭上单调,∴根据正弦函数图像特征可知()f x 在5,26ππ⎛⎫⎪⎝⎭上单调,∴512(62322T T ππππω-==⋅ 为()f x 的最小正周期),即ω 3,又0ω>,∴03ω< .若()56f x f x π⎛⎫-= ⎪⎝⎭,则()f x 的图象关于直线512x π=对称,结合203f π⎛⎫=⎪⎝⎭,得()252121312442k k T k ππππω++-===⋅∈Z ,即()42k k ω=+∈Z ,故k =0,2,T ωπ==,故B 正确.C,由03ω< ,得23T π,∴()f x 在区间[)0,2π上最多有3个完整的周期,而()1f x =在1个完整周期内只有1个解,故关于x 的方程()1f x =在区间[)0,2π上最多有3个不相等的实数解,故C 错误.D,由203f π⎛⎫=⎪⎝⎭知,23π是函数()f x 在区间23π⎡⎢⎣,136π⎫⎪⎭上的第1个零点,而()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则13252632T T ππ<- ,结合2T πω=,得81033ω< ,又03ω< ,∴ω的取值范围为8,33⎛⎤⎥⎝⎦,故D 正确.故选:ABD.12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半【答案】AD【解析】如图,以D 为原点分别以DA 、DC 、1DD 为x 轴、y 轴、z 轴建立空间直角坐标系:则()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()12,0,2A ,()12,2,2B ,()10,2,2C ,()10,0,2D ,由于动点F 在正方形11CDD C 内,可设()0,,F m n ,其中02m <<,02n <<,选项A:若1C F ⊥平面1A CF ,则11C F A C ⊥ ,1C F CF ⊥.由于()10,2,2C F m n =-- ,()12,2,2A C =-- ,()0,2,CF m n =-,则()()()()222220220m n m n n ⎧⨯---=⎪⎨-+-=⎪⎩,解得:11m n =⎧⎨=⎩或22m n =⎧⎨=⎩(舍去),此时()0,1,1F ,即点F 的位置唯一,故选项A 正确;选项B:()10,2,2A B =- ,()2,2,0BD =--,设平面1A BD 的一个法向量为(),,n x y z =r.则220220y z x y -=⎧⎨--=⎩,令1y =,得1x =-,1z =,故()1,1,1n =-,而()12,2,2B F m n =--- ,若1B F ∥平面1A BD ,则10B F n ⋅=,则2220m n +-+-=,即2m n +=,所以()0,,2F m m -,此时()12,2,B F m m =---,而()10,2,2CD =- ,所以()112022244B F CD m m m ⋅=-⨯-⨯--⨯=-+,当1m =时,440m -+=,此时110B F CD ⋅= ,则11B F CD ⊥.故选项B 不正确;选项C:由于()112BF BC BD =+,则F 为1CD 的中点,此时()0,1,1F ,设三棱锥的11-F B CC 的外接球的球心为(),,O x y z ,则11OC OB OC OF OC OC⎧=⎪=⎨⎪=⎩,即()()()()()()()()()()2222222222222222222222211222x y z x y z x y z x y z x y z x y z ⎧+-+=-+-+-⎪⎪+-+=+-+-⎨⎪+-+=+-+-⎪⎩,解得:121x y z =⎧⎪=⎨⎪=⎩,所以()1,2,1O ,则三棱锥的11-F B CC的外接球的半径为R OC ==,所以三棱锥的11-F B CC 的外接球表面积为22448R πππ=⨯=,故选项C 不正确;选项D:点E 为BC 中点,由正方体可知BC ⊥平面11A ABB ,则11111111111222132323A AB E E AA B V V AA A B BE --==⨯⋅⋅=⨯⨯⨯=111111111422232323A FAB F AA B V V AA A B BC --⋅==⨯⨯⋅=⨯⨯⨯⨯=则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半.故选项D 正确.故选:AD三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.【答案】3(答案不唯一)【解析】因为随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,所以()*1N 3E X n =∈,所以一个符合条件的3n =,故答案为:3(答案不唯一)14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).【答案】576【解析】分步完成:第一步调换四条升腾之龙的相对位置,第二步调换四条沉降之龙的相对位置,方法数为4444576A A =.故答案为:576.15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.【答案】()2,+∞【解析】令()()f xg x x=,因为对()120,x x ∀∈+∞、,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,不妨设120x x <<,则120x x -<,故()()21120x f x x f x -<,则()()1212f x f x x x <,即()()12g x g x <,所以()g x 在()0,∞+上单调递增,又因为()24f =,所以()()2222f g ==,故()2f x x>可化为()()2g x g >,所以由()g x 的单调性可得2x >,即不等式()2f x x>的解集为()2,+∞.故答案为:()2,+∞16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.【答案】6【解析】如图,连接122,,AF DF EF ,因为C 的离心率为12,所以12c a =,即2a c =,所以22223b a c c =-=,因为12122AF AF a c F F ====,所以12AF F △为等边三角形,又2DE AF ⊥,所以直线DE 为线段2AF 的垂直平分线,所以2AD DF =,2AE EF =,则ADE V 的周长为22||||||||AD AE DE DF EF DE ++=++2211DF EF DF EF =+++134134a a ==⇒=,138c ∴=,而1230EF F ︒∠=,所以直线DE 的方程为3)3y x c =+,代入椭圆C 的方程2222143x y c c +=,得22138320x cx c +-=,设()11,D x y ,()22,E x y ,则21212832,1313c c x x x x +=-=-,所以48613cDE==,故答案为:6.。
高考数学选择填空压轴题45道(附答案)
,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
高考数学客观题训练【6套】选择、填空题
数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。
高考数学习题及答案 (4)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、右图给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是()(A)10>i (B)10<i (C)20>i (D)20<i 2、数列}{n a 的通项公式为)(3)1(2N n n a n ∈+-=,则数列()A、是公差为2的等差数列B、是公差为3的等差数列C、是公差为1的等差数列D、不是等差数列3、ABC ∆的两内角A、B 满足B A B A sin sin cos cos >,那么这个三角形()A、是锐角三角形B、是钝角三角形C、是直角三角形D、形状不能确定4、函数13)(-=x x f 的反函数的定义域是()A、),1(+∞-B、),1(+∞C、),2(+∞-D、)2,(--∞5、有一个几何体的三视图如下图所示,这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对6、若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =()A.32-B.32C.23-D.237、下面表述正确的是()A.空间任意三点确定一个平面B.直线上的两点和直线外的一点确定一个平面C.分别在不同的三条直线上的三点确定一个平面D.不共线的四点确定一个平面8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B 两点.设A,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110、如图,在平面四边形ABCD 中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则的最小值为()A.B.C.D.311.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A.38C 种B.38A 种C.39C 种D.311C 种12.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有()A.6种B.8种C.12种D.16种二、填空题(共4小题,每小题5分;共计20分)1.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.2.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.3.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.4.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.三、大题:(满分70分)1.如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.2.如果两个平面分别平行于第三个平面,那么这两个平面互相平行.已知:γα//,γβ//,求证:βα//.3.如图,已知a 、b 是异面直线,求证:过a 和b 分别存在平面α和β,使βα//.4.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P.(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.6.直线02=-+y x l :,一束光线过点)13,0(+P ,以︒120的倾斜角投射到l 上,经l 反射,求反射线所在直线的方程.参考答案:一、选择题:1-5题答案:AABAA 6-10题答案:ABACA 11-12题答案:AC 8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.10、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.二、填空题:2、4 33、0,4、{1,6}三、大题:1.如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.解法1:如图所示:作β⊥AD 于D ,连结BD 、CD 、BC ∵BD AB >,DC AC >,222BC AC AB =+,∴在BDC ∆中,由余弦定理,得:022cos 222222=⋅-+<⋅-+=∠CDBD BC AC AB CD BD BC CD BD BDC .∵β⊥AD ,∴ABD ∠是AB 与β所在的角.又∵βα//,∴ABD ∠也就等于AB 与α所成的角,即︒=∠30ABD .∵2=AB ,∴1=AD ,3=BD ,12-=AC DC ,24AC BC +=,∴01324131222<-⋅---+≤-AC AC AC ,即:31102≤-<AC .∴332≥AC ,即AC 长的取值范围为⎪⎪⎭⎫⎢⎣⎡∞+,332.解法2:如图:∵ACAB ⊥∴AC 必在过点A 且与直线AB 垂直的平面γ内设l =βγ ,则在γ内,当l AC ⊥时,AC 的长最短,且此时ABCAB AC ∠⋅=tan 33230tan =︒⋅AB 而在γ内,C 点在l 上移动,远离垂足时,AC 的长将变大,从而332≥AC ,即AC 长的取值范围是⎪⎪⎭⎫⎢⎣⎡∞+,332.说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习.(2)解法1利用余弦定理,采用放缩的方法构造出关于AC 长的不等式,再通过解不等式得到AC 长的范围,此方法以运算为主.(3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段AC 是连结异面直线AB 和l 上两点间的线段,所以AC 是AB 与l 的公垂线段时,其长最短.2.如果两个平面分别平行于第三个平面,那么这两个平面互相平行.已知:γα//,γβ//,求证:βα//.分析:本题考查面面平行的判定和性质定理以及逻辑推理能力.由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明.另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线.证明一:如图,假设α、β不平行,则α和β相交.∴α和β至少有一个公共点A ,即α∈A ,β∈A .∵γα//,γβ//,∴γ∉A .于是,过平面γ外一点A 有两个平面α、β都和平面γ平行,这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。
高考数学练习卷及含答案 (3)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°C.90°D.45°3、若a∥α,⊂bα,则a和b的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD所在的平面(图2),图中相互垂直的平面有()A.1对B.2对C.3对D.5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26.函数sin24y xπ⎛⎫=+⎪⎝⎭在一个周期内的图像可能是()PA BCD图27.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.23- B.23 C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m 10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A. B. C.2 D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。
高考数学选择、填空题专项训练(共40套)[附答案]
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
新高考数学二轮专题复习高频考点强化训练1(附解析)
强化训练1 集合、常用逻辑用语、不等式一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·全国甲卷]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}2.[2022·全国乙卷]设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M3.[2022·湖南常德一模]已知集合A ={x ∈Z |x 2≤1},B ={x |x 2-mx +2=0},若A ∩B ={1},则A ∪B =( )A .{-1,0,1}B .{x |-1≤x ≤1}C .{-1,0,1,2}D .{x |-1≤x ≤2}4.[2022·山东潍坊二模]十七世纪,数学家费马提出猜想:“对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数n ,关于x ,y ,z 的方程x n +y n =z n 都没有正整数解B .对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解C.存在正整数n ≤2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解D .存在正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解5.[2022·江苏南京模拟]设a 、b 均为非零实数,且a <b ,则下列结论中正确的是( ) A .1a >1bB .a 2<b 2C .1a 2 <1b 2D .a 3<b 3 6.[2022·山东潍坊一模]已知a >0,则“a a >a 3”是“a >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.[2022·广东汕头三模]下列说法错误的是( )A .命题“∀x ∈R ,cos x ≤1”的否定是“∃x 0∈R ,cos x 0>1”B .在△ABC 中,sin A ≥sin B 是A ≥B 的充要条件C .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“a >0,且b 2-4ac ≤0”D .“若sin α≠12 ,则α≠π6”是真命题 8.[2022·河北保定二模]已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( ) A.2 B .3C .22D .32二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·湖北武汉二模]已知集合A ={1,4,a },B ={1,2,3},若A ∪B ={1,2,3,4},则a 的取值可以是( )A .2B .3C .4D .510.[2022·广东汕头二模]已知a ,b ,c 满足c <a <b ,且ac<0,那么下列各式中一定成立的是( )A .ac (a -c )>0B .c (b -a )<0C .cb 2<ab 2D .ab >ac11.[2022·江苏南京三模]设P =a +2a,a ∈R ,则下列说法正确的是( ) A .P ≥22B .“a >1”是“P ≥22 ”的充分不必要条件C.“P >3”是“a >2”的必要不充分条件D .∃a ∈(3,+∞),使得P <312.[2022·辽宁葫芦岛二模]已知a >b >0,a +b +1a +1b=5,则下列不等式成立的是( )A.1<a +b <4B .(1a +b )(1b+a )≥4 C .(1a +b )2>(1b+a )2 D .(1a +a )2>(1b+b )2 三、填空题(本题共4小题,每小题5分,共20分)13.[2022·南京师大附中模拟]命题“∀x >1,x 2≥1”的否定是____________.14.[2022·福建三明模拟]已知命题p :∃x ∈R ,x 2-ax +a <0,若命题p 为假命题,则实数a 的取值范围是________.15.[2022·湖南怀化一模]已知a ∈R ,且“x >a ”是“x 2>2x ”的充分不必要条件,则a 的取强化训练1 集合、常用逻辑用语、不等式1.解析:由题意,B ={x|x2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.答案:D2.解析:由题知M ={2,4,5},对比选项知,A 正确,BCD 错误. 答案:A3.解析:解不等式x2≤1得:-1≤x≤1,于是得A ={x ∈Z|-1≤x≤1}={-1,0,1},因A∩B ={1},即1∈B ,解得m =3,则B ={1,2},所以A ∪B ={-1,0,1,2}.答案:C4.解析:命题的否定形式为全称量词命题的否定是存在量词命题.故只有D 满足题意.答案:D5.解析:对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a2=b2,B 错误;对于C ,取a =-1,b =1,则1a2 =1b2 ,C 错误;对于D ,因a<b ,则b3-a3=(b -a )(b2+ab +a2)=(b -a )·⎣⎢⎡⎦⎥⎤(b +12a )2+34a2 >0,即a3<b3,D 正确. 答案:D6.解析:若0<a<1,由aa>a3可得a<3,此时0<a<1; 若a =1,则aa =a3,不合乎题意;若a>1,由aa>a3可得a>3,此时a>3.因此,满足aa>a3的a 的取值范围是{a|0<a<1或a>3},因为{a|0<a<1或a>3}{a|a>3},因此,“aa>a3”是“a>3”的必要不充分条件.答案:B7.解析:A.命题“∀x ∈R ,cos x≤1”的否定是“∃x0∈R ,cos x0>1”,正确;B .在△ABC 中,sin A≥sin B ,由正弦定理可得a 2R ≥b 2R (R 为外接圆半径),a≥b ,由大边对大角可得A≥B ;反之,A≥B 可得a≥b ,由正弦定理可得sin A≥sin B ,即为充要条件,故正确;C.当a =b =0,c≥0时满足ax2+bx +c≥0,但是得不到“a>0,且b2-4ac≤0”,则不是充要条件,故错误;D .若sin α≠12 ,则α≠π6 与α=π6 则sin α=12 的真假相同,故正确.答案:C8.解析:7=(a +2b )2-ab =(a +2b )2-12 a·2b≥(a +2b )2-12 (a +2b 2 )2=7(a +2b )28, 则(a +2b )2≤8,当且仅当a =2b = 2 时,“=”成立,又a ,b ∈(0,+∞),所以0<a +2b≤2 2 ,当且仅当a =2b = 2 时,“=”成立,所以a +2b 的最大值为2 2 . 答案:C9.解析:因为A ∪B ={1,2,3,4},所以{1,4,a}{1,2,3,4},所以a =2或a =3.答案:AB10.解析:因为a ,b ,c 满足c<a<b ,且ac<0,所以c<0,a>0,b>0,a -c>0,b -a>0,所以ac (a -c )<0,c (b -a )<0,cb2<ab2,ab>ac.答案:BCD11.解析:A 错误,当a<0时,显然有P 小于0;B 正确,a>1时,P =a +2a ≥2a·2a =2 2 ,当且仅当a =2a 时,即a = 2 时等号成立.故充分性成立,而P≥2 2 只需a>0即可;C 正确,P =a +2a >3可得0<a<1或a>2,当a>2时P>3成立,故C 正确;D 错误,因为a>3有a +2a >3+23 >3,故D 错误. 答案:BC12.解析:a +b +1a +1b =5,即a +b +a +b ab =5,所以ab =a +b 5-(a +b ),因为a>b>0,所以由基本不等式得:ab<(a +b )24 ,所以a +b 5-(a +b ) <(a +b )24, 解得:1<a +b<4,A 正确;(1a +b )(1b +a )=1ab +ab +2≥21ab ·ab +2≥4,当且仅当1ab =ab 时等号成立,故B 正确;(1a +b )2-(1b +a )2=(1a +b +1b +a )(1a +b -1b -a )=(1a +b +1b +a )(1ab +1)(b -a ),因为a>b>0,所以(1a +b +1b +a )(1ab +1)(b -a )<0,所以(1a +b )2<(1b +a )2,C 错误;(1a +a )2-(1b +b )2=(1a +a +1b +b )(1a +a -1b -b )=(1a +a +1b +b )(1ab -1)(b -a ),因为a>b>0,而1ab 可能比1大,可能比1小,所以(1a +a +1b +b )(1ab -1)(b -a )符号不确定,所以D 错误.答案:AB13.解析:因为命题“∀x>1,x2≥1”是全称量词命题,所以其否定是存在量词命题,即 “∃x>1,x2<1”.答案:“∃x>1,x2<1”14.解析:根据题意,∀x ∈R ,x2-ax +a≥0恒成立,所以Δ=a2-4a≤0⇒a ∈[0,4].答案:[0,4]15.解析:x2>2x 等价于x<0或x>2,而且“x>a”是“x2>2x”的充分不必要条件,则a≥2.答案:[2,+∞)16.解析:因为第一象限的点M (a ,b )在直线x +y -1=0上,所以a +b =1,a>0,b>0,所以1a +2b =(a +b )(1a +2b )=3+b a +2a b ≥3+2 2 ,当且仅当a = 2 -1,b =2- 2 时等号成立.答案:3+2 2。
高考数学选填压轴题练习与答案
高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。
第二部分 选填题(四)(练习)【金品备课】高考数学复习-冲刺方案-刷题训练及答案详解
选填题(四)一、选择题(在每小题给出的四个选项中,只有一项符合题目要求)1.(2022·山东省聊城高考模拟一)复数z 满足(1+2i)z =3-i ,则|z |=( )A . 2B . 3C .2D . 5答案 A解析 因为(1+2i)z =3-i ,所以z =3-i 1+2i =(3-i )(1-2i )(1+2i )(1-2i )=15-75i , 所以|z |=⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫-752= 2. 2.(2022·湖北省黄冈市蕲春县实验高级中学高三一模)已知全集U =R ,集合A ={x |y =log 2(x -1)},B ={x ∈Z ||x -1|≤2},则(∁U A )∩B =( )A .{0,1}B .{-1,0,1}C .{0,1,2,3}D .{-1,0,1,2,3}答案 B解析 由题意得,集合A ={x |y =log 2(x -1)}={x |x >1},∴∁U A ={x |x ≤1},又B ={x ∈Z ||x -1|≤2}={-1,0,1,2,3},∴(∁U A )∩B ={-1,0,1}.故选B.3.(2022·全国甲卷(理))某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图,则( )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差答案 B解析讲座前问卷答题的正确率的中位数为70%+75%2=72.5%>70%,故A 错误;讲座后问卷答题的正确率只有一个是80%,4个是85%,剩下的全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,故B正确;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%>20%,故D错误.故选B.4.(2022·河北石家庄高三质量检测一)函数f(x)=x32x+2-x的部分图象大致是()答案 A解析f(x)=x32x+2-x的定义域为R,f(-x)=-f(x),故为奇函数,图象关于原点对称,排除B,D;易知x→+∞时,f(x)=x32x+2-x>0,2x→+∞,2-x→0,x3→+∞,∵指数函数y=2x比幂函数y=x3的增长速度快,故f(x)→0,即f(x)在x→+∞时,图象向x轴无限靠近且在x轴上方.故选A.5.(2022·河南省郑州市高三第二次质量预测)在△ABC中,AB=2,AC=3,∠BAC =60°,M 是线段AC 上任意一点,则MB →·MC →的最小值是( )A .-12B .-1C .-2D .-4答案 B解析 设MC →=λAC →(λ∈[0,1]),MB →=MA →+AB →=-(1-λ)AC →+AB →,MB →·MC→=[-(1-λ)AC →+AB →]·(λAC →)=-λ(1-λ)AC →2+λAB →·AC→=-9λ(1-λ)+λ×2×3×cos 60°=3λ(3λ-2),当λ=13时,3λ(3λ-2)取最小值-1.故选B.6.(2022·福建省莆田市高三教学质量检测一)已知a =ln 3,b =30.5,c =lg 9,则( )A .a >b >cB .c >a >bC .b >a >cD .b >c >a答案 C解析 因为0=lg 1<c =lg 9<lg 10=1,a =ln 3>ln e =1,所以a >c .又e 3>32,所以e 32>3,则32>ln 3,则b =30.5>32>ln 3=a .故b >a >c . 7.(2022·全国甲卷(理))在长方体ABCD -A 1B 1C 1D 1中,已知B 1D 与平面ABCD 和平面AA 1B 1B 所成的角均为30°,则( )A .AB =2ADB .AB 与平面AB 1C 1D 所成的角为30°C .AC =CB 1D .B 1D 与平面BB 1C 1C 所成的角为45°答案 D解析 如图所示,不妨设AB =a ,AD =b ,AA 1=c ,依题意以及长方体的结构特征可知,B 1D 与平面ABCD 所成的角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成的角为∠DB 1A ,所以sin 30°=c B 1D =b B 1D ,即b =c ,B 1D =2c =a 2+b 2+c 2,解得a =2c .对于A ,AB =a ,AD =b ,AB =2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成的角为∠BAE ,因为tan ∠BAE =c a =22,所以∠BAE ≠30°,B 错误;对于C ,AC = a 2+b 2=3c ,CB 1=b 2+c 2=2c ,AC ≠CB 1,C 错误;对于D ,B 1D 与平面BB 1C 1C 所成的角为∠DB 1C ,sin ∠DB 1C =CD B 1D =a 2c =22,而0°<∠DB 1C <90°,所以∠DB 1C =45°,D 正确.故选D.8.(2022·重庆第八中学高考适应性考试)直线y =kx (k >0)是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线.点P ,Q 是双曲线C 右支上相异的两点,若使得△OPQ (其中O 为坐标原点)为等腰直角三角形的直线PQ 恰有两条,则k 的取值范围为( )A .(1,2]B .(2-1,1]C .(2,2]D .(1,2]答案 B解析 △OPQ (其中O 为坐标原点)为等腰直角三角形.若∠POQ 为直角,则|OP |=|OQ |,由双曲线的对称性可知,这样的直线PQ 不会恰有两条,故O 不可能是直角顶点,即两渐近线之间的夹角不大于90°,所以k ≤1.不妨设∠OPQ 为直角,所以∠POQ =45°,所以两渐近线之间的夹角大于45°.设直线y =kx (k >0)的倾斜角为θ,所以k =tan θ.因为tan 2θ>1,即2tan θ1-tan 2θ>1,解得tan θ>2-1,所以2-1<k ≤1.故选B. 二、选择题(在每小题给出的四个选项中,有多项符合题目要求)9.(2022·福建省莆田二中高三一模)已知{a n }是等差数列,公差d >0,其前n项和为S n ,若a 2,a 5+2,a 17+2成等比数列,S n =(n +1)a n 2,则( ) A.d =1B .a 10=20C .S n =n 2+nD .当n ≥2时,S n ≥32a n 答案 BCD解析 ∵S n =(n +1)a n 2,∴当n =2时,可得2(a 1+a 2)=3a 2,化为2a 1=a 2,即a 1=d ,∵a 2,a 5+2,a 17+2成等比数列,∴(5d +2)2=2d (17d +2),即9d 2-16d -4=0,又d >0,解得d =2,∴a n =2n ,a 10=20,S n =n 2+n ,当n ≥2时,S n -32a n =n 2+n -3n =n 2-2n =n (n -2)≥0.故选BCD.10.(2022·江苏省南通市高三下3月大联考)已知函数f (x )=2sin x cos x +23sin 2x ,则( )A .f (x )的最小正周期为πB .⎝ ⎛⎭⎪⎫π6,0是曲线f (x )的一个对称中心 C .直线x =-π12是曲线f (x )的一条对称轴D .f (x )在区间⎝ ⎛⎭⎪⎫π6,5π12上单调递增 答案 ACD解析 f (x )=sin2x +3(1-cos 2x )=sin 2x -3cos 2x +3=2sin ⎝ ⎛⎭⎪⎫2x -π3+3,T =2π2=π,A 正确;⎝ ⎛⎭⎪⎫π6,3是曲线f (x )的一个对称中心,B 错误;由2x -π3=π2+k π,k ∈Z ,得x =5π12+k π2,k ∈Z ,k =-1时,x =-π12,∴直线x =-π12是曲线f (x )的一条对称轴,C 正确;当x ∈⎝ ⎛⎭⎪⎫π6,5π12时,2x -π3∈⎝ ⎛⎭⎪⎫0,π2,∴f (x )在⎝ ⎛⎭⎪⎫π6,5π12上单调递增,D 正确.故选ACD.11.(2022·广东省梅州市高三二模)一球筐中装有n 个小球,甲、乙两个同学轮流且不放回地抓球,每次最少抓1个球,最多抓2个球,规定:由甲先抓,且谁抓到最后一个球谁赢,则以下推断中正确的有( )A .若n =4,则甲有必赢的策略B .若n =5,则甲有必赢的策略C .若n =6,则乙有必赢的策略D .若n =7,则乙有必赢的策略答案 ABC解析 对于A ,若n =4,只要甲第一次抓1个球,乙抓1个或2个球,剩余的球甲可以抓完,即甲有必赢的策略,A 正确;对于B ,若n =5,只要甲第一次抓2个球,乙抓1个或2个球,剩余的球甲可以抓完,即甲有必赢的策略,B 正确;对于C ,若n =6,若甲第一次抓1个球,则问题转化为剩余5个球,由乙先抓,结合B 项可知,乙有必赢的策略,若甲第一次抓2个球,则问题转化为剩余4个球,由乙先抓,结合A 项可知,乙有必赢的策略.综上,若n =6,则乙有必赢的策略,C 正确;对于D ,若n =7,若甲第一次抓1个球,则问题转化为剩余6个球,由乙先抓,结合C 项可知,甲有必赢的策略,若甲第一次抓2个球,则问题转化为剩余5个球,由乙先抓,结合B 项可知,乙有必赢的策略,D 错误.故选ABC.12.(2022·广东省茂名五校高三第三次联考)设函数f (x )=x -ln |x |x ,则下列说法中正确的是( )A .f (x )为奇函数B .函数y =f (x )-1有两个零点C .函数y =f (x )+f (2x )的图象关于点(0,2)对称D .过原点与函数f (x )的图象相切的直线有且只有一条答案 BCD解析 f (x )=x -ln |x |x =1-ln |x |x (x ≠0),f (-x )=1+ln |x |x ≠-f (x ),故A 错误;令f (x )-1=0,即ln |x |x =0,解得x =±1,故B 正确;y =-ln |x |x 是奇函数,所以f (x )的图象关于点(0,1)对称,又因为f (2x )的图象也关于点(0,1)对称,所以y =f (x )+f (2x )的图象的对称中心为点(0,2),故C 正确;设切点P (x 0,y 0),切线y=kx ,当x >0时,f (x )=1-ln |x |x =1-ln x x ,f ′(x )=-1-ln x x 2,由-1-ln x 0x 20=k ,1-ln x 0x 0=kx 0,消去k 得2ln x 0=x 0+1,令g (x )=x +1-2ln x ,g ′(x )=1-2x =x -2x ,可得g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )≥g (2)=3-2ln2>0,所以方程2ln x 0=x 0+1无解.当x <0时,f (x )=1-ln |x |x =1-ln (-x )x,f ′(x )=-1-ln (-x )x 2,则-1-ln (-x 0)x 20=k ,1-ln (-x 0)x 0=kx 0,消去k 得2ln (-x 0)=x 0+1,可知y =2ln (-x )与y =x +1的图象有唯一交点,所以方程2ln (-x 0)=x 0+1有唯一解.综上,所求切线有且只有一条,故D 正确.故选BCD.三、填空题13.(2022·湖南省长沙市雅礼中学高三下月考七)若tan α=2,则cos ⎝ ⎛⎭⎪⎫π2+2α=________.答案 -45解析 cos ⎝ ⎛⎭⎪⎫π2+2α=-sin 2α=-2sin αcos α=-2sin αcos αsin 2α+cos 2α=-2tan αtan 2α+1=-45.14.(2022·河北石家庄高三质量检测一)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案 3解析 由题意可知,E (1,0),|NE |=1.设M (x 0,y 0),x 209+y 208=1⇒y 20=8⎝ ⎛⎭⎪⎫1-x 209,-3≤x 0≤3,则|MN |=|ME |2-|NE |2=|ME |2-1=(x 0-1)2+y 20-1=x 20-2x 0+8⎝ ⎛⎭⎪⎫1-x 209=x 209-2x 0+8=x 20-18x 0+723=(x 0-9)2-93,∴当x 0=3时,|MN |min =36-93= 3.15.(2022·新高考Ⅰ卷)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________.答案 (-∞,-4)∪(0,+∞)解析 因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )e x 0),O为坐标原点,依题意得,切线斜率k OA =(x 0+a +1)e x 0=(x 0+a )e x 0x 0,化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).16.(2022·福州高三诊断性联考)《缀术》是中国南北朝时期的一部算经,汇集了祖冲之和祖暅父子的数学研究成果.《缀术》中提出的“缘幂势既同,则积不容异”被称为祖暅原理,其意思是:如果两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等.该原理常应用于计算某些几何体的体积.如图,某个西晋越窑卧足杯的上、下底为互相平行的圆面,侧面为球面的一部分,上底直径为4 6 cm ,下底直径为6 cm ,上、下底面间的距离为3 cm ,则该卧足杯侧面所在的球面的半径是________ cm ;卧足杯的容积是________ cm 3(杯的厚度忽略不计).答案 5 54π解析 设卧足杯侧面所在的球面的半径为R cm ,球心到上底面的距离为d cm ,则⎩⎨⎧R 2=d 2+(26)2,R 2=(d +3)2+32解得d =1,R =5.设卧足杯中与下底面的距离为h cm 的截面半径为r cm ,则球心到此截面的距离为1+3-h =(4-h )cm ,所以r 2=52-(4-h )2,则此截面的面积为S =[π×52-π×(4-h )2](cm 2).构造一个底面半径为5 cm ,高为3 cm 的圆柱,并且在此圆柱中挖去上底半径为1 cm ,下底半径为4 cm ,高为3 cm 的圆台,设距离圆柱下底面的距离为h cm 的截面截圆台的半径为r ′cm ,则r ′-13=3-h 3,则r ′=4-h ,所以截面截几何体所得截面的面积为S ′=[π×52-π×(4-h )2](cm 2).由祖暅原理得卧足杯与此圆柱挖去圆台后的几何体的体积相等,则V =π×52×3-13π(12+42+1×4)×3=54π(cm 3).。
新高考数学二轮专题复习高频考点强化训练8(附解析)
强化训练8 等差数列与等比数列——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东威海三模]等差数列{a n }的前n 项和为S n ,若a 3=4,S 9=18,则公差d =( )A .1B .-1C .2D .-22.[2022·湖南常德一模]设S n 为等比数列{a n }的前n 项和,若a 4=4,S 3=S 2+2,则a 1=( )A .12B .1C .2D .23.[2022·湖南岳阳一模]已知等差数列{a n }满足a 2=4,a 3+a 5=4(a 4-1),则数列{a n }的前5项和为( )A .10B .15C .20D .304.[2022·湖南师大附中二模]设等比数列{a n }的首项为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意N *都有a n +1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.[2022·辽宁鞍山二模]设等差数列{a n },{b n }的前n 项和分别是S n ,T n ,若S n T n=2n 3n +7,则 a 3b 3 =( ) A .1 B .511C .2217D .386.已知a 1=1,a n =n (a n +1-a n )(n ∈N +),则数列{a n }的通项公式是a n =( )A .2n -1B .(n +1n)n +1 C .n 2 D .n7.[2022·河北邯郸一模]“中国剩余定理”又称“孙子定理”,可见于中国南北朝时期的数学著作《孙子算经》卷下第十六题的“物不知数”问题,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有一个相关的问题:将1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序排成一列,构成一个数列,则该数列的项数为( )A .132B .133C .134D .1358.[2022·北京北大附中三模]已知数列{a n }满足a 1a 2a 3…a n =n 2,其中n =1,2,3,…,则数列{a n }( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.在数列{a n }中,a 1=1,数列⎩⎨⎧⎭⎬⎫1a n +1 是公比为2的等比数列,设S n 为{a n }的前n 项和,则( )A .a n =12n -1B .a n =12n +12C .数列{a n }为递减数列D .S 3>7810.[2022·湖南永州三模]已知等差数列{a n }是递减数列,S n 为其前n 项和,且S 7=S 8,则( )A .d >0B .a 8=0C .S 15>0D .S 7、S 8均为S n 的最大值11.[2022·山东枣庄三模]给出构造数列的一种方法:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现自1,1起进行构造,第1次得到数列1,2,1,第2次得到数列1,3,2,3,1,…,第n (n ∈N *)次得到数列1,x 1,x 2,…,x k ,1,记a n =1+x 1+x 2+…+x k +1,数列{a n }的前n 项和为S n ,则( )A.a 4=81B .a n =3a n -1-1C .a n =3n +1D .S n =12 ×3n +1+n -3212.[2022·河北沧州二模]已知数列{a n }满足a 1=1,a n +2=(-1)n +1(a n -n )+n ,记{a n }的前n 项和为S n ,则( )A .a 48+a 50=100B .a 50-a 46=4C .S 48=600D .S 49=601三、填空题(本题共4小题,每小题5分,共20分)13.[2022·辽宁丹东一模]在等差数列{a n }中,已知a 1+2a 7=15,则a 2+a 8=________.14.[2022·广东潮州二模]记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则a 4=________.15.[2022·山东泰安二模]已知数列{a n }是公差大于0的等差数列,a 1=2,且a 3+2,a 4,a 6-4成等比数列,则a 10=________.16.[2022·河北唐山二模]已知数列{a n }满足a 1=a 5=0,|a n +1-a n |=2,则{a n }前5项和的最大值为________.强化训练8 等差数列与等比数列1.解析:由题可知⎩⎪⎨⎪⎧a1+2d =49a1+9×82·d =18 ⇒⎩⎨⎧a1=6d =-1 . 答案:B2.解析:由已知a3=S3-S2=2,q =a4a3 =42 =2,所以a1=a3q2 =222 =12 .答案:A3.解析:等差数列{an}中,2a4=a3+a5=4(a4-1),解得a4=2,于是得公差d =a4-a24-2=-1,a1=5, 所以数列{an}的前5项和为S5=5a1+5(5-1)2d =15. 答案:B4.解析:若a1<0,且0<q<1,则an +1-an =a1qn -a1qn -1=a1qn -1(q -1)>0,所以an +1>an ,反之,若an +1>an ,则an +1-an =a1qn -a1qn -1=a1qn -1(q -1)>0, 所以a1<0,且0<q<1或a1>0,且q>1,所以“a1<0,且0<q<1”是“对于任意N*,都有an +1>an”的充分不必要条件. 答案:A5.解析:因为等差数列{an},{bn}的前n 项和分别是Sn ,Tn ,所以a3b3 =a1+a52b1+b52 =5(a1+a5)25(b1+b5)2=S5T5 =1015+7=511 . 答案:B6.解析:由an =n (an +1-an ),得(n +1)an =nan +1,即an +1an =n +1n ,则an an -1 =n n -1 ,an -1an -2 =n -1n -2 ,an -2an -3 =n -2n -3,…,a2a1 =21 ,n≥2, 由累乘法可得an a1 =n ,所以an =n ,n≥2,又a1=1,符合上式,所以an =n.答案:D7.解析:因为由1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序所构成的数列是一个首项为14,公差为15的等差数列{an},所以该数列的通项公式为an =14+15(n -1)=15n -1.令an =15n -1≤2 022, 解得n≤134,即该数列的项数为134.答案:C8.解析:依题意,因为a1a2a3…an =n2,其中n =1,2,3,…,当n =1时,a1=12=1,当n≥2时,a1a2a3…an -1=(n -1)2,a1a2a3…an =n2,两式相除有an =n2(n -1)2 =(1+1n -1)2,n≥2,易得an 随着n 的增大而减小,故an≤a2=4,且an>1=a1,故最小项为a1=1,最大项为a2=4.答案:A9.解析:因为a1=1,数列⎩⎨⎧⎭⎬⎫1an +1 是公比为2的等比数列,所以1an +1=2·2n -1=2n ,所以an =12n -1,故A 正确,B 错误; 因为y =2x -1,(x≥1)是单调增函数,故y =12x -1,(x≥1)是单调减函数,故数列{an}是减数列,故C 正确;S3=a1+a2+a3=1+13 +17 >78 ,故D 正确.答案:ACD10.解析:因为等差数列{an}是递减数列,所以an +1-an<0,所以d<0,故A 错误;因为S7=S8,所以a8=S8-S7=0,故B 正确;因为S15=15(a1+a15)2=15a8=0,故C 错误; 因为由题意得,⎩⎨⎧a7>0a8=0a9<0,所以S7=S8≥Sn (n ∈N*),故D 正确. 答案:BD11.解析:由题意得:a1=4,a2=10=3×4-2,a3=28=3×10-2,a4=82=3×28-2,所以有an =3an -1-2,因此选项AB 不正确;an =3an -1-2⇒an -1=3(an -1-1),所以数列{an -1}是以a1-1=3为首项,3为公比的等比数列,因此有an -1=3·3n -1=3n ⇒an =3n +1,因此选项C 正确;Sn =3(1-3n )1-3+n =12 ×3n +1+n -32 ,所以选项D 正确. 答案:CD12.解析:因为a1=1,an +2=(-1)n +1(an -n )+n ,所以当n 为奇数时,an +2=an =a1=1;当n 为偶数时,an +an +2=2n.所以a48+a50=96,选项A 错误;又因为a46+a48=92,所以a50-a46=4,选项B 正确;S48=a1+a3+a5+…+a47+[(a2+a4)+(a6+a8)+…+(a46+a48)]=24×1+2×(2+6+…+46)=24+2×(2+46)×122=600,故C 正确; S49=S48+a49=600+1=601,选项D 正确.答案:BCD13.解析:由题意在等差数列{an}中,设公差为d ,则a1+2a7=3a1+12d =3a5=15,所以a5=5,于是a2+a8=2a5=10.答案:1014.解析:设等比数列{an}的公比为q ,由已知S3=a1+a1q +a1q2=1+q +q2=34 ,即q2+q +14 =0,解得q =-12 ,所以a4=1·(-12 )3=-18 .答案:-1815.解析:设公差为d ,则a 24 =(a3+2)(a6-4),即(2+3d )2=(2+2d +2)(2+5d -4),化简得d2+4d -12=0,解得d =2或d =-6,又d>0,故d =2,则a10=a1+9d =20.答案:2016.解析:∵a1=a5=0,|an +1-an|=2,∴|a2-a1|=|a2|=2,∵求an 前5项和的最大值,∴取a2=2,∵|an +1-an|=2,∴|a3-a2|=|a3-2|=2.∵求an 前5项和的最大值,∴取a3=4,∵|a4-a3|=|a4-4|=2①|a5-a4|=|0-a4|=|a4|=2②结合①和②,∴a4=2时前5项和可有最大值.∴{an}前5项和的最大值为:0+2+4+2+0=8.答案:8。
全国统一高考数学练习卷及含答案 (1)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
高考聚焦小题——小卷强化训练一及参考答案
高考聚焦小题——小卷强化训练一班级 __________ 姓名 __________ 分数 __________一、 填空题:本大题共8小题,每题5分,共40分. 1. 给出以下结论:① 命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ② “x =4”是“x 2-3x -4=0”的充分条件;③ 命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④ 命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”.则其中错误的是________.(填序号)2. 已知函数f (x )=⎩⎪⎨⎪⎧sin 5πx 2,x ≤0,16-log 3x ,x >0,则f (f (33))=________.3. 连续抛掷两枚骰子分别得到的点数是a ,b ,则函数f (x )=ax 2-bx 在x =1处取得最值的概率是________.4. 设S n 为正项等比数列{a n }的前n 项和.若a 4·a 8=2a 10,则S 3的最小值为________.5. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0,若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的取值范围是____________.(第6题)6. 如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.7. 已知a >0,b >0,则a 2a +b +2b2b +a的最大值为________.8. 已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一的零点,则a =________. 二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,已知M ,N 分别为线段BB 1,A 1C 的中点,MN 与AA 1所成角的大小为90°,且MA 1=MC . 求证:(1) 平面A1MC⊥平面A1ACC1;(2) MN∥平面ABC.10. (本小题满分14分)已知向量m =(cos α,-1),n =(2,sin α),其中α∈(0,π2),且m ⊥n .(1) 求cos 2α的值;(2) 若sin(α-β)=1010,且β∈(0,π2),求角β的值.设椭圆C :x 22+y 2=1的右焦点为F ,过点F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1) 当l 与x 轴垂直时,求直线AM 的方程; (2) 设O 为坐标原点,求证:∠OMA =∠OMB .已知等差数列{a n}的前n项和为S n,且满足S4=24,S7=63.(1) 求数列{a n}的通项公式;(2) 若b n=2a n+(-1)n·a n,求数列{b n}的前n项和T n.小卷强化训练一参考答案1. ③ 解析:③中命题的逆命题为“若方程x 2+x -m =0有实根,则m>0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m>0.所以不是真命题.①②④均正确.2. 32 解析:f(f(33))=f ⎝⎛⎭⎫-43=sin ⎝ ⎛⎭⎪⎫-10π3=sin 2π3=32. 3. 112 解析:连续抛掷两枚骰子得到的(a ,b)共36个,函数f(x)=ax 2-bx 在x =1处取得最值的条件是b =2a ,所以满足条件的有(1,2),(2,4),(3,6),共3个,所以所求概率为P =112.4. 6 解析:由a 4·a 8=2a 10,得a 2=2.设公比为q >0,则S 3=2q +2+2q ≥22q ·2q +2=6,当且仅当q =1时取等号.5. [-22,22] 解析:圆C 的标准方程为(x -2)2+y 2=4.过点P 作圆C 的两条切线相互垂直,则PC =22,又点P 在直线y =k(x +1)上,则圆心C 到直线的距离d =|3k|k 2+1≤22,解得-22≤k ≤2 2.6. 34解析:∵ BD →=2BO →,BE →=λBA →+μBD →,∴ BE →=λBA →+2μBO →.∵ E 为线段AO 的中点,∴ BE →=12(BA →+BO →),∴ λ=12,2μ=12,解得μ=14,∴ λ+μ=34.7. 2-223 解析:设m =2a +b >0,n =2b +a >0,则a =2m -n 3,b =2n -m 3,所以原式=2m -n 3m +4n -2m 3n =2-n 3m -2m 3n ≤2-2n 3m ·2m 3n =2-223,当且仅当n 3m =2m3n ,即n =2m ,也即b =32+22a 时等号成立.8. 12解析:由条件f(x)=x 2-2x +a(e x -1+e -x +1),得f(2-x)=(2-x)2-2(2-x)+a(e 2-x -1+e -(2-x)+1)=x 2-4x +4-4+2x +a(e 1-x +e x -1)=x 2-2x +a(e x -1+e -x +1),所以f(2-x)=f(x),即直线x =1为函数f(x)的图象的对称轴,由题意,f(x)有唯一的零点,故f(x)的零点只能为x =1,即f(1)=12-2×1+a(e 1-1+e -1+1)=0,解得a =12.9. 证明:(1) 因为MN 与AA 1所成角的大小为90°, 所以MN ⊥AA 1.(2分)因为MA 1=MC ,且N 是A 1C 的中点, 所以MN ⊥A 1C.(4分)又AA 1∩A 1C =A 1,A 1C ,AA 1⊂平面A 1ACC 1, 故MN ⊥平面A 1ACC 1.(6分)因为MN ⊂平面A 1MC ,所以平面A 1MC ⊥平面A 1ACC 1.(7分) (2) 取AC 中点P ,连结NP ,BP ,如图.因为N 为A 1C 的中点,P 为AC 的中点,所以PN ∥AA 1,且PN =12AA 1.(9分)在三棱柱ABCA 1B 1C 1中,BB 1∥ AA 1,且BB 1=AA 1.又M 为BB 1的中点,故BM ∥AA 1,且BM =12AA 1,所以PN ∥BM ,且PN =BM ,所以四边形PNMB 是平行四边形,(12分) 所以MN ∥BP.又MN ⊄平面ABC ,BP ⊂平面ABC ,故MN ∥平面ABC.(14分)10. 解:(1) 由m ⊥n ,得2cos α-sin α=0,即sin α=2cos α,(2分)代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=55,sin α=255,(4分)则cos 2α=2cos 2α-1=2×⎝⎛⎭⎫552-1=-35.(7分)(2) 由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,(10分)则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)= 255×31010-55×1010=22.(12分) 因为β∈⎝ ⎛⎭⎪⎫0,π2,所以β=π4.(14分)11. (1) 解:由已知,得F(1,0),l 的方程为x =1.由已知可得点A 的坐标为⎝⎛⎭⎫1,22或⎝⎛⎭⎫1,-22. 所以直线AM 的方程为y =-22x +2或y =22x - 2.(4分)(2) 证明:当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为线段AB 的垂直平分线,所以∠OMA =∠OMB.(6分) 当l 与x 轴不重合也不垂直时,设l 的方程为y =k(x -1)(k ≠0),A(x 1,y 1),B(x 2,y 2),则-2<x 1<2,-2<x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).(10分)将y =k(x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k(x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0.从而k MA +k MB =0,故直线MA ,MB 的倾斜角互补,所以∠OMA =∠OMB. 综上,∠OMA =∠OMB.(16分) 12. 解:(1) ∵ {a n }为等差数列,∴ ⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63⇒⎩⎪⎨⎪⎧a 1=3,d =2⇒a n=2n +1.(6分)(2) ∵ b n =2a n +(-1)n ·a n =22n +1+(-1)n ·(2n +1)=2·4n +(-1)n ·(2n +1),(8分)∴ T n =2(41+42+…+4n )+[-3+5-7+9-…+(-1)n(2n +1)]=8(4n-1)3+G n .当n =2k(k ∈N *)时,G n =2×n2=n ,∴ T n =8(4n -1)3+n ;(12分)当n =2k -1(k ∈N *)时,G n =2×n -12-(2n +1)=-n -2,∴ T n =8(4n -1)3-n -2.(14分)综上,T n =⎩⎪⎨⎪⎧8(4n -1)3+n (n =2k ,k ∈N *),8(4n-1)3-n -2(n =2k -1,k ∈N *).(16分)。
高考数学三角函数选择填空专题练习(含答案)
高考数学三角函数选择填空专题练习一、选择题1.为了得到函数sin 2y x =的图象,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移π12个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 2.若3tan 4x =,则ππtan tan 2424x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭( ) A .2- B .2 C .32 D .32-3.已知函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为πB .()f x 的图象关于直线8π3x =对称 C .()f x 的一个零点为π6 D .()f x 在区间π03⎛⎫⎪⎝⎭,上单调递减4.函数()()π2sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[]0,1上恰有两个最大值点,则ω的取值范围为( )A .[]2π,4πB .9π2π,2⎡⎫⎪⎢⎣⎭C .13π25π,66⎡⎫⎪⎢⎣⎭ D .25π2π,6⎡⎫⎪⎢⎣⎭5.已知函数()()πsin 0,0,2f x A x A ωϕϕω⎛⎫=+>>< ⎪⎝⎭为π2,且()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称,则下列判断正确的是( )A .要得到函数()f x 的图象,只需将2y x =的图象向右平移π6个单位 B .函数()f x 的图象关于直线5π12x =对称C .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为D .函数()f x 在ππ,63⎡⎤⎢⎥⎣⎦上单调递增6.函数()πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的最大值为( )A B .2C .D .47.已知函数()cos sin f x x x =-在[],a a -上是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π8.已知A 是函数()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数1x ,2x 使得对任意实数x总有()()()12f x f x f x ≤≤成立,则12A x x ⋅-的最小值为( ) A .π2018B .π1009C .2π1009D .π40369.如图,己知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象关于点()2,0M 对称,且()f x 的图象上相邻的最高点与最低点之间的距离为4,将()f x 的图象向右平移13个单位长度,得到函数()g x 的图象;则下列是()g x 的单调递增区间的为( )A .713,33⎡⎤⎢⎥⎣⎦B .410,33⎡⎤⎢⎥⎣⎦C .17,33⎡⎤⎢⎥⎣⎦D .1016,33⎡⎤⎢⎥⎣⎦10.已知函数()2sin 22sin f x x x =-,给出下列四个结论( )①函数()f x 的最小正周期是π;②函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数;③函数()f x 图像关于π,08⎛⎫- ⎪⎝⎭对称;④函数()f x 的图像可由函数2y x =的图像向右平移π8个单位,再向下平移1个单位得到. 其中正确结论的个数是( ) A .1B .2C .3D .411.已知()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)()()12''0f x f x ==,12x x -的最小值为π2,()π3f x f x ⎛⎫=- ⎪⎝⎭,将()f x 的图像向左平移π6个单位得()g x ,则()g x 的单调递减区间是( )A .ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈ZB .π2πππ63k k ⎡⎤++⎢⎥⎣⎦,,()k ∈ZC .π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦,()k ∈ZD .π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z12.已知函数()sin sin3f x x x =-,[]0,2πx ∈,则()f x 的所有零点之和等于( ) A .8π B .7π C .6π D .5π二、填空题13.已知α为第一象限角,sin cos αα-=,则()cos 2019π2α-=__________. 14.已知tan 2α=,则2cos sin2αα+=__________.15.已知πtan 26α⎛⎫-= ⎪⎝⎭,π7π,66α⎡⎤∈⎢⎥⎣⎦,则2sin cos 222ααα=_____.16.已知函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =,且当π6x =-时,()f x 取得最大值,则当ω取最小值时,下列说法正确的是___________.(填写所有正确说法的序号) ①23ω=;②()01f =-; ③当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 单调递减;④函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称.参考答案 1.【答案】B【解析】ππsin 2sin 2126y x x ⎡⎤⎛⎫==-+⎪⎢⎥⎝⎭⎣⎦,故应向右平移π12个单位长度.故选B . 2.【答案】C【解析】因为2tan1tan 14tanππ3222tan tan 2tan 242421tan 1tan 1tan 222x x xx x x x x x+-⎛⎫⎛⎫++-=+=== ⎪ ⎪⎝⎭⎝⎭-+-, 故选C . 3.【答案】B【解析】函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,周期为2ππ2T ==,故A 正确;函数图像的对称轴为2ππ2π32x k +=+,ππ122k k x ∈⇒=-+Z ,k ∈Z ,8π3x =不是对称轴,故B 不正确; 函数的零点为2π2π3x k +=,ππ32k k x ∈⇒=-+Z ,k ∈Z ,当1k =时,得到一个零点为π6,故C 正确; 函数的单调递减区间为2ππ3π2π,π322x k k ⎛⎫+∈++ ⎪⎝⎭,k ∈Z ,解得x 的范围为ππ5π,π122122k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,区间π0,3⎛⎫⎪⎝⎭是其中的一个子区间,故D 正确.故答案为B .4.【答案】C 【解析】由题意得π5π32ω+≥,π9π32ω+<,13π25π66ω∴≤<,故选C . 5.【答案】A【解析】因为()f xA =,又图象相邻两条对称轴之间的距离为π2,故π22T =, 即2ω=,所以()()2f x x ϕ=+, 令π12x =-,则ππ6k ϕ-+=即ππ6k ϕ=+,k ∈Z , 因π2ϕ<,故π6ϕ=,()π26f x x ⎛⎫=+ ⎪⎝⎭.πππ22266y x x x ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故向右平移π6个单位后可以得到()π26f x x ⎛⎫+ ⎪⎝⎭,故A 正确;5π5ππ01266f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故函数图像的对称中心为5π,012⎛⎫⎪⎝⎭,故B 错; 当ππ66x -≤≤时,πππ2662x -≤+≤,故()min f x =,故C 错; 当ππ63x ≤≤时,ππ5π2266x ≤+≤,()π26f x x ⎛⎫=+ ⎪⎝⎭在ππ,63⎡⎤⎢⎥⎣⎦为减函数,故D 错. 综上,故选A . 6.【答案】A【解析】函数()π1sin sin sin sin 32f x x x x x x ⎛⎫=++=++ ⎪⎝⎭31πsin cos 226x x x x x ⎫⎛⎫=+=+=+≤⎪ ⎪⎪⎝⎭⎭A . 7.【答案】A【解析】()'sin cos f x x x =--,由题设,有()'0f x ≤在[],a a -上恒成立,π04x ⎛⎫+≥ ⎪⎝⎭,故3ππ2π2π44k x k -≤≤+,k ∈Z .所以3π2π4π2π4k a a k -≤-⎧⎪≤⎨+⎪⎪⎪⎩,因0a >,故0k =即π04a <≤,a 的最大值为π4,故选A .8.【答案】B 【解析】()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭112018cos2018cos2018201822x x x x =++π2018cos 20182sin 20186x x x ⎛⎫=+=+ ⎪⎝⎭,()max 2A f x ∴==,周期2ππ20181009T ==, 又存在实数1x ,2x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()2max 2f x f x ∴==,()()1min 2f x f x ==-,12A x x ⋅-的最小值为1π21009A T ⨯=,故选B .9.【答案】D【解析】由图象可知A =()f x 的图象上相邻的最高点与最低点之间的距离为4, 所以(22242T ⎛⎫+= ⎪⎝⎭,解得4T =,即2π4w =,即π2w =,则()π2f x x ϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 关于点()2,0M 对称,即()20f =π202ϕϕ⎛⎫⨯+= ⎪⎝⎭,解得0ϕ=,所以()π2f x x ⎛⎫= ⎪⎝⎭,将()f x 的图象向右平移13个单位长度,得到()g x 的图象,即()π1ππ2326g x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由ππππ2π2π2262k x k -+≤-≤+,k ∈Z ,得244433k x k -+≤≤+,k ∈Z ,当1k =时,101633x ≤≤,即函数的单调增区间为1016,33⎡⎤⎢⎥⎣⎦,故选D . 10.【答案】B【解析】()2πsin 22sin sin 2cos21214f x x x x x x ⎛⎫=-=+-+- ⎪⎝⎭∴函数()f x 的最小正周期2ππ2T ==,故①正确 令ππ3π2π22π242k x k +≤+≤+,解得π5πππ88k x k +≤≤+, 当0k =时,()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数,故②正确令π204x +=,解得π8x =-,则()f x 图像关于π,18⎛⎫-- ⎪⎝⎭对称,故③错误 ()π214f x x ⎛⎫+- ⎪⎝⎭,可以由()2f x x =的图象向左平移π8个单位,再向下平移一个单位得到,故④错误,综上,正确的结论有2个,故选B . 11.【答案】A【解析】∵()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)由()()12''0f x f x ==可得,1x ,2x 是函数的极值点, ∵12x x -的最小值为π2,∴1ππ22T ω⋅==,2ω∴=,()()sin 2f x x θ∴=+, 又()π3f x f x ⎛⎫=- ⎪⎝⎭,∴()f x 的图象的对称轴为π6x =,ππ2π62k θ∴⨯+=+,k ∈Z ,令0k =可得π6θ=,()πsin 26f x x ⎛⎫∴=+ ⎪⎝⎭,将()f x 的图象向左平移π6个单位得()ππsin 2cos 266g x x x ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭的图象,令2π22ππk x k ≤≤+,πππ2k x k ∴≤≤+, 则()cos 2g x x =的单调递减区间是ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈Z ,故选A . 12.【答案】B【解析】由已知函数()sin sin3f x x x =-,[]0,2πx ∈,令()0f x =,即sin sin30x x -=,即2sin sin3sin cos2cos sin 2sin cos22sin cos x x x x x x x x x x ==+=+, 即()2sin cos22cos 10x x x +-=,解得sin 0x =或2cos22cos 10x x +-=, 当sin 0x =,[]0,2πx ∈时,0x =或πx =或2πx =;当2cos22cos 10x x +-=时,即222cos 2cos 20x x +-=,解得cos x =, 又由[]0,2πx ∈,解得π4x =或3π4或5π4或7π4, 所以函数()f x 的所有零点之和为π3π5π7π0π2π7π4444++++++=,故选B .13. 【解析】()cos 2019π2cos2αα-=-,因为sin cos αα-=,所以11sin23α-=,2sin23α∴=,因为sin cos 0αα->,α为第一象限角, 所以ππ2π2π42k k α+<<+,k ∈Z ,π4π24ππ2k k α∴+<<+,k ∈Z ,所以cos2α=. 14.【答案】1【解析】tan 2α=,∴原式22222cos 2sin cos 12tan 1221sin cos tan 121ααααααα+++⨯====+++. 故答案为1.15.【解析】原式1ππsin sin cos 236αααα⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,因为π7π,66α⎡⎤∈⎢⎥⎣⎦,所以[]π0,π6α-∈,因πtan 26α⎛⎫-= ⎪⎝⎭,所以πcos 6α⎛⎫-= ⎪⎝⎭.16.【答案】①④【解析】函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =, 则ππ2sin 1033f ωϕ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,π1sin 32ωϕ⎛⎫+= ⎪⎝⎭,ππ2π36k ωϕ+=+或()5π2π6k k +∈Z ,()ππ2π62n n ωϕ-+=+∈Z , 两式相减得()243k n ω=-±,又0ω>,则min 23ω=, 此时2π5π2π96k ϕ+=+,k n =,11π2π18k ϕ∴=+, 又πϕ<,则11π18ϕ=,()211π2sin 1318f x x ⎛⎫∴=+- ⎪⎝⎭,当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 先减后增,函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称,()11π02sin1118f =-≠-, 故填①④.。
高考数学选择、填空题专项汇编题(共40套)[附答案]
三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。
高考数学圆锥曲线选择填空专题练习(含答案)
高考数学圆锥曲线选择填空专题练习一、选择题1.设椭圆()222210,0x y m n m n +=>>的焦点与抛物线28x y =的焦点相同,离心率为12,则m n -=( )A .4B .4-C .8D .8-2.已知双曲线()2222:10,0x y C a b a b-=>>的离心率2e =,则双曲线C 的渐近线方程为( )A .2y x =±B .12y x =± C .y x =± D .y =3.已知1F 、2F 是椭圆C :()222210x y a b a b +=>>的两个焦点,P 为椭圆C 上一点,且12·0PF PF =,若12PF F △的面积为9,则b 的值为( ) A .1B .2C .3D .44.如图,过抛物线()220y px p =>的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若点F 是AC 的中点,且4AF =,则线段AB 的长为( )A .5B .6C .163D .2035.设双曲线()2222:10,0x y C a b a b -=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( )A .2B C .D .46.关于x ,y 的方程()2220x ay a a +=≠,表示的图形不可能是( )A .B .C .D .7.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使MF MA +取得最小值的M 的坐标为( )A .()0,0B .1,12⎛⎫⎪⎝⎭C .(D .()2,28.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =( ) A .4B .6C .8D .109.已知直线210x y -+=与双曲线()222210,0x y a b a b -=>>交于A ,B 两点,且线段AB 的中点M 的横坐标为1,则该双曲线的离心率为( )A B C D 10.已知双曲线()2222:10,0x y C a b a b -=>>的右焦点为F ,左顶点为A .以F 为圆心,FA 为半径的圆交C的右支于P ,Q 两点,APQ △的一个内角为60︒,则C 的离心率为( )A B C .43 D .53 11.在平面直角坐标系xOy 中,点P 为椭圆()2222:10y x C a b a b +=>>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若ππ,64α⎛⎫∈ ⎪⎝⎭,则椭圆C 的离心率的取值范围为( )A .⎛ ⎝⎦B .⎛ ⎝⎦C .⎣⎦ D .⎣⎦12.已知椭圆()222210x y a b a b +=>>,点A ,B 是长轴的两个端点,若椭圆上存在点P ,使得120APB ∠=︒,则该椭圆的离心率的最小值为( )A B C D .34二、填空题13.过点()6,3M -且和双曲线2222x y -=有相同的渐近线的双曲线方程为__________.14.一个椭圆中心在原点,焦点1F ,2F 在x 轴上,(P 是椭圆上一点,且1PF ,12F F ,2PF 成等差数列,则椭圆方程为__________.15.已知椭圆2221x y a +=的左、右焦点为1F 、2F ,点1F 关于直线y x =-的对称点P 仍在椭圆上,则12PF F △的周长为__________.16.已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过点F 'l 与抛物线C 交于点M (M 在x 轴的上方),过M 作MN l ⊥于点N ,连接NF 交抛物线C 于点Q ,则NQ QF=_______.参考答案: 1.【答案】A【解析】抛物线28x y =的焦点为()0,2,∴椭圆的焦点在y 轴上,∴2c =, 由离心率12e =,可得4a =,∴2223b a c =-=,故234m n -=-.故选A . 2.【答案】D【解析】双曲线()2222:10,0x y C a b a b -=>>的离心率2ce a ==,224c a =,2222213b b a a =+⇒=,3ba=,故渐近线方程为3by x x a =±=±,故答案为D .3.【答案】C 【解析】1F 、2F 是椭圆()2222:10x y C a b a b+=>>的两个焦点,P 为椭圆C 上一点,12·0PF PF =可得12PF PF ⊥, 122PF PF a ∴+=,222124PF PF c +=,12192PF PF =, ()2221212424PF PF c PF PF a ∴+=+=,()2223644a c b ∴=-=,3b ∴=,故选C .方法二:利用椭圆性质可得12222πtan tan924PF F S b b b θ====△,3b ∴=. 4.【答案】C【解析】设A 、B 在准线上的射影分别为为M 、N ,准线与横轴交于点H ,则FH p =,由于点F 是AC 的中点,4AF =,∴42AM p ==,∴2p =, 设BF BN x ==,则BN BC FH CF =,即424x x -=,解得43x =, 416433AB AF BF ∴=+=+=,故答案为C . 5.【答案】B【解析】∵双曲线()2222:10,0x y C a b a b -=>>的两条渐近线互相垂直,∴渐近线方程为y x =±,∴a b =. ∵顶点到一条渐近线的距离为1,∴212a =,∴2ab ==,∴双曲线C 的方程为22122x y -=,焦点坐标为()2,0-,()2,0,∴双曲线的一个焦点到一条渐近线的距离为d ==B .6.【答案】D【解析】因为()2220x ay a a +=≠,所以222+1x y a a=,所以当20a a >>时,表示A ;当2a a <时,表示B ;当20a a >>时,表示C ; 故选D . 7.【答案】D【解析】如图,已知24y x =,可知焦点()1,0F ,准线:1x =-,过点A 作准线的垂线,与抛物线交于点M ,作根据抛物线的定义,可知BM MF =,MF MA MB MA +=+取最小值,已知()3,2A ,可知M 的纵坐标为2,代入22y x =中,得M 的横坐标为2, 即()2,2M ,故选D . 8.【答案】B【解析】抛物线2:8C y x =的焦点()2,0F ,M 是C 上一点FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为1,则M的纵坐标为±26FN FM ===,故选B .9.【答案】B【解析】因为直线210x y -+=与双曲线()222210,0x y a b a b -=>>交于A ,B 两点,且线段AB 的中点M 的横坐标为1,所以1OM k =, 设()11,A x y ,()22,B x y ,则有122x x +=,122y y +=,121212y y x x -=-,12121OM y y k x x +==+, 22112222222211x y a b x y a b ⎧⎪⎪⎨-=-=⎪⎪⎩,两式相减可化为,1212221212110y y y y a bx x x x -+-⋅⋅=-+,可得2212b a =,a ∴=,c =,双曲线的离心率为c a ==,故选B . 10.【答案】C【解析】如图,设左焦点为1F ,设圆与x 轴的另一个交点为B ,∵APQ △的一个内角为60︒,∴30PAF ∠=︒,1603PBF PF AF a c PF a c ∠=︒⇒==+⇒=+, 在1PFF △中,由余弦定理可得,22243403403c ac a e e e ⇒-=⇒-=⇒=--, 故答案为C . 11.【答案】A【解析】因为OPMN 是平行四边形,因此MN OP ∥且MN OP =,故2N ay =,代入椭圆方程可得N x =tan ON k α==.因ππ,64α⎛⎫∈ ⎪⎝⎭1<<1<,所以a <,即()2223a a c <-,解得0c a <<,故选A . 12.【答案】C【解析】设M 为椭圆短轴一端点,则由题意得120AMB APB ∠≥∠=︒,即60AMO ∠≥︒, 因为tan aOMA b ∠=,所以tan60ab≥︒=,a ∴≥,()2223a a c ≥-,2223a c ∴≤,223e ≥,e ≥C .13.【答案】221189x y -=【解析】设双曲线方程为222x y λ-=,双曲线过点()6,3M -, 则222362918x y λ=-=-⨯=,故双曲线方程为22218x y -=,即221189x y -=.14.【答案】22186x y +=【解析】∵个椭圆中心在原点,焦点1F ,2F 在x 轴上,∴设椭圆方程为()222210x y a b a b +=>>,∵(P 是椭圆上一点,且1PF ,12F F ,2PF 成等差数列, ∴2243124a b a c+==⎧⎪⎨⎪⎩,且222a b c =+,解得a =,b =,c = ∴椭圆方程为22186x y +=,故答案为22186x y +=.15.【答案】2【解析】设()1,0F c -,()()2,00F c c >,1F 关于直线y x =-的对称点P 坐标为()0,c ,点P 在椭圆上,则2201c a+=, 则1c b ==,2222a b c =+=,则a =,故12PF F △的周长为1212222PF PF F F a c ++=+=. 16.【答案】2【解析】由抛物线定义可得MF MN ='l 倾斜角为π3,MN l ⊥, 所以π3NMF ∠=,即三角形MNF 为正三角形,因此NF 倾斜角为2π3,由22 2y pxp y x =⎫=-⎪⎧⎪⎨⎪⎩⎭, 解得6p x =或32p x =(舍),即6Q p x =,62226P P NQ P P QF ⎛⎫-- ⎪⎝⎭==-.。
高考数学填空选择题必考知识点强化练习及解答题答案
ab
线的一条渐近线与抛物线的准线的交点坐标为
双曲线 x2 y2 1上,若 | PF1 | 9 ,则 | PF2 | 17 (复习双曲线定义)
16 20
6) .设点 F(0, 3\2),,,动圆 P 经过点 F 且和直线 y=-3\2 相切, 则动圆的圆心 P 的轨迹 W 的方程为 ( )
S2 A. 11 B. 5 C. 11D. 8
3)设数列 an 的前 n 项和为( n N ), 关于数列 an 有下列三个命题:
①若 a n an 1 ( n N) ,则 a n 既是等差数列又是等比数列;
②若 Sn a n 2 b n a、b R ,则 an 是等差数列;
③若 Sn 1
1
n
,则
an 是等比数列。这些命题中,真命题的序号是
R} ,则 M
3.框图 1)执行如图所示的程序框图,则输出的 λ是 -2 .
(eU N )
. 0,1
开始
S 1, i 1
i①
是
S S 2i i i1
否
输出 S
结束
开始
输入 a, b
ab
是
Sb
否
Sa
输出 S
结束
B
( A) 4 ( B) 5 ( C) 6 (D) 7
2). 阅读右侧程序框图, 为使输出的数据为 31,则①处应填的数字为
2
的面积 S=4- 2
2
x 4
dx
.
0
5. 向量
1)已知两个单位向量 a , b 的夹角为 60°, c = t a + (1- t ) b ,若 b ·c = 0,则 t =___2_____
因为 |a |= | b |= 1, a ·b= 12,所以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
客观题强化训练(45分钟内完成)(6)
班级 姓名 座号
13 ;14 ; 15 ;16 .
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符号题目要求的。
1.曲线c bx ax y ++=2
的图象经过四个象限的充要条件是 (A )0<a 且0)2(<-
a
b
f (B )0>a 且042>-ac b (C )0≠a 且0=b (D )0<ac
2.若)(x f 是奇函数,)(x g 是偶函数,则下列函数中是奇函数的为 (A ))]([x g f (B ))]([x f g (C ))]([x f f (D ))]([x g g
3.直线L 与平面α成 45角,若直线L 在α内的射影与α内的直线m 成 45角,则L 与m 所成的角是
(A ) 30 (B ) 45 (C ) 60 (D ) 90
4.以椭圆
114416922=+y x 的右焦点为圆心,且与双曲线116
92
2=-y x 的渐近线相切的圆的方程是
(A )091022=+-+x y x (B )09102
2=--+x y x (C )091022=-++x y x (D )09102
2=+++x y x 5.已知0>a ,且1≠a ,则方程|log ||
|x a
a x =的实根的个数为
(A )1或2 (B )1或2或3 (C )2或4 (D )2或3或4 6.已知)12(+=x f y 是偶函数,则函数)2(x f y =的图象的对称轴是 (A )1=x (B )2=x (C )21-
=x (D )2
1
=x 7.若数列{}n a 的前8项的值互异,且n n a a =+8对任意的N n ∈都成立,则下列数列中可
取遍{}n a 的前8项值的数列为
(A ){}12+k a (B ){}13+k a (C ){}14+k a (D ){}16+k a
8
.如图,在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是
)(A )
(B )
(C )
(D
9.若地球半径为6370km ,地球表面北纬 30圈上有A 、B 两个卫星地面站,它们在北纬
30圈上的距离为
km 3
36370π
,则这两地间的经度差是 (A )
6π (B )3
π
(C )65π (D )32π
10.已知4)1()1(π=-++x arctg x arctg ,则2
arccos x
的值是
(A )3π-或3π (B )4π-或4π (C )4π或43π (D )3
π或32π
11.过椭圆)0(122
22>>=+b a b
y a x 的中心的弦为PQ ,焦点为1F ,2F ,则1PQF ∆的最大
面积是 (A )ab (B )bc (C )ca (D )abc
12.设)(x f )(R x ∈为偶函数,且)2
1()23(+=-x f x f 恒成立,]3,2[∈x 时,x x f =)(,则]0,2[-∈x 时,=)(x f (A )|4|+x (B )|2|x -(C )|1|3+-x (D )|1|2++x 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
13.某选择题因印刷原因,有一个条件无法认清,请根据题意推测,并在空格上填上所缺的条件,原题为:
已知α、β为锐角,且2
1
sin sin -
=-βα, ,则37)(-=-βαtg 。
14.若1])1(1[lim =++∞
→n
n r ,则实数r 的取值范围是
15.四面体SABC 的三组对棱分别相等,且依次为52,13,5,则此四面体的体积是
16.已知9
2log 42⎪⎪⎭
⎫
⎝⎛⋅-x x a 的展开式中3x 的系数为169,则实数a 的值为
答案
1、D .
2、C .
3、C .
4、A .
5、A .
6、D .
7、B .
8、D .
9、D . 10、C . 11、B . 12、C . 13、2
2
2
cos
=
+β
α . 14、(-2, 0) . 15、8 . 16、1/16 .。