高二数学上学期期末考试试题 理(重点班)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄陵中学高二重点班期末考试数学(理)试题
一、选择题:(60分=5分×12)
1 设R a ∈,则“1>a ”是“12>a ”的( )
A 充分非必要条件
B 必要非充分条件
C 充要条件
D 既非充分也非必要条件
2 已知互相垂直的平面αβ, 交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥l
B.m ∥n
C.n ⊥l
D.m ⊥n
3 命题“存在x ∈(0,+∞),ln x =x -1”的否定是( ) A .任意x ∈(0,+∞),ln x ≠x -1 B .任意x ∉(0,+∞),ln x =x -1 C .存在x ∈(0,+∞),ln x ≠x -1 D .存在x ∉(0,+∞),ln x =x -1
4 已知向量1(2BA =uu v ,1
),2
BC =uu u v 则ABC ∠=
A 300
B 450
C 600
D 1200
5 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) A 56
B 60
C 120
D 140
6 登山族为了了解某山高y (km)与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:
由表中数据,得到线性回归方程y ^=-2x +a ^(a ^
∈R ).由此请估计山高为72 km 处气温的度数为( )
A.-10
B.-8
C.-4
D.-6
7 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A 20π
B 24π
C 28π
D 32π 8已知函数f (x )=ax 2
+c ,且f ′(1)=2,则a 的值为( ) A.1 B. 2 C.-1 D.0
9已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A.e
B.-e
C.1e
D.-1e
10 函数f (x )=x 2
-2ln x 的单调递减区间是( ) A.(0,1) B.(1,+∞) C.(-∞,1)
D.(-1,1)
11 函数f (x )=ax 3
+bx 2
+cx +d 的图象如图所示,则下列结论成立的是( ) A.a >0,b <0,c >0,d >0 B.a >0,b <0,c <0,d >0 C.a <0,b <0,c >0,d >0 D.a >0,b >0,c >0,d <0
12 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞)
D.[1,+∞)
二、填空题(20分=5分×4)
13已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.
14某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是______(米)
15已知函数()(2+1),()x
f x x e f x '=为()f x 的导函数,则(0)f '的值为__________.
16,αβ是两个平面,,m n 是两条直线,有下列四个命题:
(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.
(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 ..(填写所有正确命题的编号) 三、解答题
17. (本小题满分12分)
如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,
1111AC A B ⊥.
求证:(1)直线DE ∥平面A 1C 1F ;
(2)平面B 1DE ⊥平面A 1C 1F .
18(本题满分为12分)
如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.
(I )证明平面ABEF ⊥EFDC ; (II )求二面角E -BC -A 的余弦值. 19(本小题12分)
我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图。
(I )求直方图中的a 值;
(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (Ⅲ)估计居民月均用水量的中位数。 20(本小题12分)
已知函数f (x )=x 3
-4x 2
+5x -4.
(1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 21.(本小题12分)
设函数3
()3(0)f x x ax b a =-+≠.
(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点. 22(本小题满分10分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:
参考数据:
7
1
9.32i
i y
==∑,7
1
40.17i i i t y ==∑0.55=,7≈2.646.