老师多边形及其内角和经典例题透析

合集下载

多边形的内角和与外角和知识点-例题-习题

多边形的内角和与外角和知识点-例题-习题

第二十四讲 多边形的内角和与外角和【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°;知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形 凹多边形【典型例题】类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

11.3 多边形及多边形内角和 (练习)(解析版)

11.3 多边形及多边形内角和 (练习)(解析版)

11.3 多边形及多边形内角和精选练习答案一、单选题(共10小题)1.(2020·湖州市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为()A.360︒B.540︒C.720︒D.900︒【答案】C【分析】根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和. 【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.2.(2018·虹桥区期中)已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【解析】多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=7.3.(2019·枣庄市期末)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【分析】根据多边形的外角和即可求出答案.【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.4.(2019·唐山市期中)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.5.(2020·阳泉市期末)已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.6【答案】B【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.6.(2019·哈尔滨市期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.7.(2019·长春市期末)马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定【答案】C【分析】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选C.8.(2020·曲靖市期末)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.9.(2018·焦作市期末)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:(3)2n n-=1072⨯=35,故选C.10.(2019·武清区期中)如果n边形的内角和是它外角和的4倍,则n等于()A.7 B.8 C.10 D.9【答案】C【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×4,再解方程即可.【详解】由题意得:180(n-2)=360×4,解得:n=10,故选C.二、填空题(共5小题)11.(2020·临沧市期末)若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.【答案】8【详解】解:设边数为n,由题意得,180(n-2)=360⨯3解得n=8.所以这个多边形的边数是8.12.(2018·平凉市期末)一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.13.(2019·朝阳区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为540°或360°或180°.14.(2019鄂州市期中)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.15.(2019·泰州市期末)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.【答案】360.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360.三、解答题(共2小题)16.(2018·遵义市期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【分析】(1)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:36060=6,(2)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.【详解】(1)设内角为x,则外角为12 x,由题意得,x+12x=180°,解得:x=120°,12x=60°,这个多边形的边数为:36060=6,答:这个多边形是六边形,(2)设内角为x,则外角为12 x,由题意得: x+12x=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.17.(2019·黄冈市期中)如图所示,求A B C D E F∠+∠+∠+∠+∠+∠的度数.【答案】360︒.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,又∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

初一数学多变形及其内角和试题答案及解析

初一数学多变形及其内角和试题答案及解析

初一数学多变形及其内角和试题答案及解析1.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形【答案】A【解析】本题主要考查了多边形的对角线. 根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.解:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故选A2.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形【答案】B【解析】本题主要考查了多边形的对角线与内角和的问题. 由对角线求出其为多少边得多边形解:设这个多边形是n边形,则=14,∴n2-3n-28=0,(n-7)(n+4)=0,解得n=7,n=-4(舍去).故选B3.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A.90°B.105°C.130°D.120°【答案】C【解析】本题主要考查了多边形的外角和内角. 先用2570°÷180°,看余数是多少,再把余数补成180°解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C4.一个多边形的每一个外角都等于24°,求这个多边形的边数.【答案】15【解析】本题考查了多边形的内角和和外角和定理. 根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:∵多边形的外角和为360°,∴边数=360÷24=15.则它是15边形.5.如果一个多边形的每个外角都相等,且小于,那么这个多边形的边数最少是()A.B.C.D.【答案】B【解析】本题主要考查了多边形内角与外角.关键是记住外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件,本题可用不等式确定范围后求解.解:设这个多边形的边数为n,则n>=8,∵n为多边形的边数,是正整数,∴n至少是9.故选B6.一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是,那么原多边形的边数是()A.B.C.D.【答案】B【解析】本题主要考查了多边形的内角和定理. 一个多边形截取一个角(不过顶点)后,则多边形的角增加了一个,求出内角和是2520°的多边形的边数,即可求得原多边形的边数解:设内角和是2520°的多边形的边数是n.根据题意得:(n-2)•180=2520,解得:n=16.则原来的多边形的边数是16-1=15.故选B7.如果一个正多边形的一个内角等于,则这个正多边形是()A.正八边形B.正九边形C.正七边形D.正十边形【答案】A【解析】本题主要考查了多边形的外角与内角. 首先根据求出外角度数,再利用外角和定理求出边数.解:∵正多边形的一个内角等于135°,∴它的外角是:180°-135°=45°,∴它的边数是:360°÷45°=8.故选A.8.各内角都相等的多边形中,一个外角等于相邻内角的,则它的每一个内角都是______.【答案】【解析】本题主要考查了多边形的外角和内角. 根据多边形的外角和等于360度即可解决问题.解:∵各内角都相等∴各外角都相等∵外角等于相邻内角的∴外角+5个外角=180°,即外角=30°∴内角为30°5=150°9.一个四边形的内角的度数的比是,求它的最大内角和最小外角的度数.【答案】最大内角为,最小外角为【解析】本题主要考查了多边形的外角和内角. 设四边形4个内角的度数分别是3x,4x,5x,6x,所以3x+4x+5x+6x=360°,即可求解.解:设四边形4个内角的度数分别是3x,4x,5x,6x,∴3x+4x+5x+6x =360°,解得x=20°.则最大内角为20×6=120°.最小外角为60°10.几边形的内角和是2160°?是否存在一个多边形的内角和为1000°?【答案】14,不存在【解析】本题主要考查了多边形的外角和内角. 设n边形的内角和是2160°,根据内角和公式列方程求解即可.再假设n边形内角和为1000°,求解得n不是整数,不符合题意,所以假设不成立,故不存在一个多边形内角和为1000°.解: 设该多边形为n边形,依题意得(n-2)·180°=2160°∴n =14不存在这样的多边形,理由如下:假设存在这样的n边形,依题意得(n-2)·180°=1000°∴n=∵多边形的边数为正整数∴不存在这样的多边形.11.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有()A.无穷多个,它的边数为B.一个,它的边数为C.无穷多个,它的边数为D.无穷多个,它的边数不可能确定【答案】B【解析】本题主要考查了多边形的外角和内角. 根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出每个外角的度数.根据每个外角度数就可求得边数解:由题意得,这个多边形是正多边形∵在这个正多边形中,每个外角都是相邻内角的,设这个内角为x,则与它相邻的外角度数为x,∴有x+x=180°,解得x=135°,则与它相邻的外角度数为45°.∵360°÷45°=8,∴这个多边形的边数是8.故选B12.如图,若,那么等于()A.B.C.D.【答案】C【解析】本题主要考查了多边形的外角和内角.根据外角都等于不相邻的两内角和以及四边形的内角和求解解:设FC与AE、BD相交于M、N点∴∠FME=∠E+∠C, ∠CND=∠F+∠D∵∠FME=∠AMN, ∠CND=∠BNM∴∠A+∠B+∠C+∠D+∠E+∠F= 360°=90°∴n=4故选C13.多边形的内角中最多应有锐角()A.1个B.2个C.3个D.没有【答案】C【解析】本题考查的是多边形的性质多边形的外角和是360°,因此外角中最多有三个钝角,外角与相邻的内角互为邻补角,由此即可判断.在多边形的内角中,锐角的个数不能多于3个.故选C。

新人教版八年级上《11.3多边形及其内角和》例题与讲解

新人教版八年级上《11.3多边形及其内角和》例题与讲解

11.3 多边形及其内角和1.多边形及其有关概念(1)多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形. 多边形按组成它的线段的条数分为三角形、四边形、五边形、六边形、……由n 条线段组成的多边形就叫做n 边形.如图,是一个五边形,可表示为五边形ABCDE .三角形是最简单,边数最少的多边形.(2)多边形的边:(3)多边形的内角、外角:(4)多边形的对角线: ①定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC ,AD 就是五边形ABCDE 中的两条对角线.②拓展理解:一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形.一个n边形一共有n (n -3)2条对角线. (5)凸多边形和凹多边形:没有特殊说明,今后学习中所指的多边形都是凸多边形.【例1】 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.2.正多边形(1)定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2)特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.【例2】下列说法正确的个数有().(1)由四条线段首尾顺次相接组成的图形是四边形;(2)各边都相等的多边形是正多边形;(3)各角都相等的多边形一定是正多边形;(4)正多边形的各个外角都相等.A.1 B.2 C.3 D.43.多边形的内角和(1)公式:n边形内角和等于(n-2)×180°.(2)探究过程:如图,以五边形、六边形为例.【例3】选择:(1)十边形的内角和为().A.1 260°B.1 440°C.1 620°D.1 800°(2)一个多边形的内角和为720°,那么这个多边形的对角线共有().A.6条B.7条C.8条D.9条4.多边形的外角和(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.【例4】填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________.5.多边形内角和公式的应用【例5-1】若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.【例5-2】一个多边形的内角和等于1 440°,则它的边数为__________.【例5-3】一个多边形的内角和不可能是().A.1 800°B.540°C.720°D.810°6.多边形外角、外角和公式的应用【例6-1】 如图所示,已知∠ABE =138°,∠BCF =98°,∠CDG =69°,则∠DAB =__________.【例6-2】 如图,在四边形ABCD 中,∠1,∠2分别是∠BCD 和∠BAD 的邻补角,且∠B +∠ADC =140°,则∠1+∠2等于( ).A .140°B .40°C .260°D .不能确定7.正多边形知识的应用【例7-1】 若八边形的每个内角都相等,则其每个内角的度数是__________.【例7-2】 一个多边形的每一个外角都等于30°,这个多边形的边数是__________,它的内角和是__________.【例7-3】 一个多边形的每一个内角都等于144°,求这个多边形的边数.8.边数、顶点数、内角和、对角线条数之间关系的综合应用在多边形问题中,当多边形的边数n 一定时,不论多边形形状如何,多边形的内角和也是一定的,是(n -2)×180°,多边形对角线的条数也是一定的,是n (n -3)2,并且从一个顶点引出的对角线的条数也是一定的,是(n -3)条,所以在多边形问题中,在这些量中,只要知道其中一个量,就可以求出所有的量.【例8-1】 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( ).A .8B .9C .10D .11【例8-2】 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( ).A .7B .8C .9D .10【例8-3】 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和.9.将多边形截去一个角问题的探讨【例9-1】 一个多边形截去一个角后,变为十六边形,则原来的多边形的边数为( ).A .15或17B .16或17C .16或18D .15或16或17【例9-2】 一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2 520°,那么原多边形的边数是( ).A .13B .15C .17D .19【例9-3】如果一个多边形的边数增加一倍,它的内角和是2 880°,那么原来的多边形的边数是().A.10 B.9 C.8 D.710.多边形内角和少算或多算一个角类型题目探索【例10-1】一个多边形除了一个内角之外,其余内角之和为2 670°,求这个多边形的边数和少加的内角的大小.【例10-2】若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.。

专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和(知识点串讲)(解析版)

专题04 多边形及其多边形内角和知识网络重难突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形 内角:多边形中相邻两边组成的角叫做它的内角。

外角:多边形的边与它邻边的延长线组成的角叫做外角。

对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形概念:各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)典例1 (2018春富顺县期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.典例2 (2018秋桥北区期中)过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是( )A.10 B.11 C.12 D.13【答案】B【详解】设多边形有n条边,n-2=9,则n=11,故答案选B.典例3 (2018春道里区期末)如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.20【答案】B【详解】由题意可知n=6,所以对角线条数为9知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°(重点)n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

典例1 (2019春安庆市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.典例2 (2019春南阳市期中)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【答案】B【详解】根据n边形的内角和公式,得:(n-2)•180=360,解得n=4.故选B典例3 (2018春菏泽市期末)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.巩固训练一、单选题(共10小题)1.(2018春龙安区期末)一个多边形切去一个角后,形成的另一个多边形的内角和为540 ,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或6【答案】D【详解】设新多边形的边数为n,则(n−2)⋅180°=540°,解得n=5,如图所示,截去一个角后,多边形的边数可以增加1、不变、减少1,所以,5−1=4,5+1=6,所以原来多边形的边数为4或5或6.故选:D.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式.2.(2019春闻喜县期末)下列正多边形中,不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形【答案】B【详解】A. 正六边形的每个内角是120°,能整除360°,能密铺;B. 正五边形每个内角是180°−360°÷5=108°,不能整除360°,不能密铺;C. 正方形的每个内角是90°,能整除360°,能密铺;D. 正三角形的每个内角是60°,能整除360°,能密铺.故选B.【名师点睛】此题考查平面镶嵌(密铺),解题关键在于掌握计算法则.3.(2018春南昌县期末)已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是A.4 B.5 C.6 D.8【答案】C【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360°,解得:n=6,即这个多边形为六边形,故选C.【名师点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(2019春道外区期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.5.(2018春东坡区期末)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【答案】C【详解】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【名师点睛】主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180 (n≥3且n为整数).6.(2018春金安区期中)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【名师点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.7.(2018春小店区期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.8.(2017秋民勤县期中)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【名师点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.(2016春荔湾区期中)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:==35,故选C.10.(2018春德州市期末)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.所以,从一点引对角线的条数是:7-3=4.故选:B【名师点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题(共5小题)11.(2018春天水市期末)如图,五边形是正五边形,若,则__________.【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.[名师点睛]题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.12.(2019春海淀区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【名师点睛】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.13.(2018春金东区期末)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【名师点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.(2018春延边市期中)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【名师点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.15.(2019春东阳市期末)若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则 (n−2)⋅180°−360°=900°,解得n=9.故答案为: 9.【名师点睛】本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.三、解答题(共2小题)16.(2018春云岩区期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【详解】(1)设内角为x,则外角为,由题意得,x+=180°,解得:x=120°,=60°,这个多边形的边数为:=6,答:这个多边形是六边形,(2)设内角为x,则外角为,由题意得: x+=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【名师点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.17.(2017春黄岩区期中)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。

专题11.3 多边形及其内角和(讲练)(解析版)(人教版)

专题11.3 多边形及其内角和(讲练)(解析版)(人教版)

专题11.3 多边形及其内角和典例体系一、知识点1、n 边形的内角和=()2180-⨯n; 2、n 边形的外角和=360。

3、一个n 边形的对角线有()23-n n 条,过n 边形一个顶点能作出()3-n 条对角线,把n 边形分成了()2-n 个三角形。

4、各角都相等、各边都相等的多边形叫做正多边形,边数为n 的正多边形,也叫作正n 边形.5、多边形的镶嵌(密铺)问题.二、考点点拨与训练考点1:与多边形内角有关的计算典例:(2020·安徽省初三三模)如图,在五边形ABCDE 中,280A B E EDC BCD ︒∠+∠+∠=∠∠,、的平分线DP CP 、相交于P 点,则P ∠的度数是( )A .40︒B .45︒C .50︒D .55︒【答案】C【解析】 ∵五边形的内角和等于(5-2)×180°=540°,∠A+∠B+∠E=280°,∴∠BCD+∠CDE=540°一280°=260°,∵∠BCD ,∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠CDE+∠BCD)=130°, ∴∠P=180°-130°=50°,故选:C .方法或规律点拨本题考查了多边形的内角和,角平分线的性质,求出五边形内角和是解题关键.巩固练习1.(2020·福建省初三月考)若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7【答案】C【解析】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.2.(2020·福建省初三二模)已知一个多边形的内角和是540︒,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形【答案】B【解析】 根据多边形内角和定理,n 边形的内角和公式为()n 2180-︒,因此,由()n 2180540︒-=︒得n=5.故选B . 3.(2020·偃师市实验中学初一月考)如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来的多边形的边数是 ( )A .5B .6C .7D .8【答案】C【解析】设多边形原有边数为x ,则(2x−2)×180=2160,2x−2=12,解得x=7,故本题选C.4.(2020·江苏省初一月考)一个多边形的每个内角都等于135°,则这个多边形的边数为( ) A .5B .6C .7D .8 【答案】D【解析】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.5.(2020·北京初三二模)如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则αβ+的度数是( )A .360︒B .540︒C .720︒D .900︒【答案】B【解析】 直线l 将四边形ABCD 分成两部分,左边为四边形,其内角和为α=360°,右边为三角形,其内角和为β=180°,因此360180540αβ︒︒︒+=+=故选:B .6.(2019·河南省初一期末)下列选项可能是多边形的内角和的是( )A .580°B .1240°C .1080°D .2010°【答案】C【解析】解:判断哪个度数可能是多边形的内角和,看它是否能被180°整除.580÷180=3...40,1240÷180=6...160,1080÷180=6,2010÷180=11...30,只有1080°能被180°整除.故选:C .7.(2020·江苏省扬州教育学院附中初一期中)一个多边形的每个内角都是120°,这个多边形是( ) A .四边形B .六边形C .八边形D .十边形 【答案】B【解析】解:外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.故选:B.8.(2020·江苏省初一月考)一个正多边形的每个内角度数均为135°,则它的边数为____.【答案】8【解析】设该正多边形的边数为n由题意得:(2)180?nn-⨯=135°解得:n=8故答案为8.考点2:与多边形外角有关的计算典例:(2020·陕西省初二期末)如果一个多边形的内角和与外角和之比是13:2,求这个多边形的边数.【答案】15.【解析】解:设这个多边形的边数为n,依题意得:13(2)1803602n-︒=⨯︒,解得15n=,∴这个多边形的边数为15.方法或规律点拨考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,多边形的外角和等于360度.巩固练习1.(2020·北大附属嘉兴实验学校初二期中)一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一【答案】B【解析】根据题意,得:(n-2)•180°=3×360°+180°,解得:n=9,则这个多边形的边数是9.故选B.2.(2020·福建省初一期末)若多边形的边数增加一条,则它的外角和()A.增加180°B.不变C.增加360°D.减少180°【答案】B【解析】根据多边形的外角和定理:多边形的外角和都等于360º,与边数多少无关,故选B.3.(2020·广东省初三一模)已知一个正多边形的每个外角都等于72°,则这个正多边形是( )A.正五边形B.正六边形C.正七边形D.正八边形【答案】A【解析】这个正多边形的边数:360°÷72°=5.故选A.4.(2020·江苏省初一月考)若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.5.(2020·山东省济宁学院附属中学初三二模)正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【解析】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.6.(2020·重庆西南大学附中初三月考)一个正多边形的外角为45°,则这个正多边形的内角和是()A.540° B.720° C.900° D.1080°【解析】∵正多边形的一个外角是45°,∴360°÷45°=8∴这个正多边形是正八边形∴该正多边形的内角和为:180°×(8-2)=1080°.故答案选:D.7.(2020·陕西省初三一模)已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为____.【答案】5【解析】解:设这个多边形的边数为n,依题意得:(n−2)180°=32×360°,解得:n=5.故这个多边形的边数为5.故答案为:5.8.(2020·河南省初二期末)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点,若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD的度数为何?( )A.40°B.45°C.50°D.60°【答案】A【解析】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,考点3:正多边形的角度计算典例:(2019·吉林省第二实验学校初三二模)如图,以正六边形ABCEDF 的边AB 为直角边作等腰直角三角形ABG ,使点G 在其内部,且90BAG ∠=︒,连接FG ,则EFG 的大小是__________度.【答案】45【解析】解:在正六边形ABCDEF 中, ∵∠AFE=∠BAF=(62)180120,6-⨯︒=︒ ∵∠BAG=90°, ∴∠FAG=120°-90°=30°,又∵AF=AB=AG ,∴∠AFG=1803075,2︒-︒=︒ ∴∠EFG=∠AFE -∠AFG=120°-75°=45°,故答案为:45.方法或规律点拨本题考查了多边形的内角与外角,等腰三角形的性质,熟记多边形的内角和公式是解题方法或规律点拨 巩固练习1.(2019·江苏省初一期中)如图,一块六边形绿化园地,六角都做有半径为1m 的圆形喷水池,则这六个喷水池占去的绿化园地的面积(结果保留π)为( )A .π2mB .2π2mC .4π2mD .n π2m【答案】B∵六边形的内角和为:62180720()-⨯︒=︒,∴六个阴影部分所对的圆心角的和为:720°,∴阴影部分的面积相当于两个圆的面积之和,∴阴影部分的面积为:2π×12=2π(2m )故选B .2.(2018·内蒙古自治区初二期末)有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B 【解析】正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B . 3.(2020·广东省初三其他)如图,在正六边形ABCDEF 的外侧,作正方形EFGH ,则∠DFH 的度数为____.【答案】75°【解析】观察图形可知,△EFH 是等腰直角三角形,则∠EFH=45°,△DEF 是等腰三角形,∵∠DEF=120°, ∴∠EFD=(180°﹣120°)÷2=30°, ∴∠DFH=45°+30°=75°.4.(2020·陕西省西北工业大学附属中学初三月考)如果一个正多边形的内角和等于1440︒,那么这个正多边形的每一个外角的度数为______.【答案】36【解析】正多边形的内角和等于1440︒∴()21801440n-⨯=解得:10n=多边形的外角和为360,且正多边形的每一个外角均相等∴这个正多边形的每一个外角的度数为3601036÷=故答案是:365.(2020·上海初三二模)我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为__________【答案】8【解析】设正多边形的边数为n,∵内角和为(2)180n-⨯,外角和为360°,∴一个内角度数为(2)180nn-⨯,一个外角度数为360n,∴(2)180nn-⨯=3603n⨯,解得n=8,经检验n=8是方程的解且符合题意,故答案为:8.6.(2020·山东省初三一模)如图,该硬币边缘镌刻的正九边形每个内角的度数是_____.【答案】140°.【解析】解:该正九边形内角和()180921260=︒⨯-=︒, 则每个内角的度数12601409︒︒==. 故答案为:140°.7.(2020·江苏省泰兴市实验初级中学初一期中)如图,在五边形ABCDE 中,∠A =∠B =∠C =∠D ,点F 在边AB 上,∠AFE =45°,则∠AEF 与∠AED 的度数的比值是_______.【答案】1:4【解析】解:设∠AEF=x ,∵∠AFE =45°,∴∠A=180°-∠AFE -∠AEF=135°-x∴∠A =∠B =∠C =∠D =135°-x∵∠A +∠B +∠C +∠D +∠AED=180°×(5-2)=540°∴∠AED=540°-4(135°-x )=4x∴∠AEF :∠AED=1:4故答案为:1:4.8.(2020·常州市第二十四中学初一期中)一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .【答案】160.【解析】解:360÷45=8,则所走的路程是:6×8=48m ,则所用时间是:48÷0.3=160s.9.(2020·江西省石城二中初三其他)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______ 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108考点4:多边形对角线问题典例:(2020·上蔡县思源实验学校初一月考)一个多边形的外角和是它内角和的14,求:(1)这个多边形的边数;(2)这个多边形共有多少条对角线.【答案】(1)边数为10;(2)35条【解析】解:设这个多边形的边数为n,由题意得:180(n-2)×14=360,解得:n=10,答:这个多边形的边数为10;(2)10×(10-3)÷2=35(条).方法或规律点拨本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.巩固练习1.(2020·全国初一)下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【答案】B【解析】n边形对角线条数为(3)2n n∴A. 四边形有2条对角线,故错误;B. 五边形有5条对角线,正确;C. 六边形有9条对角线,故错误;D. 七边形有14条对角线,故错误;故选B.2.(2020·全国初一)在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5个B.6个C.7个D.8个【答案】D【解析】如图,或者根据八边形内一点,和任意一边的两端点均可构成三角形,所以可求得三角形的个数为8.故选:D.3.(2020·全国初一)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5B.6C.7D.8【答案】D【解析】如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D .4.(2020·温州外国语学校初二月考)从十二边形的一个顶点出发,可引出对角线( )条A .9条B .10条C .11条D .12条【答案】A【解析】解:从十二边形的一个顶点出发,可引出对角线的条数是()1239-=条.故选:A .5.(2019·北京初三其他)若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为( ) A .360°B .540°C .720°D .1080° 【答案】C【解析】从一个顶点出发的对角线共有3条 ∴这个多边形是一个六边形则这个多边形的内角和为180(62)720︒⨯-=︒故选:C .6.(2019·北京市第四十一中学初二期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7【答案】B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .7.(2019·重庆市凤鸣山中学初一期中)一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有( )A.104条B.90条C.77条D.65条【答案】C【解析】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.考点5:多边形的镶嵌问题典例:40.(2020·长春市第四十七中学初一期中)如图所示的图形中,能够用一个图形镶嵌整个平面的有()个A.1B.2C.3D.4【答案】C【解析】解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面;圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C.方法或规律点拨本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.巩固练习1.(2020·偃师市实验中学初一月考)用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()A.正八边形和正三角形B.正五边形和正八边形C.正六边形和正三角形D.正六边形和正五边形【答案】C【解析】A、正八边形的每个内角为:180°-360°÷8=135°,正三角形的每个内角60°.135m+60n=360°,n=6-9m,显然m取任何正整数时,n不能得正整数,故不能铺满;4B、正五边形每个内角是180°-360°÷5=108°,正八边形的每个内角为:180°-360°÷8=135°,108m+135n=360°,m取任何正整数时,n不能得正整数,故不能铺满;C、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360度,能铺满;D、正六边形的每个内角是120°,正五边形每个内角是180°-360°÷5=108°,120m+108n=360°,m取任何正整数时,n不能得正整数,故不能铺满.故选C.2.(2019·山西省初一月考)用若干个某种正多边形瓷砖可以铺满地面,这种正多边形瓷砖不可能是()A.B.C.D.【答案】D【解析】A.正三角形,其单个内角为60°,360°÷60°=6,A选项满足条件;B.正方形,其单个内角为90°,360°÷90°=4,B选项满足条件;C.正六边形,其单个内角为120°,360°÷120°=3,C选项满足条件;D.正八边形,其单个内角为135°,360°÷135° 2.7≈,D选项不满足条件.故选:D.3.(2020·哈尔滨市中实学校初一期中)能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;C 、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D 、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n 取任何正整数时,m 不能得正整数,故不能铺满.故选C .4.(2020·四川省初二期末)只用下列图形不能进行平面镶嵌的是( )A .正六角形B .正五边形C .正四边形D .正三边形【答案】B【解析】解:A 、正六边形的每个内角是120°,能整除360°,能密铺;B 、正五边形每个内角是108°,不能整除360°,不能密铺;C 、正四边形的每个内角是90°,能整除360°,能密铺;D 、正三边形的每个内角是60°,能整除360°,能密铺.故选:B .5.(2019·雷州市第二中学初三一模)在下列四种边长均为a 的正多边形中,能与边长为a 的正三角形作平面镶嵌的正多边形有( )①正方形;②正五边形;③正六边形;④正八边形A .4种B .3种C .2种D .1种 【答案】C【解析】解:正三角形的一个内角度数为180360360-÷=︒,①正方形的一个内角度数为180360490-÷=︒,360290360⨯+⨯=︒,那么3个正三角形和2个正方形可作平面镶嵌;②正五边形的一个内角度数为1803605108-÷=︒,任意若干个都不能和正三角形组成平面镶嵌;③正六边形的一个内角度数为1803606120-÷=︒,2602120360⨯+⨯=︒或460120360⨯+=︒,可作平面镶嵌;④正八边形的一个内角度数为1803608135-÷=︒,任意若干个都不能和正三角形组成平面镶嵌; 能镶嵌的只有2种正多边形.故选C .考点6:多边形的去(多)角问题典例:(2019·江苏省初一期中)小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是_______.【答案】9【解析】设多边形的边数为n,多加的内角度数为α,则(n-2)•180°=1380°-α,∵1380°=7×180°+120°,内角和应是180°的倍数,∴n-2=7,n=9;故答案为:9.方法或规律点拨本题考查了多边形的内角和公式,根据多边形的内角和公式判断出多边形的内角和公式是180°的倍数是解题的关键.巩固练习1.(2020·全国初一)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.2.(2019·云南省初三二模)小明在计算一个多边形的内角和时,漏掉了一个内角,结果算得800°,这个多边形应该是()A.六边形B.七边形C.八边形D.九边形【答案】B【解析】解:设多边形的边数是n.依题意有(n﹣2)•180°≥800°,解得:n≥649,则多边形的边数n=7;故选:B.3.(2019·浙江省初二学业考试)一个四边形截去一个角后,形成新的多边形的内角和是()A.180°B.360°或540°C.540°D.180°或360°或540°【答案】D【解析】解:∵一个四边形截去一个角后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能是180°,或(4-2) ×180°=540°,或(5-2) ×180°=540°.故选:D.4.(2018·山西省初一期末)若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为()A.90°B.105°C.130°D.120°【答案】C【解析】解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C5.(2020·偃师市实验中学初一月考)多边形的所有内角与它的一个外角的和为600°,这个多边形的边数是_____【答案】5【解析】解:设边数为n,一个外角为α,则(n-2)×180°+α=600°,∴n=600180α-︒︒+2,∵0°<α<180°,n为正整数,∴当α=60°时,600180α-︒︒为正整数,此时n=5,内角和为(n-2)×180º=540°.故多边形的边数为5.6.(2019·山西省初一月考)如图,有一张正方形桌面,它的4个内角的和为360°,现在锯掉它的一个角,残余桌面所有的内角的和是_____________【答案】540°【解析】解:由题意得,残余桌面为五边形,∴残余桌面所有的内角的和为(5-3)×180°=540°故答案为:540°.。

第3讲-多边形及其内角和知识点

第3讲-多边形及其内角和知识点

第3讲多边形及其内角和(11.3)一、知识点总结边形的内角和等于180°(n-2)。

360°。

边形的对角线条数等于1/2·n(n-3)3、4、6/。

拼成360度的角:3、4。

知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。

要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

多边形内角和(7种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

多边形内角和(7种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

多边形内角和(7种题型)【知识梳理】一、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形;二、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.三.平面镶嵌(密铺)(1)平面图形镶嵌的定义:用形状,大小完全相同的一种或几种平面图形进行拼接.彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌.(2)正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.(3)单一正多边形的镶嵌:正三角形,正四边形,正六边形.(4)两种正多边形的镶嵌:3个正三角形和2个正方形、四个正三角形和1个正六边形、2个正三角形和2个正六边形、1个正三角形和2个正十二边形、1个正方形和2个正八边形等.(5)用任意的同一种三角形或四边形能镶嵌成一个平面图案.180°【考点剖析】题型一:利用内角和求边数例1.一个多边形的内角和为540°,则它是( )A.四边形 B.五边形 C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.方法总结:熟记多边形的内角和公式是解题的关键.【变式1】(2021·河北承德市·八年级期末)一个多边形的内角和是900°,这个多边形的边数是()A.3 B.4 C.5 D.7【答案】D【分析】根据多边形的内角和公式:(n-2)•180°去求.【详解】解:设该多边形的边数为n则:(n-2)•180°=900°,解得:n=7.故选:D.【点睛】本题考查了多边形的内角和,关键是要记住公式并会解方程【变式2】(2021·浙江省余姚市实验学校八年级期中)若一个多边形的内角和是720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【分析】根据正多边形的内角和定义(n−2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【详解】解:(n−2)×180°=720°,∴n−2=4,∴n=6.∴这个多边形的边数为6.故选:C.【点睛】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n−2)×180°.题型二:求多边形的内角和例2.一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【变式1】(2021·云南临沧·八年级期末)一个八边形的内角和度数为()A.360°B.720°C.900°D.1080°【答案】D【分析】应用多边形的内角和公式计算即可.【详解】(n﹣2)•180=(8﹣2)×180°=1080°.故选:D.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n−2)•180 (n≥3)且n为整数).【变式2】(2021·广西来宾市·八年级期中)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.【答案】十二边形,1800°【分析】首先设外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数,进而求出内角和.【详解】解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式以及外角和,构建方程求解即可.【变式3】(2020·南京市宁海中学八年级开学考试)问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为∠AOC=∠A+∠C+∠P.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC= .所以∠APC= .请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系为解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为【答案】问题1、问题2答案见解析;解决问题1:∠P=180°-12(∠B+∠D);解决问题2:∠P=90°+12(∠B+∠D)【分析】问题1:根据三角形的外角的性质即可得到结论;问题2:根据三角形外角的性质和问题1的结论求解即可;解决问题1:根据四边形的内角和等于360°可得(180°-∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°-∠3)+∠D=360°,然后整理即可得解;解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.【详解】解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“三角形外角的性质”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=∠B+∠D.所以∠APC= 12(∠B+∠D)=38°.解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°-2∠1)+∠B=(180°-2∠4)+∠D,在四边形APCB中,(180°-∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°-∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°-12(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,∠2+∠P=(180°-∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).【点睛】本题主要考查了三角形外角的性质,角平分线的性质,四边形的内角和,解题的关键在于能够熟练掌握相关知识进行求解.题型三:复杂图形中的角度计算例3.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540° C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【变式1】(2021·全国八年级单元测试)如图,在五边形ABCDE中,∠D=120°,与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,则∠C为________度.【答案】80【分析】利用邻补角的定义分别求出∠DEA,∠ABC,∠EAB的度数;再利用五边形的内角和为540毒,可求出∠C的度数.【详解】解:∵与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,∴∠DEA=180°-60°=120°,∠ABC=180°-60°=120°,∠EAB=180°-80°=100°;五边形的内角和为(5-2)×180°=540°;∴∠C=540°-120°-120°-120°-100°=80°.故答案为:80.【点睛】此题考查了多边形内角和的性质,涉及了邻补角的定义,熟练掌握相关基本性质是解题的关键.【变式2】(2020·南京市宁海中学八年级开学考试)如图,五边形ABCDE的两个内角平分线相交于点O,∠1,∠2,∠3是五边形的3个外角,若∠1+∠2+∠3=220°,则∠AOB=___________.【答案】70°【分析】先求出与∠EAB和∠CBA相邻的外角的度数和,然后根据多边形外角和定理即可求解.【详解】如图,∵∠1+∠2+∠3=220°,∴∠4+∠5=360°-220°=140°,∴∠EAB+∠CBA=220°,∵AO,BO分别平分∠EAB,∠ABC,∴∠OAB+∠OBA=110°,∴∠AOB=180°-(∠OAB+∠OBA)=70°.故答案是:70°.【点睛】本题主要考查了多边形外角和定理,三角形的内角和定理,熟练掌握多边形的外角和等于360°是解题的关键.【变式3】(2022春•武冈市期中)如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.【分析】利用三角形内角和定理将不规则图形转化成规则图形:五边形.【解答】解:如图,由三角形内角和定理得:∠1+∠5=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠5+∠2+∠3+∠4+∠6+∠7=∠8+∠9+∠2+∠3+∠4+∠6+∠7=180°×(5﹣2)=540°.【点评】本题主要考查多边形内角和,解题关键是利用三角形内角和定理将不规则图形转化成规则图形.【变式4】(2022春•宿城区校级月考)利用“模型”解决几何综合问题往往会取得事半功倍的效果.几何模型:如图(1),我们称它为“A”型图案,易证明:∠EDF=∠A+∠B+∠C.运用以上模型结论解决问题:(1)如图(2),“五角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5=?分析:图中A1A3DA4是“A”型图,于是∠A2DA5=∠A1+∠A3+∠A4,所以∠A1+∠A2+∠A3+∠A4+∠A5=;(2)如图(3),“七角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7的度数.【分析】(1)根据三角形外角的性质把5个角转化到一个三角形中可得答案;(2)根据三角形外角的性质把7个角转化到一个三角形中可得答案.【解答】解:(1)如图,由三角形外角的性质可得,∠1=∠A1+∠A4,∵∠A2DA5=∠1+∠A3,∴∠A2DA5=∠A1+∠A4+∠A3,∵∠A2DA5+∠A2+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=180°,故答案为:180°;(2)如图,由(1)得,∠1=∠A1+∠A4+∠A5,∠2=∠A2+∠A3+∠A6,∵∠1+∠2+∠A7=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7=180°.【点评】本题考查多边形的内角和与三角形外角的性质,能够根据三角形外角的性质进行转化是解题关键.题型四:利用方程和不等式确定多边形的边数例4.一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x ,则有1125°<x <1125°+180°,即180°×6+45°<x <180°×7+45°,因为x 为多边形的内角和,所以它是180°的倍数,所以x =180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数. 【变式1】.(2023春·全国·八年级专题练习)看图回答问题:(1)内角和为2014°,小明为什么说不可能?(2)小华求的是几边形的内角和?【答案】(1)理由见详解(2)13【分析】(1(2)根据题意设多边形的边数为x ,根据多边形的内角和定理即可求解.【详解】(1)解:∵设多边形的边数为n ,则n 边形的内角和是180(2)n ︒⨯−,∴内角和一定是180︒度的倍数,∵20141801134÷=,∴内角和为2014︒不可能.(2)解:设多边形的边数为x ,∴180(2)2014x ︒⨯−<︒,解得,171390x <, ∴多边形的边数是13,∴小华求的是十三边形的内角和.【点睛】本题主要考查多边形的内角和定理,掌握多边形的内角和定理是解题的关键.【变式2】(2023春·全国·八年级专题练习)解决多边形问题:(1)一个多边形的内角和是外角和的3倍,它是几边形?(2)小华在求一个多边形的内角和时,重复加了一个角的度数,计算结果是1170︒,这个多边形是几边形?【答案】(1)八边形(2)八边形【分析】(1)根据多边形的内角和公式、多边形的外角和等于360︒建立方程,解方程即可得;(2)设这个多边形是n 边形,重复加的一个角的度数为x ,则0180x ︒<<︒,再根据多边形的内角和公式建立等式,结合0180x ︒<<︒建立不等式组,解不等式组即可得.【详解】(1)解:设这个多边形是n 边形,由题意得:()18023360n ︒−=⨯︒,解得8n =,答:这个多边形是八边形.(2)解:设这个多边形是n 边形,重复加的一个角的度数为x ,则0180x ︒<<︒,由题意得:()18021170n x ︒−+=︒,解得1530180x n =︒−︒,则01530180180n ︒<︒−︒<︒,即153018001530180180n n ︒−︒>︒⎧⎨︒−︒<︒⎩,解得151722n <<, n Q 为正整数,8n ∴=,答:这个多边形是八边形.【点睛】本题考查了多边形的内角和与外角和、一元一次不等式组的应用,正确建立方程和不等式组是解题关键.题型五:已知各相等外角的度数,求多边形的边数例5.正多边形的一个外角等于36°,则该多边形是正( )A .八边形B .九边形C .十边形D .十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【变式1】.(2022春·八年级单元测试)已知一个多边形的每个外角都是30︒,那么这个多边形的边数是__________.【答案】12【分析】利用任何多边形的外角和是360︒除以外角度数即可求出答案.÷=,【详解】解:多边形的外角的个数是3603012所以多边形的边数是12,故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.【变式2】(2021·广西八年级期中)己知一个n边形的每一个外角都等于30°.(1)求n的值.(2)求这个n边形的内角和.【答案】(1)12;(2)1800°【分析】(1)用360°除以外角度数可得答案.(2)先求出每个内角的度数,再利用内角度数×内角的个数即可.【详解】解:(1)∵n边形的每一个外角都等于30°∴n=360°÷30°=12;(2)∵每个内角=180°-30°=150∴内角和=12×150°=1800°.【点睛】此题主要考查了多边形的内角和、外角和,关键是掌握多边形的外交和等于360°.题型六:多边形内角和与外角和的综合运用例6.一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形 C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.【变式1】(2021·陕西)一个多边形的内角和与外角和的度数之和为1260︒,求这个多边形的边数.【答案】多边形的边数为7【分析】设这个多边形的边数为n,根据这个多边形的内角和+外角和360°=1800°,列出方程求解即可.【详解】解:设多边形的边数是n,由题意得,()21803601260n−⨯︒+︒=︒,n=.解得:7答:多边形的边数为7.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关,熟练多边形的内角和定理是解题的关键.【变式2】(2021·广西来宾市·八年级期中)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.【答案】十二边形,1800°【分析】首先设外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数,进而求出内角和.【详解】解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式以及外角和,构建方程求解即可.【变式3】(2021秋•泰州期末)【相关概念】将多边形的内角一边反向延长,与另一条边相夹形成的那个角叫做多边形的外角.如图,将△ABC中∠ACB的边CB反向延长,与另一边AC形成的∠ACD即为△ACB的一个外角.三角形外角和与三角形内角和对应,为与三个内角分别相邻的三个外角的和.【求解方法】借助一组内角与外角的数量关系,可以求出三角形的外角和.如图,△ABC的外角和=(180°﹣∠ACB)+(180°﹣∠CAB)+(180°﹣∠ABC)=540°﹣(∠ACB+∠ABC+∠CAB)=540°﹣180°=360°.【自主探究】根据以上提示,完成下列问题:(1)将下列表格补充完整.(2)如果一个八边形的每一个内角都相等,请用两种不同的方法求出这个八边形一个内角的度数.【分析】(1)根据n 边形的内角和为(n ﹣2)×180°,n 边形的外角和为360°即可得出答案;(2)根据多边形的内角和公式和多边形的外角和360°即可得出答案.【解答】解:(1)内角和分别为:四边形内角和是:(4﹣2)×180°=360°,,五边形内角和是:(5﹣2)×180°=540°,n 边形内角和是:180°(n ﹣2);外角和分别为:360°、360°、360°;故答案为:360°、540°、180°(n﹣2),360°、360°、360°;(2)这个八边形一个内角的度数是:方法一:(8﹣2)×180°÷8=135°,方法二:180°﹣360°÷8=135°.【点评】本题考查了多边形内角与外角:n边形的内角和为(n﹣2)×180°;n边形的外角和为360°.题型七:平面镶嵌例7.(2022春·八年级单元测试)用同一种下列形状的图形地砖不能进行平面镶嵌的是()A.正三角形B.长方形C.正八边形D.正六边形【答案】C【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【详解】解:A.正三角形的每个内角是60︒,能整除360︒,能密铺,故A不符合题意;B.长方形的每个内角是90︒,能整除360︒,能密铺,故B不符合题意;C.正八边形的每个内角为:1803608135︒−︒÷=︒,不能整除360︒,不能密铺,故C符合题意;D.正六边形的每个内角为120︒度,能整除360︒,能密铺,故D不符合题意.故选:C.【点睛】本题主要考查了平面镶嵌,解题的关键是熟练掌握一种正多边形的镶嵌应符合一个内角度数能整除360︒.【变式】(2022春·八年级单元测试)用正多边形来镶嵌平面的原理是共顶点的各个角之和必须等于360︒.现在有七种不同的正多边形:①正三角形、②正方形、③正六边形、④正八边形、⑤正十边形、⑥正十二边形、⑦正十五边形.请你用其中的不同的三种正多边形来镶嵌平面,这三种正多边形可以是:________.(请用序号表示,只需写出两种即可)【答案】①②③或①②⑥或②③⑥【分析】先分别求出正三角形、正方形、正五边形、正六边形、正七边形、正八边形的每个内角,然后根据平面镶嵌的条件解答即可.【详解】解:用公式()1802nn︒⨯−分别计算出正三角形的内角为60︒,正方形的内角为90︒,正六边形的内角为120︒,正八边形内角为135︒,正十边形的内角为144︒,正十二边形的内角为150︒,正十五边形的内角为156︒,∵609090120360︒+︒+︒+︒=︒,∴正三角形、正方形、正六边形可以进行平面镶嵌;∵606090150360︒+︒+︒+︒=︒,∴正三角形、正方形、正十二边形可以进行平面镶嵌;∵90120150360︒+︒+︒=︒,∴正方形、正六边形、正十二边形可以进行平面镶嵌;故答案为:①②③或①②⑥或②③⑥.【点睛】本题主要考查了镶嵌的条件,镶嵌的条件是看位于同一顶点处的几个角之和能否为360︒.【过关检测】一、单选题A.180︒B.360【答案】B【分析】根据多边形的外角和等于360︒解答即可.【详解】解:由多边形的外角和等于360︒可知,123456360∠+∠+∠+∠+∠+∠=︒,故选:B.【点睛】本题考查的是多边形的外角和,掌握多边形的外角和等于360︒是解题的关键.2.(2023春·山东泰安·八年级校考期末)正多边形的内角和为720︒,则这个多边形的一个内角为()A.90︒B.60︒C.120︒D.135︒【答案】C【分析】由正多边形的内角和为720︒,可得()2180720n−︒=︒,再求解n可得答案.【详解】解:∵正多边形的内角和为720︒,∴()2180720 n−︒=︒,解得:6n=,∴这个多边形的一个内角为720=1206︒︒;故选C【点睛】本题考查的是正多边形的内角和问题,熟记多边形的内角和公式与正多边形的定义是解本题的关键.3.(2023春·浙江·八年级专题练习)一个多边形的内角和是其外角和的2倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】A【分析】设这个多边形的边数为n,根据多边形的内角和公式和多边形的外角和都是360︒,列出方程即可求出结论.【详解】解:设多边形的边数是n,根据题意得,()21802360n−⨯︒=⨯︒,解得:6n=,∴这个多边形为六边形.故选:A.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.4.(2023春·浙江·八年级专题练习)一个多边形的每个内角都相等,这个多边形的外角不可能是()A.30︒B.40︒C.50︒D.60︒【答案】C【分析】根据多边形的每个内角都相等,则这个多边形的每一个外角均相等,根据外角和等于360︒即可求解.【详解】解:由题意得,多边形的每个内角都相等,∴这个多边形的每一个外角均相等.∴每一个外角的度数整除360︒,∵30︒、40︒、60︒均能整除360︒,50︒不能整除360︒,∴选项C 符合题意.故选:C .【点睛】本题考查了多边形的外角和,熟记知识点是解题关键. 5.(2023春·全国·八年级专题练习)如图,A B C D E F ∠+∠+∠+∠+∠+∠等于( )A .240︒B .300︒C .360︒D .540︒【答案】C 【分析】连接BD ,根据四边形内角和可得360A ABO OBD BDO CDO C ∠+∠++∠+∠+∠=︒,再由“8”字三角形可得OBD ODB E F ∠+∠=∠+∠,进而可得答案.【详解】解:连接BD ,如图,∵360A ABO OBD BDO CDO C ∠+∠+∠+∠+∠+∠=︒,OBD ODB E F ∠+∠=∠+∠,∴360A ABO E F CDO C ∠+∠+∠+∠+∠+∠=︒,故选C .【点睛】本题考查了多边形的内角和,以及“8”字三角形的特点,正确作出辅助线是解答本题的关键.6.(2022春·八年级单元测试)将一个多边形切去一个角后所得的多边形内角和为2520,则原多边形的边数为( )A .15或16B .16或17C .15或16或17D .16或17或18【答案】C【分析】因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.【详解】解:多边形的内角和可以表示成()2180n −⋅︒(3n ≥且n 是正整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得()21802520n −⋅︒=︒,解得:16n =,则多边形的边数是15或16或17,故C 正确.故选:C .【点睛】本题主要考查了多边形的内角和定理,本题容易出现的错误是:认为截取一个角后角的个数减少1. 7.(2023秋·广西钦州·八年级统考期末)小红:我计算出一个多边形的内角和为2020︒;老师:不对呀,你可能少加了一个角!则小红少加的这个角的度数是( )A .110︒B .120︒C .130︒D .140︒【答案】D【分析】设这个多边形的边数为n ,少加的角的度数为x ,由多边形内角和定理可得等式:180(2)2020n x −=+,由n 为整数即可确定x 的值.【详解】设这个多边形的边数为n ,少加的角的度数为x ,由题意得:180(2)2020n x −=+,4013180xn +∴=+,由于n 为整数,x 为正数且小于180,40180x ∴+=,则140x =,故选:D .【点睛】本题考查了多边形内角和定理,关键是设多边形的边数及少加的角的度数,由多边形内角和定理得到等式,根据边数为整数确定少加的角.8.(2023·全国·八年级假期作业)已知一个多边形内角和为1080︒,则这个多边形可连对角线的条数是( )A .10B .16C .20D .40【答案】C【分析】先根据多边形内角和计算公式求出这个多边形是八边形,再根据多边形对角线计算公式求解即可.【详解】解:设这个多边形为n边形,由题意得,()180210802n⨯−=,∴8n=,∴这个多边形为八边形,∴这个多边形可连对角线的条数是()883202⨯−=,故选C.【点睛】本题主要考查了多边形内角和定理,多边形对角线计算公式,熟知n边形的对角线条数是()32 n n−是解题的关键.9.(2023秋·八年级课时练习)一个多边形截去一角后,变成一个八边形,则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10【答案】C【分析】画出所有可能的情况,即可作答.【详解】如图所示∴这个多边形原来是7边形或8边形或9边形故选C.【点睛】本题考查的知识点是多边形内角与外角,解题关键是注意分情况作答.二、填空题10.(2023春·安徽淮北·八年级淮北一中校联考阶段练习)若n边形的每个内角都是108,则边数n为___.【答案】5【分析】根据多边形的内角和公式()2180n︒−⋅列方程求解即可.【详解】解:由题意得, ()2180108n n ︒︒−⋅=⋅解得:5n =.故答案为:5.【点睛】本题考查了多边形的内角和,熟记内角和公式并列出方程是解题的关键. 11.(2022春·八年级单元测试)如图是由射线AB 、BC 、CD 、DA 组成的平面图形,则1234∠+∠+∠+∠=______°.【答案】360【分析】根据多边形的外角和为360︒求解即可.【详解】解:由图可知,1∠、2∠、3∠、4∠为组成的四边形的外角,∴1234360∠+∠+∠+∠=︒,故答案为:360.【点睛】本题考查多边形的外角性质,熟知多边形的外角和为360︒是解题的关键.12.(2023春·浙江宁波·八年级校联考期中)一个正n 多边形的一个内角是它的外角的4倍,则n =___________.【答案】10【分析】由多边形的每一个内角与相邻的这个外角互补先求解每一个外角,从而可得答案.【详解】解:∵一个正n 多边形的一个内角是它的外角的4倍,∴正多边形的每一个外角为:180365︒=︒,∴3601036n ︒==︒,故答案为:10.【点睛】本题考查的是正多边形的内角和与外角和的综合,熟记多边形的每一个内角与相邻的这个外角互补是解本题的关键.13.(2023春·全国·八年级专题练习)若一个多边形的每个外角均为36︒,则这个多边形的内角和为_______度.【答案】1440【分析】依据多边形外角和为360︒求得边数,再依据多边形内角和公式代入求解即可.【详解】解:因为多边形的每个外角均为36︒,且外角和为360︒,所以这个多边形边数:3603610︒÷︒=,则这个多边形的内角和为:()1021801440−⨯︒=︒,故答案为:1440.【点睛】本题考查了多边形内角和公式、外角和为360︒;通过外角和求得边数是解题的关键.【答案】12【分析】设这个多边形的边数为n,根据题意得多边形的内角和是外角和的5倍,列出方程求解即可.【详解】解:设这个多边形的边数为n,根据题意得多边形的内角和是外角和的5倍,∴() 36052180n⨯=−⨯,解得:12n=,所以这个多边形的边数为12.故答案为:12.【点睛】题目主要考查一元一次方程的应用及多边形的内角和与外角和等,理解题意,列出方程是解题关键.15.(2023春·陕西西安·八年级西安行知中学校考阶段练习)一个多边形的内角和是外角和的3倍,则它是____________边形.【答案】八【分析】多边形的外角和是360度,多边形的内角和是外角和的3倍,则多边形的内角和是()3603︒⨯度,根据多边形的内角和可以表示成()2180n−⋅︒,依此列方程可求解.【详解】解:设多边形边数为n.则() 36032180n⨯=−⋅,解得8n=.∴这个多边形是八边形.故答案为:八.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.16.(2023·全国·八年级假期作业)一个n边形的所有内角和等于540︒,则n的值等于__.【答案】5【分析】已知n边形的内角和为540︒,根据多边形内角和的公式易求解.【详解】解:依题意有()2180540n−⋅︒=︒,解得5n=.故答案为:5.【点睛】主要考查的是多边形的内角和公式,本题的难度简单.掌握多边形的内角和为()2180n−⋅︒是解题的关键.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A +∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A +∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,。

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题4分,共计48分)1.(2018春黄浦区期中)如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【名师点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.2.(2017春东源县期中)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.3.(2018春正定县期末)如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则为A.B.C.D.【答案】D【解析】试题解析:正方形的内角为,正五边形的内角为,正六边形的内角为,,故选D.4.(2018春二道区期末)如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选:D.【名师点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.5.(2018春呼兰区期末)若一个多边形的内角和为540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.8【答案】A【解析】分析: 先根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线的条数与边数的关系求解.详解: 设所求正n边形边数为n,则(n-2)•180°=540°,解得n=5,∴这个多边形的对角线的条数==5.故选:A.6.(2018春官渡区期末)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A.120°B.110°C.115°D.100°【答案】A【解析】详解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.7.(2017春南山区期末)过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【详解】解:由规律可知,如此操作后得到的三角形数量比该多边形的边数少2,则该多边形的边数为5+2=7,为七边形,故选择C.【名师点睛】本题考查了几何图形中的找规律.8.(2018春金安区期末)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°【答案】C【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选:C【名师点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.9.(2018春雨花台区期末)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C【详解】180°-144°=36°,360°÷36°=10,则这个多边形的边数是10.【名师点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.10.(2018春武清区期末)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条【答案】C【详解】根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【名师点睛】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.11.(2018春白云区期末)小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【详解】解:设多边形的边数是n.依题意有(n-2)•180°>1000°,解得:n>759,则多边形的边数n=8;故选:C.【名师点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.12.(2018春泰兴市期中)若一个边形的每一个外角都是36°,则这个边形对角线的条数是()A.30 B.32 C.35 D.38【答案】C【解析】分析:多边形的外角和是固定的360°,依此可以求出多边形的边数,进而求得对角线的条数.详解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.∴对角线的条数是×10×(10-3)=35(条).故选C.【名师点睛】本题主要考查了多边形的外角和定理:多边形的外角和是360°,正确理解n边形的对角线条数是n(n-3)是关键.二、填空题(共5小题,每小题4分,共计20分)13.(2018春新华区期末)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.【答案】150, 60【解析】分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.详解:由题意可知小亮的路径是一个正多边形,∵每个外角等于30°,∴每个内角等于150°.∵正多边形的外角和为360°,∴正多边形的边数为360°÷30°=12(边).∴小亮走的周长为5×12=60.14.(2019春南明区期末)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.÷=,【详解】连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【名师点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(2018春三元区期末)小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算了一个内角,结果得到的总和是2018°,则少算了这个内角的度数为________.【答案】142°【解析】分析:n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2018°,则内角和是(n−2)•180°与2018°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2018°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.详解:设多边形的边数是n,依题意有(n−2)•180°≥2018°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2018°=142°.故答案为:142°16.(2018春莲都区期末)定义:有三个内角相等的四边形叫三等角四边形三等角四边形ABCD中,,则的取值范围______.【答案】【详解】解:四边形的内角和是,,,又,.故答案是:.【名师点睛】本题考查了多边形的内角和,注意到∠D的范围是解题的关键.17.(2018春长春市期中)如图,一束平行太阳光线照射到正五边形上,则∠1= ______.【答案】30°【解析】∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°.三、解答题(共4小题,每小题8分,共计32分)18.(2018春武义县期中)如图,在六边形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数.【答案】∠F=134°.【详解】如图,连接AC,∵CD∥AF,∴∠DCA+∠CAF=180°,∵AB⊥BC,∴∠BCA+∠BAC=90°,∴∠BCD+∠BAF=∠BCA+∠DCA+∠BAC+∠CAF=270°,∴∠BAF=270°-∠BCD=270°-124°=146°,∵六边形的内角和=(6-2)×180°=720°.∴∠F=720°-2×146°-90°-124°-80°=134°.【名师点睛】本题是考查多边形的内角和、平行线的性质、直角三角形两锐角互余的性质的综合题,运用整体思想把∠BCD与∠BAF,∠CAF与∠DCA,∠BCA与∠BAC分别看成一个整体是解题的关键. 19.(2018春吴兴区期中)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180.()2将多边形只截去一个角,截后形成的多边形的内角和为2520,求原多边形的边数.【答案】(1)作图见解析;(2)15,16或17.【详解】()1如图所示:()2设新多边形的边数为n,n-⋅=,则()21802520n=,解得16①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.【名师点睛】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.20.(2018春桃城区期中)(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【答案】(1)150°、120°、90°.(2)12.【详解】(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【名师点睛】本题考查的知识点是多边形内角和,解题的关键是熟练的掌握多边形内角和.21.(2019春盘龙区期末)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【答案】x=85°解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【名师点睛】本题主要考查了平行线的性质和多边形的内角和知识点,属于基础题.。

八年级数学上册 11.3《多边形及其内角和》三角形典例分析素材 新人教版(2021年整理)

八年级数学上册 11.3《多边形及其内角和》三角形典例分析素材 新人教版(2021年整理)

八年级数学上册11.3《多边形及其内角和》三角形典例分析素材(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册11.3《多边形及其内角和》三角形典例分析素材(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册11.3《多边形及其内角和》三角形典例分析素材(新版)新人教版的全部内容。

典例分析:三角形考点一:三角形的三边关系例1、在活动课上,小红巳有两根长为4cm,8cm的小木棒,现打箅拼一个等腰三角形,则小红应取的第三根小木棒的长 cm.分析:要取第三根小木棒的长度,就要看它和己有的两根小木棒构成的三角形是否满足:任意两边之和大于第三边或任意两边之差小于第三边.解:当4为腰时,4,4,8不满足三角形三边关系定理,当8为腰时,4,8,8满足三角形三边关系定理,所以应填8.点评:三角形的三边关系的应用是考试的热点问题,经常以填空题、选择题的形式出现.例2、用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为析解:设三角形的边长分别为x、y、z.则7yx其中x、y、z 都是正整数,那+z=+么三边长的可能情况有3,2,2;3,3,1;4,2,1;5,1,1再根据三角形的两边之和大于第三边进行验证,可知只有1,3,3;2,2,3符合要求.考点二:三角形的内角和例3、若三角形的一个角是另一个角的6倍,而这两个角的和比第三个角大错误!不能通过编辑域代码创建对象.,则此三角形的最大角是____。

析解:设另一个角为x度,则此角是6x度,第三个角是(x十6x-44)度根据三角形的内角等于错误!不能通过编辑域代码创建对象。

11.3 多边形及其内角和(基础训练)(解析版)

11.3 多边形及其内角和(基础训练)(解析版)

11.3 多边形及其内角和【基础训练】一、单选题1.若一个正多边形的每个内角为144︒,则这个正多边形的边数是()A.7B.10C.12D.14【答案】B【分析】根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由内角和公式得(n-2)180°=144°×n,解得n=10,故选:B.【点睛】本题考查了多边形内角与外角,由内角和得出方程是解题关键.2.一个正多边形的一个内角是150︒,则这个正多边形的边数为()A.2B.3C.9D.12【答案】D【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:外角是:180°-150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.3.一个n边形的各内角都等于120 ,则n等于()A.5B.6C.7D.8【答案】B【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∵每一个外角都等于180°-120°=60°,∵边数n=360°÷60°=6.故选:B.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.4.如图,在∵ABC中,∵A=90°,若沿图中虚线截去∵A,则∵1+∵2的度数为()A.90°B.180°C.270°D.300°【答案】C【分析】在∵ABC中,利用三角形内角和定理可求出∵B+∵C的度数,再利用四边形内角和为360°,即可求出∵1+∵2的度数.【详解】解:在∵ABC中,∵A=90°,∵A+∵B+∵C=180°,∵∵B+∵C=180°﹣90°=90°,又∵∵1+∵2+∵B+∵C=360°,∵∵1+∵2=360°﹣90°=270°.故选:C.【点睛】本题考查三角形和四边形内角和的性质,熟知:“三角形内角和为180°,四边形内角和为360°”是解答本题的关键.5.下列多边形中,内角和为360°的图形是()A.B.C.D.【答案】B【分析】若多边形的边数是n,则其内角和计算公式为(n﹣2)•180°,据此进行解答即可.【详解】解:由多边形内角和公式可得,(n﹣2)•180°=360°,解得n=4,是四边形,故选择B.【点睛】本题考查了多边形的内角和计算,牢记其公式是解题关键.6.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是()A.5边形B.6边形C.7边形D.8边形【答案】D【分析】设多边形的边数是n,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n,则180(n﹣2)=3×360,解得:n=8.故选:D.【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.7.某校初一数学兴趣小组对教材《多边形的内角和与外角和》的内容进行热烈的讨论,甲说:“∵∵∵∵∵∵∵∵∵1,则内角和增加180°”;乙说:“∵∵∵∵∵∵∵∵∵1,则外角和增加180°”;丙说:“∵∵∵∵∵∵∵∵∵∵∵∵∵∵”;丁说:“∵∵∵∵∵∵,外角和都是360°”∵∵∵∵∵∵∵∵( )A .甲和丁B .乙和丙C .丙和丁D .以上都不对【答案】A【分析】根据多边形的内角和与外角和逐个判断即可.【详解】多边形的内角和公式为180(2)n ︒-,n 为多边形的边数当n 增加1,则内角和增加180︒,甲说法正确任意多边形的外角和都等于360︒,则乙说法错误,丁说法正确当3n =时,多边形的内角和为180︒,外角和为360︒,则丙说法错误综上,说法正确的是甲和丁故选:A .【点睛】本题考查了多边形的内角和与外角和,熟记多边形的内角和与外角和是解题关键.8.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠,2∠,3∠,4∠相邻的外角的和等于210,则BOD ∠的度数是( )A .30B .35C .40D .45【答案】A【分析】 由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为210°,∵∵1+∵2+∵3+∵4+210°=4×180°,∵∵1+∵2+∵3+∵4=510°,∵五边形OAGFE 内角和=(5−2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD=540°,∵∵BOD=540°−510°=30°,故选A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键.9.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形B.九边形C.十边形D.十二边形【答案】C【分析】设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.10.五边形的外角和等于()A.180°B.360°C.540°D.720°【答案】B【详解】根据多边形的外角和等于360°解答.解:五边形的外角和是360°.故选B.本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.11.在某广场整修工程中,计划采用同一种正多边形地板砖铺设地面.则下列满足要求的地板砖是()A.正五边形B.正六边形C.正七边形D.正八边形【答案】B【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【详解】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∵用同一种正多边形铺满地面,则可供选择的正多边形是正六边形.故选:B.【点睛】此题主要考查了平面镶嵌,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.12.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.13.一个五边形截去个角后剩下的多边形内角和是()A.360︒B.540︒C.720︒D.360︒或540︒或720︒【答案】D【分析】一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;然后分别求出每一种情况下的多边形的内角和.【详解】解:一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;∵四边形的内角和为:360°;∵六边形的内角和为:(6-2)×180°=720°;∵五边形的内角和为:(5-2)×180°=540°;故选D.【点睛】此题主要考查了多边形内角和公式,解题的关键是:根据题意,讨论出剪去一个角后的各种情况.∠+∠=()14.如图三角形纸片,剪去60︒角后,得到一个四边形,则12A.120︒B.180︒C.240︒D.300︒【答案】C【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∵1+∵2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∵1,∵2后的两角的度数为180°-60°=120°,则根据四边形的内角和定理得:∵1+∵2=360°-120°=240°.故选:C.【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A .360°B .1080°C .1260°D .1440°【答案】D【分析】 根据外角和以及每一个外角确定出多边形的边数,即可求出内角和.【详解】解:根据题意得:360°÷36°=10,(10-2)×180°=1440°,则该多边形的内角和等于1440°,故选:D .【点睛】此题考查了多边形的内角与外角,熟练掌握各自的性质是解本题的关键.16.如图,B E F ∠+∠+∠等于( )A .360°B .335°C .385°D .405°【答案】C【分析】根据多边形的内角和公式解答即可.【详解】解:由多边形的内角和公式可得:()62180720-⨯︒=︒,∵72012012590385B E F ∠+∠+∠=︒-︒-︒-︒=︒,【点睛】本题考查多边形的内角和,掌握多边形的内角和公式是解题的关键.17.下列说法中,正确的个数有()∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°;∵三角形的外角大于与它不相邻的任意一个内角;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°;A.1个B.2个C.3个D.4【答案】C【分析】分别根据三角形的三边关系,三角形的内角和定理,三角形的外角性质以及多边形的内角和公式逐一判断即可.【详解】解:∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°,说法正确;∵三角形的外角大于与它不相邻的任意一个内角,说法正确;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确.所以正确的个数有3个.故选:C.【点睛】本题主要考查了三角形的三边关系,三角形的内角和定理,多边形的内角与外角以及三角形的外角性质,熟记相关知识是解答本题的关键.18.一个多边形的每个内角都相等,已知它的一个外角为20°,那么这个多边形是一个()A.正十八边形B.正十六边形C.正十四边形D.正十二边形【答案】A【分析】根据多边形的外角和为360°,而多边形每个外角都等于20°,可求多边形外角的个数,确定多边形的边数.解:∵多边形的外角和为360°,360°÷20°=18,∵这个多边形是正十八边形,故选:A.【点睛】本题考查了多边形内角与外角.关键是利用多边形的外角和为360°的性质,求多边形的边数.19.科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.18米D.20米【答案】C【分析】先判断出机器人所走过的路线是正多边形,然后用多边形的外角和除以每一个外角的度数求出多边形的边数,再根据周长公式列式进行计算即可得解.【详解】解:根据题意得,机器人所走过的路线是正多边形,∵每一次都是左转20°,∵多边形的边数=360°÷20°=18,周长=18×1=18(米),故选:C.【点睛】本题考查了多边形的内角与外角,判断出走过的路线是正多边形是解题的关键.20.如图,有一个正五边形木框,若要保证它不变形,需要再钉的木条根数至少是()A.1B.2C.3D.4【答案】B【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【详解】解:如图,要保证它不变形,至少还要再钉上2根木条.故选:B.【点睛】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.21.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.22.若一个多边形的每个内角都等于160°,则这个多边形的边数是()A.18B.19C.20D.21【答案】A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.23.如图,在五边形ABCDE中,AB∵CD,∵A=135°,∵C=60°,∵D=150°,则∵E的大小为()A.60°B.65°C.70°D.75°【答案】D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB∵CD得到∵B+∵C=180°,即可求出∵E的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB∵CD,∵∵B+∵C=180°,∵∵E=540°-∵A-∵B-∵C-∵D=540°-135°-180°-150°=75°.【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.24.如图,四边形ABCF ≅四边形EDCF ,若150AFC DCF ∠+∠=︒,则A B D E ∠+∠+∠+∠的大小是( )A .240︒B .300︒C .420︒D .460︒【答案】C【分析】 根据全等的性质得到300AFE BCD ∠+∠=,再根据六边形的内角和即可求解.【详解】解:∵四边形ABCF ≅四边形EDCF ,150AFC DCF ∠+∠=,∵150EFC DCF ∠+∠=,∵300AFE BCD ∠+∠=.又∵六边形的内角和为()62180720-⨯=,∵720300420A B D E ∠+∠+∠+∠=-=.故选C .【点睛】此题主要考查多边形的角度求解,解题的关键是熟知多边形的内角和的求解公式.25.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中1∠、2∠、3∠、4∠的外角的角度和为220︒,则BOD ∠的度数为( )A .40︒B .35︒C .80︒D .20︒【答案】A【分析】 根据外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE 内角和=(5﹣2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°﹣500°=40°.故选:A.【点睛】本题主要考查的是多边形内角与外角的知识点,熟练掌握多边形内角与外角的关系是本题的解题关键. 26.一副三角板如图所示摆放,则α∠与β∠的数量关系为( )A .180αβ∠+∠=︒B .225αβ∠+∠=︒C .270αβ∠+∠=︒D .αβ∠=∠【答案】B【分析】先根据对顶角相等得出1α∠=∠,2β∠=∠,再根据四边形的内角和即可得出结论【详解】解: ∵219045360∠+∠++=︒︒︒;∵21225∠+∠=︒;∵1α∠=∠,2β∠=∠;∵225αβ∠+∠=︒故选:B【点睛】本题考查了四边形的内角和定理,和对顶角的性质,熟练掌握相关的知识是解题的关键27.如图,已知∵ABC 为直角三角形,90B ∠=︒,若沿图中虚线剪去∵B ,则∵1+∵2等于( )A .315°.B .180°C .270°D .135°.【答案】C【分析】 根据三角形的内角和定理及四边形的内角和定理进行计算即可得解.【详解】∵90B ∠=︒,180A B C ∠+∠+∠=︒,∵90A C ∠+∠=︒,∵12360A C ∠+∠+∠+∠=︒,∵1236090270∠+∠=︒-︒=︒,故选:C.【点睛】本题主要考查了三角形的内角和定理及四边形的内角和定理,熟练掌握相关角的计算是解决本题的关键. 28.如图,∵1,∵2,∵3是五边形ABCDE 的3个外角,若∵A+∵B =220°,则∵1+∵2+∵3=( )A.140°B.180°C.220°D.320°【答案】C【分析】根据∵A+∵B=220°,可求∵A、∵B的外角和,再根据多边形外角和360°,可求∵1+∵2+∵3的值.【详解】解:根据∵A+∵B=220°,可知∵A的一个邻补角与∵B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∵1+∵2+∵3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.29.如图,五边形ABCDE中,AB∵CD,∵1、∵2、∵3分别是∵BAE、∵AED、∵EDC的外角,则∵1+∵2+∵3等于A.90°B.180°C.210°D.270°【答案】B【详解】试题分析:如图,如图,过点E作EF∵AB,∵AB∵CD ,∵EF∵AB∵CD ,∵∵1=∵4,∵3=∵5,∵∵1+∵2+∵3=∵2+∵4+∵5=180°,故选B30.已知一个多边形的内角和等于900º,则这个多边形是( ∵A .五边形B .六边形C .七边形D .八边形【答案】C【详解】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.二、填空题31.如图:在六边形ABCDEF 中,//,//,//,150AB DE BC EF CD AF A ∠=︒,则C E ∠+∠=__________.【答案】210°【分析】连接DE ,利用平行线的性质证明∵ABC =∵DEF ,∵A =∵D ,∵C =∵F ,再计算出六边形内角和,结合∵A 的度数可得结果.【详解】解:如图,连接DE,∵AB∵DE,BC∵EF,∵∵1=∵2,∵3=∵4,∵∵1+∵4=∵2+∵3,即∵ABC=∵DEF,同理:∵A=∵D,∵C=∵F,∵∵A+∵C+∵D+∵F+∵ABC+∵DEF=(6-2)×180°=720°,∵∵A+∵C+∵DEF=360°,∵∵A=150°,∵∵C+∵DEF=210°,故答案为:210°.【点睛】本题考查了平行线的性质,多边形内角和,作出辅助线,证明∵ABC=∵DEF是解题的关键.∠+∠+∠+∠+∠+∠=______.32.一个不规则的图形如右图所示,那么A B C D E F【答案】360°【分析】根据三角形外角的性质,可得∵1与∵E、∵AFE的关系,∵1、∵2、∵D的关系,根据多边形的内角和公式,可得答案.【详解】解:如图延长AF交DC于G点,由三角形的外角等于与它不相邻的两个内角的和,得∵1=∵E+∵AFE,∵2=∵1+∵D,等量代换,得∵2=∵E+∵F+∵D,∵A+∵B+∵C+∵D+∵E+∵AFE=∵A+∵B+∵2+∵C=(4﹣2)×180°=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及四边形的内角和,熟知三角形外角的性质和多边形内角和公式是解答此题的关键.33.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∵1、∵2、∵3、∵4的外角的角度和为220°,则∵BOD的度数为__________.【答案】40【分析】由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∵BOD.【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE内角和=(5-2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°-500°=40°,故答案为:40°.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键. 34.一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的内角和是______.【答案】1260°【分析】设这个正多边形的外角为x ,则内角为5x ﹣60,根据内角和外角互补可得x +5x ﹣60=180,解可得x 的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【详解】解:设这个正多边形的外角为x ,则内角为5x ﹣60°,由题意得:x +5x ﹣60=180,解得:x =40,360°÷40°=9.(9﹣2)×180°=1260°故答案为:1260°.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.35.如图,一个直角三角形纸板的直角边,AC BC 分别经过正八边形的两个顶点,则图中12∠+∠=____【答案】180º【分析】利用∵C=90︒,求得∵3+∵4=90︒,利用公式求出正八边形的每个内角的度数=(82)1801358-⨯︒=︒,即可求出答案.【详解】解:如图,∵∵C=90︒,∵∵3+∵4=90︒,∵正八边形的每个内角的度数=(82)1801358-⨯︒=︒,∵∵1+∵2=135290︒⨯-︒=180︒,故答案为:180︒.【点睛】此题考查直角三角形两锐角互余的性质,正多边形内角和公式,熟记正多边形内角和公式是解题的关键.三、解答题36.一个正多边形的一个外角的度数等于它的一个内角度数的13,求这个正多边形的边数.【答案】8【分析】首先设正多边形的一个外角等于x°,则内角为3x°,即可得方程:x+3x=180,解此方程得到外角度数,再根据外角和求边数即可.【详解】解:设正多边形的一个外角等于x°,∵外角等于它的一个内角的13,∵这个正多边形的一个内角为:3x°,∵x+3x=180,解得:x=45,∵这个多边形的边数是:360°÷45°=8.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.37.一个多边形的内角和比外角和的13多780︒,它是几边形?【答案】它是七边形【分析】根据多边形的内角和公式(n-2)•180°和外角和等于360°列方程求解即可.【详解】解:设这个多边形边数为n,依题意得:()121803607803n-⋅︒=︒⨯+︒,解得:7n=,答:它是七边形.【点睛】本题考查了多边形的内角和与外角和,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.38.(1)计算:()2 031220183-⎛⎫+---⎪⎝⎭(2)若一个多边形的内角和与它的外角和相等,求这个多边形边数.【答案】(1)0;(2)4.【分析】(1)先分别计算乘方,再计算加减法.(2)多边形内角和公式为(2)180n-⨯,外角和为360,由此设边数列方程解答即可.【详解】(1)()2031220183-⎛⎫+--- ⎪⎝⎭ =8+1-9=0;(2)设这个多边形的边数为n ,(2)180360n -⨯=,n=4,.【点睛】此题(1)考查实数的运算,正确理解正指数幂、零次幂、负指数幂的计算方法是解题的关键;(2)考查多边形的内角和公式与外角和,熟记公式即可正确列式计算.39.已知n 边形的内角和()2180n θ=-⨯︒.(1)当900θ=︒时,求出边数n ;(2)小明说,θ能取800︒,这种说法对吗?若对,求出边数n ;若不对,说明理由.【答案】(1)7n =;(2)不能取800︒.∵∵∵∵∵.【分析】(1)将900θ=︒代入内角和公式计算即可得;(2)将800θ=︒代入内角和公式计算n 的值,如果n 是正整数,则说法对;如果n 不是整数,则说法不对.【详解】(1)()9002180n ︒=-⨯︒,整理得25n -=,解得7n =;(2)小明的说法不对,理由如下:当θ取800︒时,()8002180n ︒=-⨯︒,解得589n = n 为正整数,θ∴不能取800︒.【点睛】本题考查了多边形的内角和公式,依据题意正确求解是解题关键.40.如图,已知四边形ABCD 中,∵A=∵D ,∵B=∵C ,试判断AD 与BC 的关系,并说明理由.【答案】AD∵BC ,理由见解析【分析】根据四边形的内角和是360°,结合已知条件得到∵A+∵B=180°,根据同旁内角互补,两直线平行得AD∵BC .【详解】解:AD 与BC 的关系是:AD∵BC .理由:∵四边形ABCD 的内角和是360°,∵∵A+∵B+∵C+∵D=360°,∵∵A=∵D ,∵B=∵C ,∵∵A+∵B+∵B+∵A=360°,∵∵A+∵B=180°,∵AD∵BC (同旁内角互补,两直线平行).【点睛】本题考查四边形的内角和,平行线的判定,解题的关键是熟记四边形的内角和是360°.41.如图,在∵ABC 中,AB =AC ,BD 、CE 是高,BD 与CE 相交于点O .(1)求证:OB =OC ;(2)若∵BAC =80°,求∵BOC 的度数.【答案】(1)见解析;(2)∵BOC =100°.【分析】(1)证明∵ABD∵∵ACE (AAS ),即可得出BD =CE ;(2)利用四边形内角和定理即可解决问题;【详解】(1)证明:∵BD 、CE 是高,∵∵ADB =∵AEC =90°,在∵ABD 和∵ACE 中,ADB AEC BAD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵ABD∵∵ACE(AAS),∵BD=CE.(2)解:∵∵A=80°,∵ADB=∵AEC=90°,∵∵BOC=360°﹣∵BAC﹣∵AEC﹣∵ADB,=360°﹣80°﹣90°﹣90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.42.画出图中多边形的所有对角线。

八年级数学多边形及其内角和(含解析答案)

八年级数学多边形及其内角和(含解析答案)

多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。

2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。

解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。

答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。

答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。

解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。

例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。

《多边形的内角和》案例分析

《多边形的内角和》案例分析

“多边形的内角和”教学案例及分析案例:一、教学目标【认知目标】1 、知道多边形、正多边形的定义,能够在图形中识别它们的有关概念。

2 、解释并会验证n边形的内角和,会应用它进行简单的计算和说理。

3、理解正n边形的每一个内角与内角和的关系,并会用公式来表示。

【能力目标】1 、通过多边形定义及多边形内角和学习,增强类比理和发散思维能力。

2、通过将多边形问题转化为三角形问题解决,使学生体会化归思想的应用方法,从而提高分析问题和解决问题的能力。

【情感目标】通过三角形和多边形之间的联系与区别的分析研究,培养学生辩证唯物主义观点和激发学生学习几何的兴趣。

其中,以知识目标为主线,能力、情感目标渗透于知识目标中来体现。

确定此目标基于以下几点:新课程标准要求、教材编写意图,八年级学生实际、素质教育需要、布卢姆目标分类理论等。

为完成教学目标。

[素质教育的重点是培养学生的创新精神和实践能力,将素质教育的重点落实在教学目标中,是教师对数学教育有深入理解的体现。

]教学重点、难点:“多边形”在教材中起着承上启下的作用,它既是七年级及前面所学的“三角形”和“四边形”知识的应用,也是后面学习用正多边形拼图及以后学习立体几何的预备知识。

因此,本节课的教学重点是:多边形内角和。

另外培养学生主动探究新知识的方法也是本节课的一个重点。

因为八年级对化归思想认识较少,所以运用此方法推导多边形内角和定理是本节课的难点;另外,三角形的三个顶点确定一个平面,所以三个顶点总是共面的。

但多边形的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在多边形定义中有“在平面内”这个条件,学生对这一条件的理解也是难点。

突出重点、化解难点的措施是:(l)教师准备并操作演示;(2)引导学生分析,找出几何规律;(3)本节课各部分知识之间的联系密切,为了便于学生学习,教学中既注重各部分知识之间的联系,又注意保持各部分知识之间相对的独立性。

使其条理清楚,层次分明;(4)利用表格使所学知识形成网络;( 5 )设计有目的、有梯度、循序渐进的练习题组,强化训练。

人教版八年级上册_多边形及其内角和(解析版)(仅供参考)

人教版八年级上册_多边形及其内角和(解析版)(仅供参考)

∵(∠3+∠9+∠10)+(∠5+∠11+∠12)+(∠7+∠13+∠14)=180°×3=540°, ∴(∠3+∠5+∠7)+(∠9+∠10+∠11+∠12+∠13+∠14)=540°, ∴∠3+∠5+∠7=540°﹣(∠9+∠10+∠11+∠12+∠13+∠14), ∵五边形 ABCDE 的内角和为(5﹣2)×180°=540°, ∴540°=∠1+∠2+∠9+∠10+∠4+∠11+∠12+∠6+∠13+∠14+∠8 =(∠1+∠2+∠4+∠6+∠8)+(∠9+∠10+∠11+∠12+∠13+∠14) =(m°+n°)+(∠9+∠10+∠11+∠12+∠13+∠14), ∴∠9+∠10+∠11+∠12+∠13+∠14=540°﹣(m°+n°). ∴∠3+∠5+∠7=540°﹣[540°﹣(m°+n°)]=m°+n°.
随练 1.5 请总结规律,完成下表:
拓展 1 下列说法中错误的有( )
①各边都相等的多边形是正多边形.②多边形的外角和是指多边形所有外角相加的和.③四个内角均为直
角的四边形是正四边形.④多边形的内角和与外角和均与边数有关.⑤正多边形的内角度数与边数无关.⑥
多边形的内角和与外角和加起来,应为边数与 180°的乘积.

多边形及其内角和知识点

多边形及其内角和知识点

第3讲多边形及其内角和(11.3)一、知识点总结边形的内角和等于180°(n-2)。

360°。

边形的对角线条数等于1/2·n(n-3)3、4、6/。

拼成360度的角:3、4。

知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。

要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

老师多边形及其内角和经典例题透析

老师多边形及其内角和经典例题透析

知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

凸多边形分类1:凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。

分类2:多边形非正多边形:1、n边形的内角和等于180°(n-2)。

多边形的定理2、任意凸形多边形的外角和等于360°。

3、n边形的对角线条数等于1/2·n(n-3)只用一种正多边形:3、4、6/。

镶嵌拼成360度的角只用一种非正多边形(全等):3、4。

知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边和它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。

多边形的内角和与外角和知识点-例题-习题

多边形的内角和与外角和知识点-例题-习题

第二十四讲 多边形的内角和与外角和【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°;知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形 凹多边形【典型例题】类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

专题11.3 多边形及其内角和(解析版)

专题11.3  多边形及其内角和(解析版)

专题11.3 多边形及其内角和1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2.多边形的内角:多边形相邻两边组成的角叫做它的内角。

3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

6.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

7.多边形内角和公式:n边形的内角和等于(n-2)·180°8.多边形的外角和:多边形的外角和为360°。

9.多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分成(n-2)个三角形。

(2)n边形共有n(n-3)/2条对角线。

【例题1】已知正多边形的一个外角为36°,则该正多边形的边数为()A.12 B.10 C.8 D.6【答案】B【解析】360°÷36°=10,所以这个正多边形是正十边形.【点拨】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【例题2】若一个多边形的内角和是540°,则该多边形的边数是.【答案】5【解析】设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5【点拨】考查n边形的内角和公式为(n﹣2)•180°,由此列方程求n.【例题3】如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,求∠BOD的度数。

【答案】40°【解析】延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.【点拨】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.一、选择题1.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°【答案】C【解析】根据多边形的内角和公式(n﹣2)•180°求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.2.一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【答案】D【解析】多边形内角和公式为︒⨯-180)2(n ,其中n 为多边形的边的条数.∴十二边形内角和为︒=︒⨯-1800180)212(,故选D 。

专题23多边形内角和问题解析版

专题23多边形内角和问题解析版

专题23多边形内角和问题1.多边形:在平而内,由一些线段首尾顺次相接组成的图形叫做多边形。

2.多边形的内角:多边形相邻两边组成的角叫做它的内角。

3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫多边形的外角。

4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5.正多边形:在平而内,各个角都相等,各条边都相等的多边形叫做正多边形。

6.多边形内角和公式:n边形的内角和等于(n-2)・180°7.多边形的外角和:多边形的内角和为360°。

8.多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分成(n-2)个三角形。

(2)n边形共有巴匸卫条对角线。

2【例题1] (2019贵州铜仁)如图为矩形扎5GZ —条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为&和厶则廿b不可能是()A. 360°B. 540°C. 630°D. 720°【答案】C.【解析】一条宜线将该矩形個⑦分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180【例题2】(2019广西梧州)正九边形的一个内角的度数是()整除,分析四个答案,只有630不能被180整除,所以十b不可能是630°・A. 108°B. 120°C. 135°D. 140°【答案】D.【解析】先根据多边形内角和泄理:180° «(n-2)求出该多边形的内角和,再求出每一个内角的度数.该正九边形内角和= 180° X (9 - 2)=1260° ,则每个内角的度数才__ [go。

・9【例题3】(2019湖南湘西州)已知一个多边形的内角和是1080° ,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】本题考査根据多边形的内角和汁算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

老师多边形及其内角和经典例题透析————————————————————————————————作者: ————————————————————————————————日期:知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

凸多边形分类1:凹多边形ﻩ正多边形:各边相等,各角也相等的多边形叫做正多边形。

分类2:多边形ﻩ非正多边形:1、n边形的内角和等于180°(n-2)。

多边形的定理2、任意凸形多边形的外角和等于360°。

3、n边形的对角线条数等于1/2·n(n-3)只用一种正多边形:3、4、6/。

镶嵌ﻩ拼成360度的角只用一种非正多边形(全等):3、4。

知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. ﻫ(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:ﻫ①一些线段(多边形的边数是大于等于3的正整数);ﻫ②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:ﻫ(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.ﻫ凸多边形凹多边形ﻫ图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角ﻫ形是边数最少的多边形.ﻫ知识点二:正多边形ﻫ各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形正方形正五边形正六边形正十二边形要点诠释:ﻫ各角相等、各边也相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线ﻫ多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。

要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

(2)n边形共有条对角线。

ﻫ证明:过一个顶点有n-3条对角线(n≥3的正整数),又∵共有n个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸n边形,共有条对角线。

ﻫ知识点四:多边形的内角和公式ﻫ1.公式:边形的内角和为.2.公式的证明:ﻫ证法1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边形的内角和为.证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.ﻫ证法3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数,即.要点诠释:(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。

ﻫ(2)内角和定理的应用:①已知多边形的边数,求其内角和;ﻫ②已知多边形内角和,求其边数。

知识点五:多边形的外角和公式ﻫ1.公式:多边形的外角和等于360°. ﻫ2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以边形的内角和加外角和为,外角和等于.注意:n边形的外角和恒等于360°,它与边数的多少无关。

要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加ﻫ1条边,内角和增加180°。

ﻫ②多边形的外角和等于360°,与边数的多少无关。

ﻫ知识点六:镶嵌的概念和特征ﻫ1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平2、实现镶嵌的条件:拼接在同一点的各个角的和恰好面镶嵌)。

这里的多边形可以形状相同,也可以形状不相同。

ﻫ等于360°;相邻的多边形有公共边。

ﻫ3、常见的一些正多边形的镶嵌问题:ﻫ(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。

ﻫ(2)只用一种正多边形镶嵌地面对于给定的某种正多边形,怎样判断它能否拼成一个平面图形,且不留一点空隙?解决问题的关键在于正多边形的内角特点。

当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形。

事实上,正n边形的每一个内角为,要求k个正n边形各有一个内角拼于一点,恰好覆盖地面,这样360°=,由此导出k==2+,而k是正整数,所以n只能取3,4,6。

因而,用相同的正多边形地砖铺地面,只有正三角形、正方形、正六边形的地砖可以用。

注意:任意四边形的内角和都等于360°。

所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。

(3)用两种或两种以上的正多边形镶嵌地面ﻫ用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。

例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌,见下图:ﻫ又如,用一个正三角形、两个正方形、一个正六边形结合在一起恰好能够铺满地面,因为它们的交接处各角之和恰好为一个周角360°。

规律方法指导1.内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少. 每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角2.多边形外角和恒等于和必须是180°的整数倍.ﻫ360°,与边数的多少无关.3.多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角.4.在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节ﻫ问题的常用方法.ﻫ5.在解决多边形的内角和问题时,通常转化为与三角形相关的角来解决. 三角形是一种基本图形,是研究复杂图形的基础,同时注意转化思想在数学中的应用.ﻫ经典例题透析经典例题透析类型一:多边形内角和及外角和定理应用ﻫ1.一个多边形的内角和等于它的外角和的5倍,它是几边形?ﻫ思路点拨:本题实际告诉了这个多边形的内角和是.ﻫ解析:设这个多边形是边形,ﻫ则它的内角和是,所以,解得.所以这个多边形是十二边形.总结升华:本题是多边形的内角和定理和外角和定理的综合运用.只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.ﻫﻫ举一反三:ﻫ【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.ﻫ【答案】设这个多边形的边数为,根据题意得:ﻫ,ﻫ解得.ﻫ所以多边形的边数为10.ﻫﻫ【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少? ﻫ【答案】设这个多边形的边数为,这个内角为,ﻫ则,即.因为等式左边是180°的整数倍,所以等式右边也是180°的整数倍.又因为,所以,此时.ﻫ所以这个多边形的内角和是:.ﻫ【变式3】个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。

【答案】可设多边形的边数为n,某一个外角为α则(n-2)×180+α=1350ﻫ从而(n-2)=ﻫ因为边数n为正整数,所以α=90,n=9ﻫﻫ类型二:多边形对角线公式的运用ﻫ2.某校七年级六班举行篮球比赛,比赛采用单循环积分制(即每两个班都进行一次比赛).你能算出一共需要进行多少场比赛吗?ﻫ思路点拨:本题体现与体育学科的综合,解题方法参照多边形对角线条数的求法,即多边形的对角线条数加上边数.如图:解析:共需要比赛(场). ﻫ所以一共需要进行15场比赛.总结升华:对于其他学科问题要善于把它与数学知识联系在一起,便于解决.ﻫﻫ举一反三:【变式1】一个多边形共有20条对角线,则多边形的边数是().A.6B.7 C.8 D.9ﻫ【答案】C. 提示:一个多边形的对角线条数为条,将6、7、8、9分别代入,结果为20的即为正确答案.ﻫ【变式2】一个十二边形有几条对角线。

解析:过十二边形的任意一个顶点可以画9条对角线,那么十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,所以实际对角线的条数应该为12×9÷2=54(条)ﻫ∴十二边形的对角线共有54条。

ﻫ总结升华:对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。

类型三:可转化为多边形内角和问题3.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数. ﻫﻫ思路点拨:设法将这几个角转移到一个多边形中,然后利用多边形内角和公式求解.ﻫ解析:连接BF,则∠A+∠G=∠1+∠2.∴∠A+∠ABC+∠C+∠D+∠E+∠EFG+∠Gﻫ=∠1+∠2+∠ABC+∠C+∠D+∠E+∠EFG.=(5-2)·180°=540°.总结升华:本题通过作辅助线,把∠A与∠G的和转化为∠1与∠2的和,从而把问题变为求五边形的内角和运算,“转化思想”是解决本题的关键.ﻫﻫ举一反三:ﻫ【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.ﻫ【答案】360°.(提示:把∠1、∠2、∠3、∠4、∠5、∠6转移到同一个多边形内.)ﻫ【变式2】如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。

ﻫ解析:连结ED,在ΔAOB和ΔDOE中,ﻫ∵∠AOB=∠DOE,∴∠1+∠2=∠A+∠Bﻫ∴∠A+∠B+∠C+∠CDO+∠OEF+∠F=∠2+∠1+∠C+∠CDO+∠OEF+∠F=∠C+∠CDE+∠DEF+∠F=360°ﻫ类型四:实际应用题ﻫ 4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?ﻫ思路点拨:根据多边形的外角和定理解决.ﻫ解析:如图,ﻫ当小汽车从P出发行驶到B市,由B市向C市行驶时转的角是,由C市向A市行驶时转的角是,由A市向P市行驶时转的角是.因此,小汽车从P市出发,经B市、C 市、A市,又回到P市,共转.总结升华:旋转的角度是指原来前进的方向与转弯后的方向的夹角.小汽车沿任意多边形行驶一周回到原处,转过的角度都是360°。

相关文档
最新文档