工程可变模糊集理论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pp
(15)
i1
1
1
djb m i1
w i rij0p pim 1
w irij
pp
(16)
p=2 欧氏距离, p=1 海明距离
(2)在式(14)中引入优化准则参数α
uj
1
α
1
d d
jg jb
α=2 最小二乘方优化准则;
α=1 最小一乘方优化准则。 式(17)称为模糊概念的可变模型。
wirij22
i1
i1
(5) (6)
(7) (8) (9)
设决策j对优的相对隶属度即决策j的相对优属度以uj表示,对劣的相对隶 属度以ujc表示,按对立模糊集定义,有
ucj 1uj
(10)
将相对隶属度定义为权重,则决策j与优决策之间的加权广义权距离 (简称距优距离)为
Djg ujdjg
(11)
决策j与劣决策间的加权广义权距离(简称距劣距离)为
1.哲学背景
自然界一切物质系统都处于不断运动、永恒的产生和 消灭的演化过程中。演化是自然界物质系统的普遍现象, 演化过程中形成过渡性或中介现象的系统形态,是自然界 物质系统演化过程中到处盛行的真实过程的反映。
物质系统的演化过程中,质变的表现形式有两种,即 突变式与渐变式,其本质都是对立统一规律、质量互变规 律以及否定之否定规律共同作用的结果。因此,对质变的 描述及量化具有重要意义。
可变模糊集理论及其应用
提纲 1、模糊概念的客观性、普遍性及可变性 2、模糊概念的测度:对立相对隶属度 3、模糊概念(例如优选)的计算模型 4、模糊概念(例如评价)的可变模型
1、模糊概念的客观性、普遍性
在文学语言范围内的模糊概念 傍晚,一群青年人漫步在宁静的凌水河畔。 早晨好(Good morning!)
1. 相对隶属函数定义 2. 相对差异函数的概念与定义 3.相对差异函数模型
1. 相对隶属函数定义
定义1:
2. 相对差异函数定义
Pl
A (u ) =1 A (u ) =0
M
0.5 0.5
Fra Baidu bibliotek
Pr
A (u ) =0 A (u ) =1
定义2:
3.相对差异函数模型
A0
Ac
A
A A 0
c
c
a
M
D jb u jcd jb 1 u jd jb (12)
为求解决策j相对优属度的最优值,建立目标函数为
m F u j i n u 2 jd 2 jg 1 u j2 d 2 jb(13)

dFuj 0
duj
得到决策相对优属度计算模型
uj
1
2
1
d d
jg jb
(14)
4、模糊概念(例如评价)的可变模型
Ac
(u)
0
uA(u)uAc
(u)
Ac (u) 1 uA(u)uAc(u)
变换后 A(C(u))Ac(C(u))
~
~
A(C(u))Ac(C(u))
~
~
两个对立概念相对隶属度之和等于1。
2、模糊概念的测度:对立相对隶属度
概念
这个定义是普通集合特征函数χA定义的
Ax10,,
xA xA
的发展。
3、模糊概念(例如优选)的计算模型
智能决策支持系统的主要步骤如下: (1)以笔者建立的模糊优选理论为基础,确定模
糊优选系统的层次结构; (2)根据模糊优选系统的层次结构图,构建神经
网络的拓扑结构; (3)将模糊优选模型(20)作为神经网络隐含层、
输出层节点的激励或作用函数,使神经网络系统的运 算具有物理含义;
(4) 应用神经网络BP算法与遗传算法相结合的混 合算法,对网络进行学习与训练。将训练结果用于决 策系统。
(3)
g1,1, ,1T
(4)
m个目标具有不同的权重,设权向量为
ww 1,w 2, w mT
m
满足
wi 1
i 1
由矩阵R知决策j的目标相对优属度向量
rj r1j,r2j, rmT j
决策j与优、劣决策的广义权距离分别为:
1
m
djg
wi 1rij
22
i1
1
1
m
dj b
wi rij02 2m
可变模糊集理论研究在一定时空条件组合下,系统中 模糊事物、模糊现象、模糊概念的相对性与动态可变性, 用数学方法描述其相对可变性。
3.工程背景
模糊性在工程领域大量存在,同时具有自然与社会的 复合特性,存在着复杂的不确定性。这使得人们在从事科 学研究过程中。对模糊性的科学合理的描述更加重要。
二、可变模糊集理论的数学表达
w k t p 1 w k t p w k t p 1 w k t p (1-10)
式中t为迭代次数,α为动量系数,0<α<1 模型(1-6)、(1-7)为模糊优选神经网络BP权重调整模
型,简称为模糊优选神经网络BP模型。应用上述模型,并根据 通常神经网络的迭代算法,可确定网络的连接权重值,使实际 输出与期望输出的误差最小。
(4) 2,p2 式(17)成为
uj
1
2
1
d d
jg jb
(14)
5、以互补性准则为基础的非结构性决策单元系统理论
1. The Analytic Hierarchy Process—AHP
1977年美国运筹学家Satty T.L. 教授 建立的非结构决策理论——层次分析法
(AHP),将人的判断用数量形式表示出来,改变了长期以来人们对复杂系统主要

uij rij
(1-1)
对隐含层的节点k,其输入为
m
Ikj wik rij i 1
(1-2)
输出为
uk
j 1
m
1 wikrij112
1Ik1j112
(1-3)
i1
w ik 为节点i,k的连接权重。
输出层仅一个节点p,输入为
l
I pj wkpukj k 1
(1-4)
w kp 为隐含层与输出层节点的连接权重,输出为
uj
1
2
1
d d
jg jb
1
djg m
wi 1rij
22
i1
1
1
djb m i1
wi rij02 2im 1
wirij22
m
wi 1
i 1
(14)
(8) (9) (6)
把公式(14)变换为可变模型: (1) 在公式(8)、(9)中引入距离参数p
1
djg m
wi 1rij
拐点。因此p=1的模糊优选理论模型(20)为Sigmoid型即S型函数,可用以
描述神经网络系统中神经元的非线性特性或激励函数,将在智能决策、智能
预报有关章节中做详细论述。
BP神经网络
BP神经网络模型 BP神经网络节点的激励函数
FX11ex
FX1e1x
式中x为节点的输入信息;θ为节点的阈值。
由于上述激励函数本身没有物理含义,据此对网络进行学习训练,是 一种黑箱训练方法。训练过程中既无法引入人的经验知识,训练结果也难 以用知识形式加以表达。
综合评判模型是模糊优选可变模型(17)的特例。
(2)1,p2
uj
d jb d jb d jg
式(17)变为
(19)
d jg , d jb 中 p 2 ,即取欧氏距离,此时式(17)
变为理想点模型。
(3) 2,p1 式(17)成为
u
j
1
1
1
d
jb
2
d jb
(20)
m
d jb wirij i 1
x22
x2n
xij
(1)
xm1 xm2 xmn
其中xij为决策j目标i的特征值;i=1,2,…,m, j=1,2, …,n.
为消除m个目标特征值量纲不同的影响,需要将矩阵X规格化。
即分别对越大越优、越小越优、中间型目标特征值采用不同的规格
化公式,将矩阵X转化为目标相对优属度矩阵
rij
xij xijmax
在工程管理等专业范围内的模糊概念: 工程质量好坏、选择方案的优劣; 信用好坏、风险大小; 在社会经济生活范围内的模糊概念: 干部任用、晋升;选择对象(德才财)等。
2、模糊概念的测度:对立相对隶属度
相对隶属度与隶属函数: “三分像人,七分像鬼”; “九死一生”;
Pl
PM
Pr
A(u) 1
0.5
A(u) 0
以3层的模糊优选神经网络系统,输入层有m个输 入节点,即是有m个目标,隐含层有l个隐节点,即有l 个单元系统,输出层仅有一个单节点输出,如图
输出层
隐含层 输入层
l个隐节点 m个输入节点
设有n个样本,对于样本j的输入为rij,i=1,
2,…,m;j=1,2,…,n,在输入层节点i将信息
直接传给隐含层节点,故节点的输出与输入相等,
2rijwkpuk2j
i1
m
wikrij
i1
3
pj
式中 pj 由下式确定
l
1 wkpukj
pj
2u2pj
k1
l
wkpukj
k1
3
M
upj
upj
(1-7) (1-8)
权重调整公式为:
w i t k 1 w i t k w i t k 1 w i t k (1-9)
优与劣这一对立概念之间既有差异又是共维,且处于两个
极点,具有中介过渡性,这是优选的模糊性,故称模糊优选。 另一方面,优选是在有限论域的非劣解决策集中进行,且是对 一定的标准而言,这是优选的相对性。
设系统有n个决策,每个决策有m个目标特征值评价其优劣,
则有目标特征值矩阵
x11 x12 x1n
X x21
aij aji 1 1aij 0
1aji 0
其中 a ij 为元素i与j进行优越性、重要性等各种属性二元比较时赋给的值;
a ji 为元素j 与i进行优越性、重要性等各种属性二元比较时赋给的值。
伏羲六十四卦次序图
伏羲六十四卦方位图中方形地象图
一、可变模糊集理论与方法提出的背景 1. 哲学 2. 数学 3. 工程
(22)

djb 0.5 时,
d 2u j dd 2 jb
0
又当
d
jb
0.5
时,
d 2u j dd 2 jb
0,故模型(20)的函数图形在区间[0,0.5]为凹性。
而当
djb
0.5
时, d dd
2
u
2
j jb
0 ,故模型(20)的函数图形dj在b 0区.5 间[0.5, 1]为凸性。
因而, djb 0.5 为定义区间[0,1]的单调增函数式(20)的唯一
根据辨证唯物论哲学关于差异、共维、中介、两极的 概念及三大规律,给出相对隶属函数的概念与定义,建立 以相对隶属函数为基础的可变模糊集理论。
2.数学背景
1965年札德(ZadehL.A.) 建立的模糊集合概念,是对 物质系统在中介过渡阶段所呈现出的模糊事物、模糊现象 及其反映模糊概念的科学描述,所建立的隶属度、隶属函 数概念与定义具有重要科学意义。但理论上存在着隶属度、 隶属函数概念与定义的静态性缺陷,主要表现在经典模糊 集合论不考虑相对性与可变性,这与其研究对象:模糊事 物、模糊现象、模糊概念所具有的中介过渡性,即可变动 态性存在矛盾。
靠主观判断、缺乏逻辑思维方式进行决策的状况,这是Satty的重要贡献。但AHP
在我国应用存在一个带有根本性的问题,即AHP关于二元比较的互反性判断决策思
维与我国语言、思维习惯不符。
a ji
1 a ij
2.互补性决策思维
笔者根据《周易》中的伏羲六十四卦次序图与方位图中的方形地象图,论证了 该决策思维模式是互补性的。
式(20)函数形态:
u j 是 d jb 的非线性函数,由式(20)得:
duj
ddjb
2djb1djb 1djb2djb22
(21)

1djb 0
,故
du j dd jb
0
,则 u j
是关于 d jb
的单调增函数,又
d d 2 u 2 jjd b 2 1 2 d jb1 1 d jd b j2 b 2 d jd 2 b j 2 b3 4 d jb 1 d jb
b
d
图1 点x与区间X0、X的位置关系图
x为X区间内的任意点的量值.
(17)
通常情况下,p=1, p=2;α=1,α=2。 可有4种搭配:
(1)α=1, p=1,式(17)变为:
m
uj wirij j1,2 ,,n i1
(13)
用向量式表示:
r11 r12 r1n
U w1,w2,wmr21
r22
r2nu1,u2,un
rm1 rm2 rmn
(18)
即式(17)变为模糊综合评判模型,是一个线性模型,或模糊
up
j 1
m
1 wk rpk
j112
1Ip1j112
i1
则隐含层节点k与输出层节点p的权重调整量公式为
l
1 wkpukj
wkp2u2pjukjkl1kw1kpuk
j3
Mup j
up j
(1-5) (1-6)
则输入层节点i与隐含层节点k的权重调整量公式为
m
1 wikrij
wik
,rij
xijmin xij
r11 r12 r1n
R r21
r22
r2n
rij
(2)
rm1 rm2 rmn
其中rij为决策j目标i对优的相对隶属度,简称目标相对优属度。
根据相对隶属度的定义,劣与优分别处于参考连续统的两个极点,
则劣、优决策的目标相对劣属度与优属度向量分别为
b0,0, 0T
相关文档
最新文档