高中数学经典例题
高中数学经典例题
高中数学经典例题
以下是一些经典的高中数学例题,涵盖了不同的数学概念和题型:
1. 代数:
已知a + b = 5,a - b = 3,求a 的值。
2. 几何:
在直角三角形ABC 中,角BAC 的度数为30°,且BC = 4,求AB 和AC 的长度。
3. 概率:
一个袋子中有红、蓝、绿三色球,共6 个。
从中随机取出一个球,再放回,再取一个球。
求这两次取出的球颜色相同的概率。
4. 数列与级数:
求等差数列1,3,5,7,...,97 的前50 项的和。
5. 函数:
已知函数f(x) = 2x + 3,求f(4) 和f(g(2)) 的值,其中g(x) = x^2 - 1。
6. 指数与对数:
求方程3^x = 27 的解。
7. 解析几何:
已知平面上一点A(3, 4),点B 在x 轴上,且AB 的长度为5,求点
B 的坐标。
8. 三角函数:
已知sinθ = 1/2,求cosθ 和tanθ 的值。
这些例题涵盖了高中数学的常见概念和题型,可以帮助学生巩固和练习相关
的知识和技能。
通过解答这些例题,学生可以加深对数学概念的理解,并提高解题能力。
当然,在实际教学中,可以根据学生的具体水平和教学目标选择相应的例题来讲解和练习。
高中数学经典50题(附答案)
将 代入得
得︱AM︱+︱AN︱=8
(2)假设存在a
因为︱AM︱+︱AN︱=︱MM′︱+︱NN′︱=2︱PP′︱
所以︱AP︱=︱PP′︱ ,P点在抛物线上,这与P点是MN的中点矛盾。故a不存在。
7.抛物线 上有两动点A,B及一个定点M,F为焦点,若 成等差数列
16、设 若 是 与 的等比中项,则 的最小值为( )
A.8 B.4 C.1 D.
答案:B
解析:因为 ,所以 ,
,当且仅当 即 时“=”成立,故选择B.
点评:本小题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力.
17、设数列 满足 为实数.
(Ⅰ)证明: 对任意 成立的充分必要条件是 ;
因为 ,BC中点 ,所以直线PD的方程为 (1)
又 故P在以A,B为焦点的双曲线右支上。设 ,则双曲线方程为 (2)。联立(1)(2),得 ,
所以 因此 ,故炮击的方位角北偏东 。
说明:本题的关键是确定P点的位置,另外还要求学生掌握方位角的基本概念。
4.河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2米,载货后船露出水面的部分高米,问水面上涨到与抛物线拱顶距多少时,小船开始不能通行
6.设抛物线 的焦点为A,以B(a+4,0)点为圆心,︱AB︱为半径,在x轴上方画半圆,设抛物线与半圆相交与不同的两点M,N。点P是MN的中点。
(1)求︱AM︱+︱AN︱的值
(2)是否存在实数a,恰使︱AM︱︱AP︱︱AN︱成等差数列若存在,求出a,不存在,说明理由。
(完整版)高中数学经典50题(附答案)
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
高中数学抛物线经典例题(含解析)
抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。
高中三角函数经典例题50道
高中三角函数经典例题50道1.求解三角形中角度的相关问题是高中数学学习中的重要内容。
例如,考虑正三角形ABC,已知∠A=60°,求∠B和∠C的大小。
2.在三角形ABC中,已知∠A=30°,∠C=60°,求∠B的大小。
3.若在直角三角形ABC中,∠A=30°,求∠C的大小。
4.在锐角三角形ABC中,已知边b=5,c=10,∠A=30°,求边a的长度。
5.在钝角三角形ABC中,边a=6,b=10,∠A=120°,求边c的长度。
6.若在任意三角形ABC中,边a=8,b=6,∠A=45°,求∠B的大小。
7.在直角三角形ABC中,边a=1,b=√3,求∠A和∠B 的大小。
8.若在锐角三角形ABC中,已知边a=5,b=7,求∠A 和∠B的大小。
9.在任意三角形ABC中,边a=10,b=15,∠A=30°,求∠B的大小。
10.若在直角三角形ABC中,边b=4,c=5,求∠A和∠C的大小。
11.在锐角三角形ABC中,已知边b=8,c=10,∠A=60°,求∠C的大小。
12.若在任意三角形ABC中,边a=7,c=9,∠A=45°,求边b的长度。
的长度。
14.在锐角三角形ABC中,已知∠A=45°,∠B=60°,求∠C的大小。
15.若在任意三角形ABC中,边a=12,b=16,求∠A和∠B的大小。
16.在直角三角形ABC中,已知边b=8,c=10,求∠A和∠C的大小。
17.在锐角三角形ABC中,边a=5,b=8,∠C=60°,求边c的长度。
18.若在任意三角形ABC中,边a=7,b=10,∠B=30°,求边c的长度。
19.在直角三角形ABC中,边a=2,c=√5,求∠A和∠B的大小。
20.在锐角三角形ABC中,已知边b=3,c=4,∠A=45°,求∠C的大小。
21.若在任意三角形ABC中,边a=9,c=12,∠C=45°,求边b的长度。
高中数学经典例题100道
例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集. 解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥, ∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD =I ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D =I 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,ο90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC , ∴BC SA ⊥.∵ο90=∠B ,即BC AB ⊥,A SA BA =I , ∴⊥BC 平面SAB . ∵⊂AN 平面SAB . ∴AN BC ⊥.又∵SB AN ⊥,B BC SB =I , ∴⊥AN 平面SBC . ∵⊂SC 平面SBC , ∴SC AN ⊥,又∵SC AM ⊥,A AN AM =I ,∴⊥SC 平面AMN . ∵⊂MN 平面AMN . ∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC . ∴MN 为AM 在平面SBC 内的射影. ∵SC AM ⊥, ∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=. 分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD . ∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH=θcos ① 在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BABD=βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点. ∵EF BD //,⊄BD 平面GFE , ∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离. ∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC =I ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH , ∴OK EF ⊥.又∵GH OK ⊥,H EF GH =I , ∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直. 证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥. 取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线). (2)∵BC BA =,∴AC BD ⊥. 又∵SD ⊥面ABC ,∴BD SD ⊥. ∵D AC SD =I ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n . ∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥. 由作图知m 、n 为α内两条相交直线. ∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面αI 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βαI ,∴EF AB ⊥,EF AC ⊥.又A AC AB =I ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系(3)这个图形中有多少个直角三角形(4)这个图形中有多少对相互垂直的直线分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM =I ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM =I ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b I ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβI .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβI .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b =I ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A =I ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βαI ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A =I ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B =I ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC =I ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距。
高中数学轨迹方程经典例题
轨迹方程一.解答题(共4小题)1.已知点P到A(﹣2,0)的距离是点P到B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)若点P与点Q关于点B对称,过B的直线与点Q的轨迹Γ交于E,F两点,探索是否为定值?若是,求出该定值;若不是,请说明理由.2.已知动点M在x2+y2=4上,过M作x轴的垂线,垂足为N,若H为MN中点.(1)求点H的轨迹方程;(2)过作直线l交H的轨迹于P、Q两点,并且交x轴于B点.若,,求证:为定值.3.已知抛物线C上的点到F(1,0)的距离等于到直线x=﹣1的距离.(1)求抛物线C的标准方程;(2)过点D(6,0)的直线l与C交于A,B两点,且以AB为直径的圆过F点,求直线l的方程.4.已知圆O:x2+y2=1,点A(0,2),动点P与点A的距离等于过点P所作圆O切线的长的倍.(1)求点P的轨迹;(2)过点Q(1,﹣1)的直线交点P的轨迹于B,C两点,且弦BC被Q点平分,求直线BC的方程.圆锥曲线---轨迹方程参考答案与试题解析一.解答题(共4小题)1.已知点P到A(﹣2,0)的距离是点P到B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)若点P与点Q关于点B对称,过B的直线与点Q的轨迹Γ交于E,F两点,探索是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)设点P(x,y),由题意可得|PA|=2|PB|,即,化简可得(x﹣2)2+y2=4.(2)设点Q(x0,y0),由(1)P点满足方程:(x﹣2)2+y2=4,,代入上式消去可得,即Q的轨迹方程为x2+y2=4,当直线l的斜率存在时,设其斜率为k,则直线l的方程为y=k(x﹣1),由,消去y,得(1+k2)x2﹣2k2x+k2﹣4=0,显然Δ>0,设E(x1,y1),F(x2,y2)则,,又,,则==.当直线l的斜率不存在时,,,.故是定值,即.2.已知动点M在x2+y2=4上,过M作x轴的垂线,垂足为N,若H为MN中点.(1)求点H的轨迹方程;(2)过作直线l交H的轨迹于P、Q两点,并且交x轴于B点.若,,求证:为定值.【解答】解:(1)设H(x,y),M(x0,y0),由题意得,∴,由M在圆x2+y2=4,得x2+4y2=4,即,∴点H的轨迹方程为;(2)证明:当PQ斜率存在时,设直线PQ的方程为,令y=0,可得B(﹣,0),设P(x1,y1),Q(x2,y2),∵,∴,同理,,由,得(4k2+1)x2+4kx﹣3=0,∴由韦达定理可得,∴=2+=2+=,当PQ斜率不存在时,P(0,1),Q(0,﹣1),B(0,0),此时,∴,∴,∴;综上所述,为定值.3.已知抛物线C上的点到F(1,0)的距离等于到直线x=﹣1的距离.(1)求抛物线C的标准方程;(2)过点D(6,0)的直线l与C交于A,B两点,且以AB为直径的圆过F点,求直线l的方程.【解答】解:(1)由题意抛物线的焦点F(1,0),准线方程是x=﹣1,则,故抛物线C的标准方程为y2=4x;(2)显然l的斜率不为0,设l:x=my+6,A(x1,y1),B(x2,y2),联立,得y2﹣4my﹣24=0,Δ=16m2+4×24=16(m2+6)>0,y1+y2=4m,y1y2=﹣24,又AF⊥BF,所以,又,则(x1﹣1,y1)•(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=0,即,即﹣24(m2+1)+5m×4m+25=0,解得,所以直线l的方程为,即2x﹣y﹣12=0或2x+y﹣12=0.4.已知圆O:x2+y2=1,点A(0,2),动点P与点A的距离等于过点P所作圆O切线的长的倍.(1)求点P的轨迹;(2)过点Q(1,﹣1)的直线交点P的轨迹于B,C两点,且弦BC被Q点平分,求直线BC的方程.【解答】解:(1)设P(x,y),A(0,2),则|PA|2=x2+(y﹣2)2,又过点P的直线与圆O相切,设切点为M,则|PO|2=|OM|2+|MP|2,即x2+y2=1+|MP|2,∴切线长为|MP|2=x2+y2﹣1,由题意得x2+(y﹣2)2=2(x2+y2﹣1),即x2+(y+2)2=10,故点P的轨迹为以(0,﹣2)为圆心,半径为的圆,且方程为x2+(y+2)2=10;(2)由(1)得点P的轨迹方程为x2+(y+2)2=10,圆心(0,﹣2),半径为,当直线BC的斜率不存在时,此时直线BC的方程为x=1,当x=1时,y=1或﹣5,则B(1,1),C(1,﹣5),此时BC的中点坐标为(1,﹣2),与Q(1,﹣1)矛盾,不符合题意;则直线BC的斜率存在,此时圆心(0,﹣2)与点Q(1,﹣1)所在直线的斜率k==1,则直线BC的斜率为﹣1,∴直线BC的方程为y+1=﹣(x﹣1),即x+y=0.。
高中数学充分必要条件10例题
高中数学充分必要条件10例题例题1:命题:如果一个三角形是等边三角形,那么这个三角形的三个内角相等。
分析:- 充分性:如果三角形是等边三角形(条件),根据等边三角形的定义,三条边都相等,那么它的三个内角肯定都是60°,所以三个内角相等(结论),充分性成立。
- 必要性:如果一个三角形的三个内角相等(条件),根据三角形内角和是180°,每个角就是60°,这个三角形的三条边肯定相等,也就是等边三角形(结论),必要性成立。
所以“一个三角形是等边三角形”是“这个三角形的三个内角相等”的充分必要条件。
例题2:命题:若x > 5,则x > 3。
分析:- 充分性:当x > 5的时候(条件),5比3大,那肯定x > 3(结论),充分性是妥妥的。
- 必要性:当x > 3(条件),比如说x = 4,它满足x > 3,但不满足x > 5,所以必要性不成立。
所以“x > 5”是“x > 3”的充分不必要条件。
例题3:命题:若a = 0且b = 0,则ab = 0。
分析:- 充分性:要是a = 0并且b = 0(条件),那按照乘法规则,ab肯定等于0(结论),这充分性没毛病。
- 必要性:如果ab = 0(条件),有可能a = 0而b不等于0,或者b = 0而a 不等于0,或者a和b都等于0,所以由ab = 0不能必然推出a = 0且b = 0,必要性不成立。
所以“a = 0且b = 0”是“ab = 0”的充分不必要条件。
例题4:命题:若四边形是正方形,则四边形是矩形。
分析:- 充分性:正方形的四个角都是直角,对边平行且相等,这完全符合矩形的定义啊。
所以如果四边形是正方形(条件),那它肯定是矩形(结论),充分性成立。
- 必要性:四边形是矩形(条件),但是矩形不一定四条边都相等,也就是不一定是正方形(结论),必要性不成立。
所以“四边形是正方形”是“四边形是矩形”的充分不必要条件。
高中数学数列经典九例
数学数列经典例题1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥(1)求数列n a 的通项公式;(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。
4.已知数列{n a }满足11=a ,且),2(22*1N n n a a nn n ∈≥+=-且.(Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n na 2}是等差数列;(Ⅲ)求数列{n a }的前n 项之和n S5.数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T6.22,,4,21121+=-===++n n n n n b b a a b a a . 求证:⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+;⑶4)1(2221-+-=++++n n a a a n n .7.已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项.(1)求数列}{n a 的通项公式n n S n a 项和及前;(2)若数列}1{,3),(}{11nn n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .8.已知n S 是数列{}n a 的前n 项和,123,22a a ==,且113210n n n S S S +--++=,其中*2,n n N ≥∈. ①求证数列{}1n a -是等比数列;②求数列{}n a 的前n 项和n S .9.已知n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设,3,2,1(21=-=+n a a b n n n ).(I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .高考数列解答题参考答案1.解析:(1)设该等差数列为{}n c ,则25a c =,33a c =,42a c=533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=-∴12(1)q q q -=-,1q ≠, ∴121,2q q ==,∴1164()2n a -= (2)121log [64()]6(1)72n n b n n -==--=-,{}n b 的前n 项和(13)2n n n S -=∴当17n ≤≤时,0n b ≥,∴(13)2n n n n T S -==(8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----789777()()2n n n S b b b S S S S S =-+++=--=-(13)422n n -=-∴(13)(17,)2(13)42(8,)2n n n n n T n n n n -⎧≤≤∈⎪⎪=⎨-⎪-≥∈⎪⎩**N N 2.解:(1)由151241=+=-a a a n n 及知,1234+=a a解得:,73=a 同理得.1,312==a a(2)由121+=-n n a a 知2211+=+-n n a a)1(211+=+-n n a a {}1+∴n a 构成以211=+a 为首项以2为公比的等比数列; 112)1(1-⋅++∴n n a a ;,21n n a =+∴.12-=∴n n a 为所求通项公式(3)12-=nn a 123......n n S a a a a ∴=++++123(21)(21)(21)......(21)n =-+-+-++-123(222......2)nn =++++-n n ---=21)21(2.221n n --=+3.解:由11335(2)n n n n S S a a n ---=-≥,12n n a a -∴=,又12a =,112n n a a -=, {}n a ∴是以2为首项,12为公比的等比数列,122112()()222n n n n a ---∴=⨯== 2(21)2n n b n -=-,1012123252(21)2n n T n --∴=⨯+⨯+⨯++-⋅ (1) 012111232(23)2(21)22n n n T n n ---=⨯+⨯++-⋅+-⋅ (2) (1)—(2)得0121122(222)(21)22n n n T n ---=++++--⋅ 即:1111112[1(2)]2(21)26(23)2212n n n n T n n ------=+--⋅=-+⋅- ,212(23)2n n T n -∴=-+⋅ 4.解:(Ⅰ)622212=+=a a ,2022323=+=a a .(Ⅱ)),2(22*1N n n a a n n n ∈≥+=-且 , ∴),2(122*11N n n a a n n n n ∈≥+=--且, 即),2(122*11N n n a a n n n n ∈≥=---且. ∴数列}2{n n a 是首项为21211=a ,公差为1=d 的等差数列. (Ⅲ)由(Ⅱ)得,211)1(21)1(212-=⋅-+=-+=n n d n a n n ∴n n n a 2)21(⋅-=. )2(2)21(2)211(2252232212)1(2)21(2252232211432321+⋅-+⋅--++⋅+⋅+⋅=⋅-++⋅+⋅+⋅=n n n n n n n S n S 1322)21(2221)2()1(+⋅--++++=--n n n n S 得 12)21(2222132-⋅--++++=+n n n12)21(21)21(21-⋅----=+n n n 32)23(-⋅-=n n . ∴32)32(+⋅-=n n n S . 5.解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=,13n n S S +∴= 又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N 当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥.(Ⅱ)12323n n T a a a na =++++, 当1n =时,11T =;当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+-- 11(12)3n n -=-+-1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥ 又111T a ==也满足上式, 1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥ 6.解: ⑴ )2(221+=++n n b b 2221=++∴+n n b b 2121=-=a a b 62222=+=b b 数列{b n +2}是首项为4公比为2的等比数列;⑵由⑴知 112242+-=⨯=+n n n b221-=∴+n n b 2211-=-++n n n a a22212-=-∴a a22323-=-a a……221-=--n n n a a上列(n-1)式子累加:n a n n 2)222(232-+++=-n a n n 221-=∴+⑶2)1(2)222(13221+-+++=++++n n a a a n n . 4)1(2221-+-=+++∴+n n a a a n n7.解:(1)设等差数列}{n a 的公差为d ,则⎩⎨⎧+=+=+21111)5()20(,60156d a d a a d a 解得⎩⎨⎧==.5,21a d32+=∴n a n . )4(2)325(+=++=n n n n S n (2)由).,2(,111*--+∈≥=-∴=-N n n a b b a b b n n n n n n112211121112,()()()(1)(14)3(2).3,n n n n n n n n b b b b b b b b a a a b n n n n b -----≥=-+-++-+=++++=--++=+=当时对也适合 ))(2(*∈+=∴N n n n b n ).211(21)2(11+-=+=∴n n n n b n )211123(21)2114121311(21+-+-=+-++-+-=n n n n T n )2)(1(4532+++=n n n n8.解:①113210n n n S S S +--++=⇒112()1n n n n S S S S +--=--⇒121(2)n n a a n +=-≥ 又123,22a a ==也满足上式,∴*121()n n a a n N +=-∈⇒112(1)n n a a +-=-(*n N ∈) ∴数列{}1n a -是公比为2,首项为1112a -=的等比数列 (2)由①,1211222n n n a ---=⨯=221n n a -⇒=+ 于是12...n n S a a a =+++()()()()1012212121...21n --=++++++++ ()1012222...2n n --=++++212n n -=+9.解析:(I )),2(24,2411≥+=∴+=-+n a S a S n n n n两式相减:),2(4411≥-=-+n a a a n n n *),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+ ,21=∴+nn b b }{n b ∴是以2为公比的等比数列, ,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而 *)(231N n b n n ∈⋅=∴-(II ),231-==n n n b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n。
高中数学经典例题集
高中数学经典例题集1.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:(1)若m//α,n//α,则m//n;(2)若m//α,n//α,m,n⊂β,则α//β;(3)若m//n,n⊂α,则m//α;(4)若α//β,m⊂α,则m//β.其中恰当命题的个数为2.已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥则n⊥α;④若m∥α,m⊂β,则α∥β.其中所有真命题的序号是n,3.若m,n,l是互不重合的直线,α,β,γ是互不重合的平面,给出下列命题:①若α⊥β,α⋂β=m,m⊥n,则n⊥α或n⊥β;②若α//β,α⋂γ=m,β⋂γ=n,则m//n;③若m不垂直于α,则m不可能垂直于α内的无数条直线;④若α⋂β=m,m//n,且n⊄α,n⊄β,则n//α且n//β;⑤若α⋂βm,=β⋂n,γ=αl⋂α⊥γβ=,α⊥γ,β⊥γ,且则m⊥n,m⊥l,n⊥l.其中恰当命题的序号就是.4.设、m、n表示不同的直线,α,β,γ表示不同的平面,则下列四个命题正确的是.①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若αβ=l,βγ=m,γα=n,则m∥l∥n;④若αβ=m,βγ=l,γα=n,且n∥β,则m∥l.5.已知a、b是不同的直线,α、β、γ是不同的平面,给出下列命题:①若α∥β,a⊂α,则a∥β;②若a、b与α所成角相等,则a∥b;③若α⊥β、β⊥γ,则α∥γ;④若a⊥α,a⊥β,则α∥β其中恰当的命题的序号就是.6.如图,空间中两个有一条公共边ad的正方形abcd和adef.设m、n分别是bd和ae的中点,那么①ad⊥mn;②mn∥平面cde;③mn∥ce;④mn、ce异面以上4个命题中正确的是7.得出以下四个命题①平行于同一平面的两条直线平行;②旋转轴同一平面的两条直线平行;③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行;④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直.其中正确命题的序号是(写出所有正确命题的序号).8.关于直线m,n与平面α,β,存有以下四个命题:①若m//α,n//β且α//β,则m//n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n//β且α//β,则m⊥n;④若m//α,n⊥β且α⊥β,则m//n;(把你认为正确命题的序号都填上)9.将边长为2abcd沿较短对角线bd卷成四面体abcd,点e,f分别为ac,bd的中点,则下列命题中正确的是。
洛必达法则7种例题高中
洛必达法则7种例题高中
_百度知道
1、圆周率求法问题:假定有一个圆,它的周长比它的直径大2个单位。
使用洛必达法则,就可以求出圆的直径d:d = 2π
2、正比问题:已知x:y = 2:3,y:z = 4:5,使用洛必达法则求出x:z的比例。
x:z = 2:5
3、抛物线面积问题:计算抛物线面积,其中f(x) = x^2 – 4x + 4,同时
x0 = 0,xk = 1,使用洛必达法则。
抛物线面积为:1/3
4、求和问题:已知a(n) = 2n + 1,求Sn,其中n=1,2,3,…,5,使用洛必
达法则。
Sn = 32
5、积分问题:计算下函数积分:∫ 0.4x^4 dx,使用洛必达法则。
积分:17/15 x^5
6、求最小公倍数问题:求最小公倍数,其中m = 8,n = 12,使用洛必
达法则。
最小公倍数:24
7、求行列式值问题:计算3*3的行列式的值,其中A = |-3 8 1|,|2 4 -
5|,|5 4 6|,使用洛必达法则。
行列式值:-219。
高中数学经典例题100道
例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p=________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥, ∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC , ∴BC SA ⊥.∵90=∠B ,即BC AB ⊥,A SA BA = , ∴⊥BC 平面SAB . ∵⊂AN 平面SAB . ∴AN BC ⊥.又∵SB AN ⊥,B BC SB = , ∴⊥AN 平面SBC . ∵⊂SC 平面SBC , ∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN . ∵⊂MN 平面AMN . ∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC . ∴MN 为AM 在平面SBC 内的射影. ∵SC AM ⊥, ∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=. 分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD . ∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH=θcos ① 在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BABD=βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点. ∵EF BD //,⊄BD 平面GFE , ∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离. ∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC = ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH , ∴OK EF ⊥.又∵GH OK ⊥,H EF GH = , ∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直. 证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥. 取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线). (2)∵BC BA =,∴AC BD ⊥. 又∵SD ⊥面ABC ,∴BD SD ⊥. ∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n . ∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥. 由作图知m 、n 为α内两条相交直线. ∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距。
高中数学经典例题集
高中数学经典例题集第一部分(一道解析几何题) (本题15分)已知曲线C 是到点)83,21(-P 和到直线85-=y 距离相等的点的轨迹,l 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,x MB l MA ⊥⊥,轴(如图)。
(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线l 的方程,使得||||2QA QB 为常数。
(Ⅰ)解:设()N x y ,为C 上的点,由题设得:22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭, 2222(1)2||1x x k MA k ⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 2|1||2|||21x kx QA k+⋅+=+,222||2(1)112||||QB k k x QA k x k+++=⋅+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=. A BOQy xl Max a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab ba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-ba ba . ∴ab b a b a b a .1>又∵0>abb a ,∴.ab ba b a b a >.说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号)22.c c ab a c c ab --<<+-分析 这个不等式从形式上不易看出其规律性,与我们掌握的定理和重要的结论也没有什么直接的联系,所以可以采用分析的方法来寻找证明途径.但用“分析”法证不等式,要有严格的格式,即每一步推出的都是上一步的充分条件,直到推出的条件是明显成立的(已知条件或某些定理等).证明:为要证22.c c ab a c c ab --<<+- 只需证22c ab a c c ab --<-<-, 即证2a c c ab -<-,也就是22()a c c ab -<-, 即证22a ac ab -<-, 即证2()ac a a b >+, ∵0,2,0a c a b b >>+>, ∴2a bc ab +>≥,故2c ab >即有20c ab ->, 又 由2c a b >+可得2()ac a a b >+成立,∴ 所求不等式22c c ab a c c ab --<<+-成立.说明:此题考查了用分析法证明不等式.在题目中分析法和综合法是综合运用的,要注意在书写时,分析法的书写过程应该是:“欲证……需证……”,综合法的书写过程是:“因为(∵)……所以(∴)……”,即使在一个题目中是边分析边说明也应该注意不要弄混.典型例题七例7 若233=+b a ,求证2≤+b a .分析:本题结论的反面比原结论更具体、更简、宜用反证法.证法一:假设2>+b a ,则)(2))((222233b ab a b ab a b a b a +->+-+=+,而233=+b a ,故1)(22<+-b ab a .∴ab b a ab 2122≥+>+.从而1<ab ,∴2122<+<+ab b a .∴4222)(222<+<++=+ab ab b a b a . ∴2<+b a .这与假设矛盾,故2≤+b a .证法二:假设2>+b a ,则b a ->2,故3333)2(2b b b a +->+=,即261282b b +->,即0)1(2<-b , 这不可能.从而2≤+b a .证法三:假设2>+b a ,则8)(3)(333>+++=+b a ab b a b a . 由233=+b a ,得6)(3>+b a ab ,故2)(>+b a ab . 又2))((2233=+-+=+b ab a b a b a , ∴))(()(22b ab a b a b a ab +-+>+. ∴ab b ab a <+-22,即0)(2<-b a .这不可能,故2≤+b a .说明:本题三种方法均采用反证法,有的推至与已知矛盾,有的推至与已知事实矛盾. 一般说来,结论中出现“至少”“至多”“唯一”等字句,或结论以否定语句出现,或结论肯定“过头”时,都可以考虑用反证法.典型例题八例8 设x 、y 为正数,求证33322y x y x +>+. 分析:用综合法证明比较困难,可试用分析法.证明:要证33322y x y x +>+,只需证233322)()(y x y x +>+, 即证6336642246233y y x x y y x y x x ++>+++,化简得334224233y x y x y x >+,0)323(2222>+-y xy x y x . ∵0334422<⨯⨯-=∆y y , ∴032322>+-y xy x . ∴0)323(2222>+-y xy x y x . ∴原不等式成立.说明:1.本题证明易出现以下错误证法:xy y x 222≥+,323233332y x y x ≥+,然后分(1)1>>y x ;(2)1<<y x ;(3)1>x 且10<<y ;(4)1>y 且10<<x 来讨论,结果无效.2.用分析法证明数学问题,要求相邻两步的关系是B A ⇐,前一步是后一步的必要条件,后一步是前一步的充分条件,当然相互为充要条件也可以.典型例题九例9 已知2122≤+≤y x ,求证32122≤+-≤y xy x . 分析:联想三角函数知识,进行三角换元,然后利用三角函数的值域进行证明. 证明:从条件看,可用三角代换,但需要引入半径参数r .∵2122≤+≤y x ,∴可设θ=cos r x ,θ=sin r y ,其中π≤θ≤≤≤2021,r . ∴)2sin 211(cos sin 22222θ-=θθ-=+-r r r y xy x . 由232sin 21121≤θ-≤,故22223)2sin 211(21r r r ≤θ-≤. 而21212≥r ,3232≤r ,故32122≤+-≤y xy x . 说明:1.三角代换是最常见的变量代换,当条件为222r y x =+或222r y x ≤+或12222=±by a x 时,均可用三角代换.2.用换元法一定要注意新元的X 围,否则所证不等式的变量和取值的变化会影响其结果的正确性.典型例题十例10 设n 是正整数,求证121211121<+++++≤n n n . 分析:要求一个n 项分式nn n 212111+++++ 的X 围,它的和又求不出来,可以采用“化整为零”的方法,观察每一项的X 围,再求整体的X 围.证明:由),,2,1(2n k n k n n =>+≥,得nk n n 1121<+≤.当1=k 时,n n n 11121<+≤;当2=k 时,n n n 12121<+≤…… 当n k =时,nn n n 1121<+≤.∴1212111221=<+++++≤=nn n n n n n . 说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.典型例题十一例11 已知0>>b a ,求证:bb a ab b a a b a 8)(28)(22-<-+<-. 分析:欲证不等式看起来较为“复杂”,宜将它化为较“简单”的形式,因而用分析法证明较好. 证明:欲证b b a ab b a a b a 8)(28)(22-<-+<-, 只须证bb a ab b a a b a 4)(24)(22-<-+<-. 即要证2222)(2⎪⎪⎭⎫ ⎝⎛-<-<⎪⎪⎭⎫ ⎝⎛-b b a b a a b a ,即要证bb a b a ab a 22-<-<-.即要证bb a a b a 212+<<+,即要证bb a ab a +<<+2.即要证121+<<+ba ab ,即baa b <<1. 即要证baa b <<1(*) ∵0>>b a ,∴(*)显然成立, 故bb a ab b a a b a 8)(28)(22-<-+<- 说明:分析法证明不等式,实质上是寻求结论成立的一个充分条件.分析法通常采用“欲证——只要证——即证——已知”的格式.典型例题十二例12 如果x ,y ,z R ∈,求证:332332332888y x z x z y z y x z y x ++≥++.分析:注意到不等式左边各字母在项中的分布处于分离状态,而右边却结合在一起,因而要寻求一个熟知的不等式具有这种转换功能(保持两边项数相同),由0)()()(222≥-+-+-a c c b b a ,易得ca bc ab c b a ++≥++222,此式的外形特征符合要求,因此,我们用如下的结合法证明.证明:∵242424888)()()(z y x z y x ++=++444444x z x y y x ++≥222222222)()()(x z z y y x ++=222222222222y x x z x z z y z y y x ⋅+⋅+⋅≥ 222222)()()(y zx x yz z xy ++= z xy y zx y zx x yz x yz z xy 222222⋅+⋅+⋅≥ 332332332y x z x z y z y x ++=.∴332332332888y x z x z y z y x z y x ++≥++.说明:分析时也可以认为是连续应用基本不等式ab b a 222≥+而得到的.左右两边都是三项,实质上是ca bc ab c b a ++≥++222公式的连续使用.如果原题限定x ,y ,z +∈R ,则不等式可作如下变形:)111(333888z y x z y x z y x ++≥++进一步可得到:z y x yx z z x y z y x 111335335335++≥++.显然其证明过程仍然可套用原题的思路,但比原题要难,因为发现思路还要有一个转化的过程.典型例题十三例13 已知10<<a ,10<<b ,10<<c ,求证:在a c c b b a )1()1()1(---,,三数中,不可能都大于41. 分析:此命题的形式为否定式,宜采用反证法证明.假设命题不成立,则a c c b b a )1()1()1(---,,三数都大于41,从这个结论出发,进一步去导出矛盾. 证明:假设a c c b b a )1()1()1(---,,三数都大于41, 即41)1(>-b a ,41)1(>-c b ,41)1(>-a c . 又∵10<<a ,10<<b ,10<<c ,∴21)1(>-b a ,21)1(>-c b ,21)1(>-a c . ∴23)1()1()1(>-+-+-a c c b b a ① 又∵21)1(b a b a +-≤-,21)1(c b c b +-≤-,21)1(a c a c +-≤-. 以上三式相加,即得:23)1()1()1(≤⋅-+⋅-+⋅-a c c b b a ② 显然①与②相矛盾,假设不成立,故命题获证.说明:一般情况下,如果命题中有“至多”、“至少”、“都”等字样,通常情况下要用反证法,反证法的关键在于“归谬”,同时,在反证法的证明过程中,也贯穿了分析法和综合法的解题思想. 典型例题十四例14 已知a 、b 、c 都是正数,求证:⎪⎭⎫ ⎝⎛-++≤⎪⎭⎫ ⎝⎛-+33322abc c b a ab b a . 分析:用分析法去找一找证题的突破口.要证原不等式,只需证332abc c ab -≤-,即只需证332abc ab c ≥+.把ab 2变为ab ab +,问题就解决了.或有分析法的途径,也很容易用综合法的形式写出证明过程.证法一:要证⎪⎭⎫ ⎝⎛-++≤-⎪⎭⎫ ⎝⎛+33322abc c b a ab b a , 只需证332abc c b a ab b a -++≤-+,即332abc c ab -≤-,移项,得332abc ab c ≥+.由a 、b 、c 为正数,得332abc ab ab c ab c ≥++=+.∴原不等式成立.证法二:∵a 、b 、c 为正数,3333abc ab ab c ab ab c =⋅≥++∴.即332abc ab c ≥+,故332abc c ab -≤-.332abc c b a ab b a -++≤-+∴,⎪⎭⎫ ⎝⎛-++≤-⎪⎭⎫ ⎝⎛+∴33322abc c b a ab b a . 说明:题中给出的2b a +,ab ,3c b a ++,3abc ,只因为a 、b 、c 都是正数,形式同算术平均数与几何平均数定理一样,不加分析就用算术平均数与几何平均数定理来求证,问题就不好解决了. 原不等式中是用“不大于”连结,应该知道取等号的条件,本题当且仅当ab c =时取“=”号.证明不等式不论采用何种方法,仅仅是一个手段或形式问题,我们必须掌握证题的关键.本题的关键是证明332abc ab c ≥+.典型例题十五例15 已知0>a ,0>b ,且1=-b a .求证:1)1)(1(10<+-<b b a a a . 分析:记)1)(1(10bb a a a M +-<=,欲证10<<M ,联想到正、余弦函数的值域,本题采用三角换元,借助三角函数的变换手段将很方便,由条件1=-b a ,+∈R b a 、可换元,围绕公式1tan sec 22=θ-θ来进行.证明:令θ=2sec a ,θ=2tan b ,且20π<θ<, 则)tan 1(tan )sec 1(sec sec 1)1)(1(12θ+θ⋅θ-θθ=+-bb a a a )sin cos cos sin ()cos cos 1(cos 2θθ+θθ⋅θ-θθ= θ=θθ⋅θθ⋅θ=sin cos sin 1cos sin cos 22 ∵20π<θ<,∴1sin 0<θ<,即1)1)(1(10<+-<bb a a a 成立. 说明:换元的思想随处可见,这里用的是三角代换法,这种代换如能将其几何意义挖掘出来,对代换实质的认识将会深刻得多,常用的换元法有:(1)若1≤x ,可设R x ∈αα=,sin ;(2)若122=+y x ,可设α=cos x ,α=sin y ,R ∈α;(3)若122≤+y x ,可设α=cos r x ,α=sin r y ,且1≤r .典型例题十六说明:此题若一味地用分析法去做,难以得到结果.在题中得到只需证1≤++yz xz xy 后,思路已较清晰,这时改用综合法,是一种好的做法.通过此例可以看出,用分析法寻求不等式的证明途径时,有时还要与比较法、综合法等结合运用,决不可把某种方法看成是孤立的.典型例题十八例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n . 说明:此题证明过程并不复杂,但思路难寻.本题所采用的方法也是解不等式时常用的一种方法,即放缩法.这类题目灵活多样,需要巧妙变形,问题才能化隐为显,这里变形的这一步极为关键.典型例题十九例19 在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c ,若B C A 2≤+,求证4442b c a ≤+. 分析:因为涉及到三角形的边角关系,故可用正弦定理或余弦定理进行边角的转化.证明:∵B B C A 2≤-π=+,∴21cos 3≤π≥B B ,. 由余弦定理得ac c a B ac c a b -+≥-+=22222cos 2∴ac b c a +≤+222,∴22222442)(c a c a c a -+=+=)2)(2(2222ac c a ac c a -+++])12([])12([22ac b ac b --⋅++≤22242c a b ac b -⋅+=44222)(b b b ac ≤+--=说明:三角形中最常使用的两个定理就是正弦和余弦定理,另外还有面积公式C ab S sin 21=.本题应用知识较为丰富,变形较多.这种综合、变形能力需要读者在平时解题时体会和总结,证明不等式的能力和直觉需要长期培养.第二部分本题主要考查求曲线的轨迹方程、直线与曲线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.21.(本题满分15分)已知椭圆1C :22221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.(I )求椭圆1C 的方程;(II )设点P 在抛物线2C :2()y x h h =+∈R 上,2C 在点P 处 的切线与1C 交于点,M N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.解析:(I )由题意得212,,121b a b b a=⎧=⎧⎪∴⎨⎨=⋅=⎩⎪⎩所求的椭圆方程为2214y x +=,(II )不妨设21122(,),(,),(,),M x y N x y P t t h +则抛物线2C 在点P 处的切线斜率为2x t y t ='=, 直线MN :22y tx t h =-+,代入椭圆1C 得:2224(2)40x tx t h +-+-=,即()22222414()()40t x t t h x t h +--+--=,4221162(2)40t h t h ⎡⎤∆=-++-+>⎣⎦,因线段MN 的中点与线段PA 的中点的横坐标相等则:2122()122(1)2x x t t h t t +-+==+1112h t t t t ⇒=---+≥或12t t+≤- 1h ∴≥或3h ≤-;例2 比较16+x 与24x x +的大小,其中R x ∈ 解:)()1(246x x x +-+ 1246+--=x x x ,)1()1(224---=x x x ,)1)(1(42--=x x ,)1)(1)(1(222+--=x x x ,)1()1(222+-=x x ,∴ 当1±=x 时,2461x x x +=+; 当1±≠x 时,.1246x x x +>+ 说明:两个实数比较大小,通常用作差法来进行,其一般步骤是:第一步:作差;第二步:变形,常采用配方,因式分解等恒等变形手段;第三步:定号,XX 省是能确定是大于0,还是等于0,还是小于0.最后得结论.概括为“三步,—结论”,这里的“变形”一步最为关键.典型例题三例3R x ∈,比较)12)(1(2+++x x x 与)21(+x (12++x x )的大小. 分析:直接作差需要将)12)(1(2+++x x x 与)21(+x (12++x x )展开,过程复杂,式子冗长,可否考虑根据两个式子特点,予以变形,再作差.解:∵)12)(1(2+++x x x =)1(+x (122+-+x x x ) )1(2)1)(1(2+-+++=x x x x x , )1)(211()1)(21(22++-+=+++x x x x x x )1(21)1)(1(22++-+++=x x x x x , ∴)1)(21()12)(1(22+++-+++x x x x x x 021)1(21)1(212>=+-++=x x x x . 则有R x ∈时,)12)(1(2+++x x x >)21(+x (12++x x )恒成立. 说明:有的确问题直接作差不容易判断其符号,这时可根据两式的特点考虑先变形,到比较易于判断例6 设0,0>>b a ,且b a ≠,比较:b a b a ⋅与ab b a 的大小。
高中数学经典例题100道
例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p=________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥, ∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC , ∴BC SA ⊥.∵90=∠B ,即BC AB ⊥,A SA BA = , ∴⊥BC 平面SAB . ∵⊂AN 平面SAB . ∴AN BC ⊥.又∵SB AN ⊥,B BC SB = , ∴⊥AN 平面SBC . ∵⊂SC 平面SBC , ∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN . ∵⊂MN 平面AMN . ∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC . ∴MN 为AM 在平面SBC 内的射影. ∵SC AM ⊥, ∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=. 分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD . ∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH=θcos ① 在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BABD=βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点. ∵EF BD //,⊄BD 平面GFE , ∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离. ∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC = ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH , ∴OK EF ⊥.又∵GH OK ⊥,H EF GH = , ∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直. 证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥. 取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线). (2)∵BC BA =,∴AC BD ⊥. 又∵SD ⊥面ABC ,∴BD SD ⊥. ∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n . ∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥. 由作图知m 、n 为α内两条相交直线. ∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距。
高中数学经典例题集
高中数学经典例题集第一部分(一道解析几何题) (本题15分)已知曲线C 是到点)83,21(-P 和到直线85-=y 距离相等的点的轨迹,l 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,x MB l MA ⊥⊥,轴(如图)。
(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线l 的方程,使得||||2QA QB 为常数。
(Ⅰ)解:设()N x y ,为C 上的点,由题设得:22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭, 2222(1)2||1x x k MA k ⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 2||21QA k=+,222||2(1)112||QB k k x QA x k+++=⋅+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=. 解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而AB OQy xl M||1|QB x +. 过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以||QA =,2||12||QB x QA x k+=+.当2k =时,2||||QB QA =l 方程为220x y -+=. (不等式经典试题)例1 若10<<x ,证明)1(log )1(log x x a a +>-(0>a 且1≠a ).分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比较法证明.解法1 (1)当1>a 时,因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a +---=0)1(log 2>--=x a .(2)当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +-- )1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合(1)(2)知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.因为 )1(log )1(log x x a a +-- ax a x lg )1lg(lg )1lg(+--=l[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab ba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-ba ba . ∴ab b a b a b a .1>又∵0>abb a , ∴.ab ba b a b a >.说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
高中数学经典例题
高中数学经典例题1. 题目:已知函数 f(x) = x^2 + 2x + 1,求函数 f(x) 在区间 [-1,2] 上的最小值。
答案:首先求得函数的导数 f'(x) = 2x + 2,然后令导数等于零,得到 x = -1。
将 x = -1 代入函数 f(x) 中,得到 f(-1) = (-1)^2 +2(-1) + 1 = 0。
所以函数 f(x) 在 x = -1 时取得最小值为 0。
2. 题目:已知等差数列的前 n 项和为 Sn = n(a1 + an)/2,其中a1 为首项,an 为末项。
求等差数列前 n 项和的差值 Sn+1 - Sn。
答案:将 Sn+1 = (n+1)(a1 + an+1)/2 代入 Sn = n(a1 + an)/2,得到 Sn+1 - Sn = [(n+1)(a1 + an+1)/2] - [n(a1 + an)/2] = (a1 +an+1)/2。
所以等差数列前 n 项和的差值为 (a1 + an+1)/2。
3. 题目:已知直角三角形 ABC,AB = 3,BC = 4,求角 A 的正弦值 sin(A)。
答案:根据直角三角形中正弦函数的定义,sin(A) = BC/AB =4/3。
4. 题目:已知函数 f(x) = log2(x),求函数 f(x) 在定义域上的最大值。
答案:函数 f(x) 的定义域为 x > 0,因为对数函数的图像是递增的,在定义域上取得最大值。
所以函数 f(x) 在定义域上的最大值为正无穷。
5. 题目:已知等比数列的首项为 a,公比为 q,求等比数列的前 n 项和 Sn = a(1 - q^n)/(1 - q)。
答案:将 Sn+1 = a(1 - q^(n+1))/(1 - q) 代入 Sn = a(1 - q^n)/(1 -q),得到 Sn+1 - Sn = a(1 - q^(n+1))/(1 - q) - a(1 - q^n)/(1 - q) = (a*q^n)/(1 - q)。
高中数学经典50题(附答案)
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学经典例题讲解高中数学经典例题讲解典型例题一例1下列图形中,满足唯一性的是(). A.过直线外一点作与该直线垂直的直线 B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条..过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是(). A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系; - 1 -高中数学经典例题讲解(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如E、FGBC在正方体中,分别为棱和上的点,为棱上的点,且,,求.111典型例题三例 3 如图,在正方体中,是的中点,是底面正方形的中心,求证:平面.分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明平面ACDACDOE,只要在平面内找两条相交直线与垂直.11BDADBBDBD 证明:连结、、,在△中,111BBDBE、O∵分别是和的中点,1EO//BD∴.1∵面,1111DADBAADD∴为在面内的射影. 1111又∵,∴.同理可证,.又∵,、面,∴平面.11BD//EO∵,∴平面. 1 - 2 -高中数学经典例题讲解a DODBAE、另证:连结,,设正方体的棱长为,易证.又∵,∴.DB在正方体中易求出:12,22,.∵,∴.1DO∵,、平面,∴平面. 1说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例 4 如图,在△中,,平面,点在和上的射影分M、别为,求证:.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证,可证面,为此须证,进而可转化为证明平面,而已知,所以只要证即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵面,平面,∴.∵,即,,∴平面.∵平面. - 3 -高中数学经典例题讲解∴.又∵,,∴平面.∵平面,∴,AM SC又∵,,∴平面.∵平面.∴.另证:由上面可证平面.MNAMSBC∴为在平面内的射影.AM∵,∴.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊙所在平面,为⊙的直径,为⊙CA、BSBSBSCM、NA 上任意一点(与不重合).过点作的垂面交、于点,求证:.典型例题五BC B 例5 如图,为平面的斜线,为斜足,垂直平面于点,为平面内s的直线,,,,求证:.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.HHDDADBC证明:过点作垂直于点,连.∵,∴在平面内射影为.∵,,∴.①在△中有:在△中有:②在△中有:③由①、②、③可得:.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的 - 4 -高中数学经典例题讲解一切角中最小的角.若平面的斜线与平面所成角为,则斜线与平面内其它直线所成角典型例题六的CG、F例 6 如图,已知正方形边长为4,平面,,分别是AB、ADGEFB中点,求点到平面的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化GEFB为求另一点到该平面的距离.为此要寻找过点与平面平行的直线,因为与平面平行的直线上所有点到平面的距离相等.BD、ACEFBDAC证明:连结,和分别交于H、,连,作于.ABCDE、FAB、AD∵为正方形,分别为的中点,EF//BDHAO∴,为中点.∵,平面,BD//GFE∴平面.BDGFEOEFG∴与平面的距离就是点到平面的距离.∵,∴.GC∵面,∴.∵,∴平面.∵平面,∴.又∵,,∴平面.OKGEFB即长就是点到平面的距离.∵正方形边长为4,,∴,,.2在△中,.在△中,.HG11说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算FECB垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长交的延长线于,连结,作于,作交于,连结,再作 - 5 -高中数学经典例题讲解于,可得平面,长即为点到平面的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角所在平面外一点,且.求证:点与斜边中点的连线面;若直角边,求证:面.分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.SD证明:(1)在等腰中,为中点,∴.ABDESEE取中点,连、.ED//BCBC∵,,∴.又,∴面,∴.∴面(、是面内两相交直线).∵,∴.又∵面,∴.SAC∵,∴面.说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:,.求证:.分析:由线面垂直的判定定理知,只需在内找到两条相交直线与垂直即可.证明:如图所示,在平面内作两条相交直线、.∵,∴,.又∵,从而有,. - 6 -高中数学经典例题讲解由作图知、为内两条相交直线.∴.说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面平面=,为、外一点,于,于,于.证明:.分析:先证、、、四点共面,再证明平面,从而得到.证明:∵,,∴.CDAB∴、、、四点共面.∵,,,∴,.又,∴平面.∴.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结CAB论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“、、、四点共面”非常重要,仅由平面,就断定,则证明是无效的.典型例题十例10 平面内有一半圆,直径,过作平面,在半圆上任取一点,连HSMSBNSMSBA、,且、分别是在、上的射影.求证:;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断. AMBM(1)证明:连、.如上图所示, - 7 -高中数学经典例题讲解∵为已知圆的直径,∴.∵平面,,∴.∵,∴平面.∵平面,∴.∵于,,∴平面.∵于,且是在平面的射影,∴.解(2):由(1)知,平面,平面,平面.∵且,∴平面,∴图中共有4个线面垂直关系.∵平面,∴、均为直角三角形.∵平面,∴、均为直角三角形.∵平面,∴、、均为直角三角形.∵平面,∴、、、均为直角三角形.综上,图中共有11个直角三角形.由平面知,,,.由平面知,,,.由平面知,,,.由平面知,,.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线面”可得到“线面内线”,当“线面内线”且相交时,可得到直角三角形;当“线面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,.在平面内,是的斜线,.求与平面所成的角.分析:求与平面所成角,关键是确定在平面上射影的位置.由,可考虑通过构造直角三角形,通过全等三角形来确定位置,构造直角三角形则需用三垂线定理.解:如图所示,过作于.连结,则为在面上的射影,为与平面所成的角.作,由三重线定理可得.作,同理可得.由,,,可得≌,∴.∵、分别为、在内射影,∴.所以点在的平分线上. - 8 -高中数学经典例题讲解设,又,∴,,22∴.2,在中,∴,即与所成角为.说明:本题在得出在面上的射影为的平分线后,可由公式来计算与平面所成的角,此时,,.(2)由与平面上射影为平分线还可推出下面结论:四面体中,若,,则点在面上的射影为的内心.典型例题十二,例12 如图所示,在平面内有,在平面外有点,斜线,且斜线、分别与平面所成的角相等,设点与平面的距离为,,且.求点与直线的距离.分析:由点向平面引垂线,考查垂足的位置,连、,推得,,又,故、、、为矩形的四个顶点.解:作平面,垂足为,连、.∵,,∴由三垂线定理的逆定理,有:,,又,∴为矩形.又∵,∴,∴为正方形, ABCD∴、互相垂直平分.ABOCDSO设为、的交点,连结,根据三垂线定理,有,则为到的距离.在中,,,2 - 9 -高中数学经典例题讲解∴.AB5cm S因此,点到的距离为.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三 ABCDSAABCDSCSBA是正方形,垂直于平面,例13 如图,过且垂直于的平面交、、分别于点、、,求证:,.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证,可证平面,AE SC SC AEFG为此须证、,进而转化证明平面、平面. SAABCD BC证明:∵平面,平面,∴.ABCD又∵为正方形,∴.∴平面.∵平面,∴.又∵平面,∴.∴平面.又∵平面,∴,同理可证.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:在平面内,点,,,,垂足分别是- 10 -高中数学经典例题讲解、、,.求证:.证明:∵,∴为在内的射影.平面∵,,∴.同理可证:.又∵,,,∴.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知,为平面外一点,,求与平面所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.() (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.() (3)垂直于三角形两边的直线必垂直于第三边.()过点垂直于直线的所有直线都在过点垂直于的平面内.() (5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只aA 有一条直线与已知平面垂直,根据第一个命题知:过点垂直于直线的平面惟一,因此,aaAA过点且与直线垂直的直线都在过点且与直线垂直的平面内,∴该命题应打“√”号.acacbbO(5)三条共点直线两两垂直,设为,,且,,共点于,∵,,,且,确定一平面,设为,则,accb同理可知垂直于由,确定的平面,垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问 - 11 -高中数学经典例题讲解题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六E例16 如图,已知空间四边形的边,,引,为平面垂足,作于,求证:.平面BCDAH分析:若证,只须利用直线和平面垂直的判定定理,证垂直平面BCD中两条相交直线即可.ABFCFDF证明:取中点,连、,∵,∴.平面又∵,∴,∴,平面又,∴平面又,∴,,平面又,∴.典型例题十七例17 如果平面与外一条直线都垂直,那么.直线已知:直线,,.求证:.''aa//a分析:若证线面平行,只须设法在平面内找到一条直线,使得,由线面平行判定定理得证.证明:(1)如图,若与相交,则由、确定平面,设. - 12 -高中数学经典例题讲解∵又.如图,若与不相交, '''则在上任取一点,过作,、确定平面,设.∵又又.∵又典型例题十八平面例18 如图,已知在中,,线段,平面DBCH,为垂足.求证:不可能是的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设是的垂心,则.平面∵,∴, - 13 -高中数学经典例题讲解平面∴,∴.平面又∵,∴,平面DAC∴,∴,这与已知矛盾,∴假设不成立,故不可能是的垂心.说明:本题只要满足,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的().①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A.仅②不正确B.仅①、④正确C.仅①正确D.四个命题都正确a分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线平面,,,且,则,,即平面内两条直交直线,accbb都垂直于同一条直线,但,的位置关系并不是平行.另外,,的位置关系也可以是异面,如果把直线平移到平面外,此时与的位置关系仍是垂直,但此时,,的位置关系是异面.平面ABCDAD//平面ABCD③如图,在正方体中,易知,,但,因此该命题是错误的. 11111 ④该命题是线面垂直的性质定理,因此是正确的. 综上可知①、④正确. ∴应选B . 典型例题二十 - 14 -高中数学经典例题讲解 abAB 例20 设,为异面直线,为它们的公垂线若,都平行于平面,则; ab AB//若,分别垂直于平面、,且,则. 分析:依据直线和平面垂直的判定定理证明;证明线与线的平行,由于此时垂直AB //c 的关系较多,因此可以考虑利用线面垂直的性质证明. 图1 图2 证明:(1)如图1,在内任取一点,设直线与点确定的平面与平面的交线为, 设直线与点确定的平面与平面的交线为 ∵,,∴, 又∵,,∴,,∴. 如图2,过作,则, 则 又∵,∴垂直于由和确定的平面.∵,∴,,∴. 'cBBb ∴也垂直于由和确定的平面. c//AB 故. 说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构'BB 造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线,构造出平面,即由相'BBb 交直线与确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一 例21 如图,在正方体中,为异面直线与的公垂线,求11111EF//BD 证:. 1 - 15 -高中数学经典例题讲解EF//BDBDADEFEFAC分析:证明,构造与、都垂直的平面是关键.由于是和111的公垂线,这一条件对构造线面垂直十分有用.证明:连结,由于,,∴.又,,平面ACD∴.①平面平面ABCD∵,,∴.111ABCD∵四边形为正方形,∴,,平面BBDD∴,平面而,∴.同理,, 111111平面ACD∴.② 111EF//BD由①、②可知:.1典型例题二十二例22 如图,已知为外一点,、、两两垂直,,ABCP求点到平面的距离. - 16 -高中数学经典例题讲解分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.PO平面ABCOAOBOCOP 解:过作于点,连、、,∴,,∵,∴≌≌,∴,∴为的外心. PAPBPC∵、、两两垂直,∴,为正三角形,363∴,∴.3333aABCP.因此点到平面的距离3说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三12例23 如图,已知在长方体中,棱,,求直线1111111ABCD和平面的距离. 11分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距- 17 -高中数学经典例题讲解的有关方法求解.平面平面ABCD解:如图,∵,且,,11111111BC//平面ABCD∴.1111BABCD从而点到平面的距离即为所求.过点作于,平面平面AABB∵,且,∴.又,平面ABCD∴.111BE即线段的长即为所求,在中,,.∴直线到平面的距离为111113说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四ADBC例24 、分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为,,,.求线段的长.ADBC分析:首先依据题意,画出图形,利用平移,将异面直线、所成的角、垂直关系BC转化到某一个或某几个平面内,应用平面几何有关知识计算出之长.AE//BCCCE//ABAE解:如图,在平面内,过作,过作,两线交于.AE//BC∵,∴就是、所成的角,. - 18 -高中数学经典例题讲解AB BC∵,ABCEDE∴四边形是矩形.连,∵,,且,平面CDE∴.平面平面CDEAE//∵,∴.∵,∴.在中,得,∴.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段. - 19 -典型例题一例1 解不等式:(1);(2).分析:如果多项式可分解为个一次式的积,则一元高次不等式(或)可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为把方程的三个根顺次标上数轴.然后从右上开始画线顺1232次经过三个根,其解集如下图的阴影部分.或∴原不等式解集为(2)原不等式等价于或或或∴原不等式解集为x说明:用“穿根法”解不等式时应注意:①各一次项中的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1);(2)或分析:当分式不等式化为时,要注意它的等价变形g(x) 20或或(1)解:原不等式等价于2用“穿根法∴原不等式解集为。