勾股定理逆定理(2)教案

合集下载

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

八年级数学《勾股定理的逆定理》教案优秀10篇

八年级数学《勾股定理的逆定理》教案优秀10篇

八年级数学《勾股定理的逆定理》教案优秀10篇、课堂小结1①角为直角、②垂直、③勾股定理的逆定理、能力目标2(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数。

让学生自己解决问题3判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的`思路。

教学过程4(1)通过自主学习的开展体验获取数学知识的感受;(2)通过知识的纵横迁移感受数学的辩证特征。

让学生主动提出问题5利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。

这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。

所有这些都由学生自己完成,估计学生不会感到困难。

这样设计主要是培养学生善于提出问题的习惯及能力。

重点、难点分析6本节内容的重点是勾股定理的逆定理及其应用。

它可用边的关系判断一个三角形是否为直角三角形。

为判断三角形的形状提供了一个有力的依据。

本节内容的难点是勾股定理的逆定理的应用。

在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后到达一个目标式,这种“转化〞对学生来讲也是一个困难的地方。

判定直角三角形的方法7勾股定理的内容文字表达(投影显示)符号表述图形(画在黑板上)板书设计8(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

、定理的应用(投影显示题目上9(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长有下面关系:那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

人教版八年级数学下册《勾股定理的逆定理(2)》名师教案

人教版八年级数学下册《勾股定理的逆定理(2)》名师教案

17.2 勾股定理的逆定理(第二课时)一、教学目标1.核心素养:通过运用勾股定理的逆定理,提高运算能力、逻辑推理能力和应用意识.2.学习目标(1)理解勾股数的含义.(2)能运用勾股定理的逆定理解决实际问题.3.学习重点勾股定理的逆定理的应用.4.学习难点二、教学设计(一)课前设计1.预习任务请写出几组能作为直角三角形边长的正整数.2.预习自测1.由7、24、25组成的三角形是直角三角形吗?2.我们知道以3、4、5为边长能构成直角三角形,那6、8、10呢?9、12、15呢?你发现了什么?(二)课堂设计1.知识回顾勾股定理的逆定理是什么?2.问题探究问题探究一勾股数●活动一理解定义像3、4、5这样,能够成为直角三角形三边长的三个正整数成为勾股数. 即满足的三个正整数就称为勾股数.再如:…●活动二推理论证我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗? 因为,,所以且3k 、4k 、5k 均为正整数,所以3k 、4k 、5k 也是一组勾股数.●活动三 推广提升一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗? 因为,,而,∴∴,则ak 、bk 、ck (k 是正整数)也是一组勾股数.请你再写几组勾股数.问题探究二 利用勾股定理的逆定理解决生活中的问题 重点知识★ ●活动一 初步应用 例1 如图,某港口P 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile ,“海天”号每小时航行12nmile, 它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?E NRP Q【知识点:勾股定理的逆定理;】详解:根据题意PQ=16×1.5=24,PR=12×1.5=18, QR=30,因为,即,所以QPR=90o .由“远航”号沿东北方向航行可知,“海天”号沿西北方向航行. 点拨:由已知条件易想到求出两轮船航行的路程,即为三角形的边长,从而已知C A 三角形的三边长,再利用勾股定理的逆定理判断该三角形为直角三角形而解决问题 .●活动二 拓展提升例2 如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?【知识点:勾股定理的逆定理;】详解:设MN 交AC 于E ,则∠BEC=90°.又AB 2+BC 2=52+122=169=132∴△ABC 是直角三角形,∠ABC=90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE=288,∴CE=13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.点拨:由题意可得△ABC 的三边长分别为5、12、13,根据勾股定理的逆定理判断∠ABC=90°,由题可知走私艇C 进入我领海的最近距离是CE ,再利用勾股定理建方程求出CE 的长,从而解决问题.问题探究三 勾股定理及逆定理的综合运用例3. 某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【知识点:勾股定理,勾股定理的逆定理;】详解:连接BD. 在Rt△ADB中∠BAD=90o,BD==5,在△DBC中,则∴∠DBC=90o,∴S四边ADBC=S△ADB+ S△DBC=5×12=36∴36×200=7200(元).答:学校需投入7200元买草皮.点拨:根据条件易想到链接BD,将四边形的面积转化为两个三角形的面积之和,由AB=3,AD==4,易求BD=5,而△CBD中已知三边的长,可根据勾股定理的逆定理判断该三角形为直角三角形,再根据面积计算公式求出答案.3.课堂总结【知识梳理】1. 一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数.2.利用勾股定理的逆定理解决生活中的问题.【重难点突破】1.三个数是勾股数,则必须满足两个条件:(1)较小的两个数的平方和等于较大数的平方.(2)三个数必须是正整数.2.已知一个三角形的三边长时,首先应想到利用勾股定理的逆定理来判断这个三角形是否为直角三角形.3.在勾股定理及其逆定理的综合运用时需注意正确区分:勾股定理是在直角三角形中运用,而其逆定理是判断一个三角形是否为直角三角形.4.随堂检测1. 在△ABC中,三边长a、b、c满足 = 0,则此三角形为()A . 钝角三角形 B. 等腰三角形C. 等腰直角三角形D. 直角三角形【知识点:勾股定理的逆定理】【答案】D2. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出两组基本勾股数:, .【知识点:勾股数】【答案】5,12,13;9,40,41.3.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?东【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】∵AC=16×3=48,AB=12×3=36,∴222222+=-==,BC AC AB604836∴△ABC为直角三角形且∠CAB=90°,∴乙船出发后的航向是南偏东40o.4. 一个零件的形状如图,按规定这个零件中∠A与∠DBC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=13 , BC=12,这个零件符合要求吗?【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】这个零件符合要求.在△ADB中,,则,∴∠DAB=90o,同理,在△DBC中,则∴∠DBC=90o,∴这个零件符合要求.。

勾股定理逆定理(二)讲学稿

勾股定理逆定理(二)讲学稿

18.2勾股定理逆定理实际应用讲学稿(一课时)执笔:许运山 审定:道桥中学数学组 学生姓名 学习目标:1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

学习重点:灵活应用勾股定理及逆定理解决实际问题。

学习难点:灵活应用勾股定理及逆定理解决实际问题。

学习过程: 一、知识准备:(5分钟)1. 勾股定理的逆定理:2. 根据下列条件,分别判断a,b,c 为边的三角形是不是直角三角形(1)a=7,b=24,c=25; (2) a=32,b=1,c=32二、自学教材75页(10分钟)三、自学、合作、探究(20分钟) 问题一:1.某港口位于东西方向的海岸线上。

“远航”号、“海天”号轮船同时离开港口,各自沿一固定的方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。

它们离开港口一个半小时后相距30行,能知道“海天”号沿哪个方向航行吗? 解:2.A ,B ,C 三地的两两距离如图所示,A 地在B 方向?问题二:1.已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。

求:四边形ABCD 的面积。

2. 已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。

求证:△ABC 是直角三角形。

四、学习体会:谈谈你的收获五、当堂训练:1.小强在操场上向东走80m 后,又走了60m ,再走100m 回到原地。

小强在操场上向东走了80m 后,又走60m 的方向是 。

2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。

已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?六:课外作业:1. 已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计
-让学生分组讨论,尝试发现并总结勾股定理的逆定理。
-教师提供指导性的问题,引导学生通过画图、计算、推理等手段探索定理的正确性。
-分享探究成果,各组展示不同的解题思路和方法,促进学生之间的相互学习和启发。
3.知识讲解,深化理解
-教师对勾股定理的逆定理进行系统的讲解,强调定理的条件和结论。
-通过多媒体演示或实物模型展示,帮助学生形象化理解定理的内涵。
3.创新思维题:
-设立1-2道开放性问题,鼓励学生从不同角度思考,探索多种解题方法。
-鼓励学生尝试自己编写与勾股定理的逆定理相关的题目,并与同学分享,激发学生的学习兴趣和创造力。
4.小组合作任务:
-分配一个小组研究课题,例如“讨论研究,并在下节课上进行汇报展示。
4.设计具有层次性的练习题,使学生在不同难度层次的题目中逐步提高自己的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于发现的精神,使学生体验数学探究的乐趣。
3.培养学生严谨、踏实的科学态度,养成认真思考、独立解决问题的习惯。
4.通过勾股定理的逆定理的学习,使学生感受数学在现实生活中的广泛应用,体会数学的价值。
2.学生在证明过程中可能出现的逻辑错误,需要教师及时指导纠正。
3.学生对于勾股定理与逆定理之间的联系和区别的把握。
教学设想:
1.创设情境,引入新课
-通过呈现一些生活中的实际例子,如建筑物的直角结构、直角三角形的艺术品等,引导学生观察并思考这些直角三角形的特征,自然引入勾股定理的逆定理。
2.自主探究,合作交流
2.强调勾股定理与逆定理之间的联系,提醒学生注意在解决问题时灵活运用。
3.鼓励学生主动探索数学问题,培养他们勇于挑战、不断进取的精神。

17.2勾股定理的逆定理(优质课)教学设计

17.2勾股定理的逆定理(优质课)教学设计

17.2勾股定理的逆定理(优质课)优秀教学设计1000字教学设计:勾股定理的逆定理教学目标:1. 理解勾股定理的逆定理。

2. 能够使用逆定理解决三角形直角问题。

3. 培养学生自信心和解决问题的能力。

教学过程:一、导入:老师可以让学生回顾一下勾股定理,强调直角三角形的特征和斜边平方等于两条直角边平方和的关系。

二、新知:老师让学生学习勾股定理的逆定理。

首先,老师列出勾股定理的公式:a²+b²=c²。

然后,老师强调因为右边的平方和等于左边的平方和,所以如果c²=a²+b²那么这个三角形是直角三角形。

三、讲解:老师为学生讲解勾股定理的逆定理。

勾股定理的逆定理是:如果一个三角形的三边中,某两边的平方和等于第三边的平方,那么这个三角形就是直角三角形。

四、练习:老师让学生完成以下练习,巩固勾股定理的逆定理的运用能力。

1、在图中,AB=25,BC=24,AC=7,则△ABC是什么三角形?2、在图中,AB=10,AC=6,BC=8,则△ABC是什么三角形?3、在图中,AB=13,AC=12,则BC的值是多少?五、展示:老师通过学生的练习,展示勾股定理的逆定理的应用。

六、总结:老师总结课程,让学生复习并归纳勾股定理和勾股定理的逆定理,以及它们在解决直角三角形问题中的应用。

七、作业:老师布置勾股定理和勾股定理的逆定理的作业,要求学生在完成作业的同时,运用勾股定理和勾股定理的逆定理解决问题。

教学方法:讲解、练习、展示、总结教学工具:黑板、彩色粉笔、PPT评估方法:学生完成的课堂练习和作业,以及他们在课堂上所展示的应用。

教学反思:教师需要注意在讲解中,既要强调勾股定理的逆定理的概念和公式,也要注重其实际应用。

在练习和布置作业中,老师需要注意难易程度的掌控,要让学生既能够完成,又能够得到提高。

在展示中,老师应该强调问题的解决方法,并及时纠正错误。

在总结时,老师需要重点强调勾股定理和勾股定理的逆定理的区别和应用,以及怎样能够更好地运用勾股定理和逆定理解决问题。

《勾股定理的逆定理》教案

《勾股定理的逆定理》教案

第1课时《勾股定理的逆定理》学案1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF =14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA =4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2, 3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B. 方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC+S △ACD =12×6×8+12×10×24=144. 方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理 写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.。

勾股定理的逆定理(二)导学案

勾股定理的逆定理(二)导学案

图18.2-3 勾股定理逆定理(二)导学案班级: 姓名: 学号:学习目标:1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。

2.培养逻辑推理能力,体会“形”与“数”的结合。

重点:勾股定理的逆定理难点:勾股定理的逆定理的应用一.预习新知已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。

求:四边形ABCD 的面积。

归纳:求不规则图形的面积时,要把不规则图形二.课堂展示1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

三.随堂练习1..一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为A 3:4:5B 5:4:3C 20:15:12D 10:8:22.如果△ABC 的三边a,b,c 满足关系式182-+b a +(b-18)2+30-c =0则△ABC 是 _______三角形。

四.课堂检测1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )ABD EA BA .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。

2.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。

3.已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。

勾股定理的逆定理数学教案

勾股定理的逆定理数学教案

勾股定理的逆定理数学教案一、教学目标:1. 让学生理解勾股定理的逆定理的概念。

2. 引导学生掌握勾股定理的逆定理的证明过程。

3. 培养学生运用勾股定理的逆定理解决实际问题的能力。

二、教学内容:1. 勾股定理的逆定理的定义及表述。

2. 勾股定理的逆定理的证明过程。

3. 运用勾股定理的逆定理解决实际问题。

三、教学重点与难点:1. 教学重点:勾股定理的逆定理的概念及其证明过程。

2. 教学难点:运用勾股定理的逆定理解决实际问题。

四、教学方法:1. 采用讲解法,引导学生理解勾股定理的逆定理的概念。

2. 采用证明法,让学生掌握勾股定理的逆定理的证明过程。

3. 采用案例教学法,培养学生运用勾股定理的逆定理解决实际问题的能力。

五、教学步骤:1. 导入新课:回顾勾股定理的内容,引导学生思考勾股定理的逆定理。

2. 讲解勾股定理的逆定理:给出勾股定理的逆定理的定义及表述,解释其意义。

3. 证明勾股定理的逆定理:引导学生跟随老师一起证明勾股定理的逆定理。

4. 应用勾股定理的逆定理:给出实际问题,引导学生运用勾股定理的逆定理解决问题。

5. 总结与评价:对本节课的内容进行总结,对学生的学习情况进行评价。

六、课后作业:1. 复习勾股定理的逆定理的概念及证明过程。

2. 完成课后练习,运用勾股定理的逆定理解决实际问题。

3. 预习下一节课的内容。

七、教学反思:教师在课后应对本节课的教学情况进行反思,分析学生的学习效果,调整教学方法,以提高教学效果。

八、教学评价:通过课后作业、课堂表现、习题练习等多方面对学生进行评价,了解学生对勾股定理的逆定理的掌握情况。

九、教学拓展:1. 引导学生探索其他定理的逆定理。

2. 介绍勾股定理在现实生活中的应用。

3. 推荐相关阅读材料,加深学生对勾股定理及其逆定理的理解。

十、教学资源:1. 教材、教案、课件等教学资料。

2. 网络资源,如相关视频、文章等。

3. 实际问题案例。

4. 课后作业及评价表格。

六、教学策略:1. 问题驱动:通过提出实际问题,激发学生对勾股定理逆定理的兴趣和探究欲望。

勾股定理逆定理(二)汇总

勾股定理逆定理(二)汇总

教学目标教学重点教学难点学情分析学法指导教学内容自学互帮导学法”课堂教学设计勾股定理逆定理(二)课时修改意见知识与能力:1 •掌握互逆命题的意义,会写一个命题的逆命题,并判断是否成立;理及逆定理解决实际问题。

过程与方法:进一步加深性质定理与判定定理之间关系的认识。

情感态度与价值观:通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.勾股定理的逆定理及其应用.建立实际问题转化成用勾股定理的逆定理的数学模型,解决数■学问题。

2、灵活应用勾股定八年级学生认知结构、心理特征趋于逐渐成熟时期,是学生由试验几何,向推理几何过渡的重要阶段。

这个时期的学生对所学知识有一种急于尝试和运用的冲动,若不能正确引导,则必将对其学习数学的积极性造成伤害。

通过对勾股定理逆定理的再探究,有利于更好的培养学生的分析思维能力,发展推理能力。

引导、尝试、发现、探究、合作交流。

效果预测教师活动学生活动(可能出现补救措施修改意见的问题)启动课堂 (知 识再现)[活动1]知识回顾:一、勾股定理及其逆定理的文字和几何语言的叙述:1、勾股定理(“形”到“数”的结合):文字表达:直角三角形两直角边和平方和等于斜边的平方 几何语言表达:•••/C=902 . 2 2…a +b=c2、文字表达:如果三角形一边的平方等于其他两边的平方和,那 么这个三角形是直角三角形。

几何语言表述:a+b=C•••/ C=903、点评学生汇报。

独自写出 两个定理的两 种表达方式, 并作好汇报准 备。

学生汇报。

前因后果 可能混淆“数”与“形”的完美结 合,才产生勾股 定理及其逆定 理,怎样结合, 其结果可以让 学生讨论后加 深印象,并将定 理和逆定理区 别开来。

二、复习训练:1、如图,两个正方形的面积分别为64和49,则AC=2、由五根木棍,长度分别为3、4、5、12、13,若取其中三根木棍,组成三角形,有_______________________ 种取法;构成直角三角形的有. 种取法。

勾股定理逆定理 (2)

勾股定理逆定理 (2)

18.2 勾股定理的逆定理(一)教学目标知识与技能:1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.了解勾股定理的逆定理的证明方法和证明过程。

过程与方法通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。

情感态度与价值观1、通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的关系。

2、通过“创设情景—建立模型—实验探究—理论释意—拓展应用”的勾股定理的逆定理的探索过程,经历知识的发生、发展、形成和应用的过程;重点掌握勾股定理的逆定理及证明。

难点勾股定理的逆定理的证明。

教学过程教学设计第一步:复习巩固:创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

第二步:应用提高:例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中30°角所对的直角边等于斜边的一半。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

解略。

例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

陕西省安康市紫阳县紫阳中学八年级数学下册 17.2 勾股定理逆定理(第2课时)教案(新人教版)

陕西省安康市紫阳县紫阳中学八年级数学下册 17.2 勾股定理逆定理(第2课时)教案(新人教版)

17.2 勾股定理逆定理(第2课时)课题: 17.2 勾股定理逆定理(第2课时)教学目标知识与能力:1.说出证明勾股定理逆定理的方法。

2.叙述逆定理,互逆定理的概念。

过程与方法:1.经历证明勾股定理逆定理的过程,发展逻辑思维能力和空间想象能力。

2.经历互为逆定理的讨论,树立严谨的治学态度和实事求是求学精神。

情感态度价值观:1.经历探索勾股定理逆定理证明的过程,树立克服困难的勇气和坚强的意志。

2.树立与人合作、交流的团队意识。

教学重、难点重点:勾股定理逆定理的证明,及互逆定理的概念。

难点:互逆定理的概念学情分析本节主要学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系。

课前准备多媒体教学过程教师活动学生活动设计意图创设问题情境,引入新课二、讲授新课活动 1 以下列各组线段为边长,能构成三角形的是____________(填序号),能构成直角三角形的是____________.①3,4,5 ②1,3,4 ③4,4,6 ④6,8,10 ⑤5,7,2 ⑥13,5,12 ⑦7,25,24活动2 问题:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A'B'C',使B'C'=a,A'C'=b,∠C'=90°(如下图)由学生自己独立完成,教师巡视学生填的结果.在此活动中,教师应重点关注:①学生是否熟练地完成填空;②学生是否积极主动地完成任务.生:能构成三角形的是:①③④⑥⑦,能构成直角三角形的是;①④⑥⑦让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.我们所画的Rt△A'B'C',A'B'=a2+b2,又因为c2=a2+b2,所以A'B'2=c2,即帮助学生回忆构成三角形的条件和判定一个三角形为直角三角形的条件.由特例猜想得到的结论,会让一些同学产生疑虑,我们的猜想是否正确,必须有严密的推理证明过程,才能让大家用的放心.通过对命题2的证明,还可以提高学生的逻辑推理能力把画好的△A'B'C'剪下,放在△ABC上,它们重合吗?1.如果三条线段长a,b,c 满足a2=c2-b2.这三条线段组成的三角形是不是直角三角形?为什么?2.说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两条直线平行,内错角相等.(2)如果两个实数相等,那么它们的绝对值相等.(3)全等三角形的对应角相等.(4)在角的平分线上的点到角的两边的距离相等.[例1]一个零件的形状如下图所示,按规定这个零件中∠A和∠D BC都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?[例2](1)判断以a=A'B'=c △ABC和△A'B'C'三边对应相等,所以两个三角形全等,∠C=∠C'=90°.△ABC为直角三角形.即命题2是正确的.学生独立思考,自主完成;教师巡视完成练习的情况,以不同层次的学生给予辅导.在此活动中,教师应重点关注学生.①学生对勾股定理的逆定理的理解.②学生对互为逆命题的掌握情况.③学生面对困难,是否有克服困难的勇气.学生只要能用自己的语言表达清楚解决问题的过程即可.先由学生独立完成,然后小组交流,讨论;教师巡视学生完成问题的情况,及时给予指导.在此活动中,教师应重点关注学生:①能否进一步理解勾股定理的逆定进一步理解和掌握勾股定理的逆定理的本质特征,以及互为逆命题的关系及正确性;提高学生的数学应用意识和逻辑推理能力.这是利用勾股定理的逆定理解决实际问题的例子,可以使学生进一步理解勾股定理的逆定理,体会数学与现实世界的联系.10,b=8,c=6为边组成的三角形是不是直角三角形.解:因为a2+b2=100+64=164≠c2,即a2+b2≠c2,所以由a,b,c不能组成直角三角形.请问:上述解法对吗?为什么?(2)已知:在△ABC中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求证:AB=AC.你对本节的内容有哪些认识,掌握勾股定理的逆定理及其应用,熟记几组勾股数.理,②能否用语言比较规范地书写过程,说明理由.③能否从中体验到学习的乐趣。

《勾股定理的逆定理》教案

《勾股定理的逆定理》教案

b c 转化为如何判断一个角是直角。

BC17.2 勾股定理的逆定理第一课时教学目的1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。

重点、难点1.重点:掌握勾股定理的逆定理及证明。

2.难点:勾股定理的逆定理的证明。

例题的意图分析例 1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。

例 2 通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和 求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学 生的理性思维。

例 3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一 般步骤:①先判断那条边最大。

②分别用代数方法计算出 a 2+b 2 和 c 2 的值。

③判断 a 2+b 2 和 c 2 是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定 理的逆命题进行猜想。

例习题分析例 1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中 30°角所对的直角边等于斜边的一半。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设 和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真 一假,还可能都假。

解略。

例 2 证明:如果三角形的三边长 a ,, 满足 a 2+b 2=c 2,那么这个三角形是直角三角形。

分析:⑴注意命题证明的格式,首先要根据题意画出图 形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道 若有一个角是直角的三角形是直角三角形,从而将问题cA A1b b⑶利用已知条件作一个直角三角形,再证明和原三 a a B1C1角形全等,使问题得以解决。

17.2.12勾股定理逆定理(教案)

17.2.12勾股定理逆定理(教案)
3.引导学生运用勾股定理逆定理解决实际问题,增强学生的数学应用意识和创新意识。
4.培养学生团队合作精神,提高沟通交流能力,增强数学课堂互动。
5.激发学生对数学学科的兴趣,树立正确的数学观念,培育数学美感。
三、教学难点与重点
1.教学重点
(1)理解和掌握勾股定理逆定理的内容,即一个三角形的两边长的平方和等于第三边的平方,则这个三角形是直角三角形。
(2)对于特殊情况的判断,如:一个三角形的两边长分别为1.5和2,第三边长为3.5,判断这个三角形是否为直角三角形(1.5^2 + 2^2 = 2.25 + 4 = 6.25,3.5^2 = 12.25,不是直角三角形)。
(3)解决实际问题,如:一个直角三角形的两个直角边长分别为6和8,求斜边长。将勾股定理逆定理与勾股定理相结合,得出斜边长为10。
17.2.12勾股定理逆定理(教案)
一、教学内容
本节课选自人教版八年级数学下册第17章第2节,主要教学内容为勾股定理逆定理。具体内容包括:
1.理解并掌握勾股定理逆定理的概念:如果一个三角形的两边长的平方和等于第三边的平方,那么这个三角形是直角三角形。
2.学会运用勾股定理逆定理判断一个三角形是否为直角三角形。
此外,我在课堂上观察到,学生们对于自己发现问题和解决问题的过程非常感兴趣。在小组讨论环节,他们积极思考,互相交流,提出了很多有趣的观点和解决方案。这让我意识到,在今后的教学中,应该多设计一些开放性的问题和实践活动,激发学生的创新思维和探究欲望。
最后,今天的课堂总结环节,学生们提出了不少疑问,这说明他们在课堂学习中还有未完全理解的地方。在今后的教学中,我要更加关注学生的反馈,及时解答他们的疑问,确保他们对知识点有全面、深入的理解。

勾股定理逆定理教学设计

勾股定理逆定理教学设计

勾股定理逆定理教学设计勾股定理逆定理教学设计1一、教材分析(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是__的重要内容之一。

课标要求学生必须掌握。

(二)、教学目标1、知识技能:1理解并会证明勾股定理的逆定理;2会应用勾股定理的逆定理判定一个三角形是否为直角三角形;3知道什么叫勾股数,记住一些觉见的勾股数。

2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。

3、情感、态度价值观培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。

渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。

(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样就确定了本节课的重点、难点。

教学重点:勾股定理逆定理的应用教学难点:勾股定理逆定理的证明二、教学过程本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)复习回顾复习回顾与直角三角形、勾股定理有关的内容,建立新旧知识之间的联系。

(二)创设问题情境一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.2 勾股定理的逆定理(2)教案
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

三、例题的意图分析
例1(P33例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

四、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一
些数学知识和数学方法。

五、例习题分析
例1(P33例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

练习:
1.请完成以下未完成的勾股数:
(1)8、15、_______;(2)10、26、_____.
2.△ABC中,a2+b2=25,a2-b2=7,又c=5,则最大边上的高是_______.
3.以下各组数为三边的三角形中,不是直角三角形的是().
A

.7,24,25
C.4,7.5,8.5 D.3.5,4.5,5.5
4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().
A.12.5 B.12 C

2
D.9
5.已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求BC的长.
6.已知:如图,AB=4,BC=12,CD=13,DA=3,AB⊥AD,求证:BC⊥BD.
E
7.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。

已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
8.已知:如图18-2-8,在△ABC 中,CD 是AB 边上的高,且CD 2=AD·BD.
求证:△ABC 是直角三角形.
N。

相关文档
最新文档