材料成形技术基础知识点总结
材料成型基础
1、金属液态成形技术:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成形方法称为液态成形。
简称铸造。
2、充型能力:液态合金充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。
衡量充型能力可用所能形成的铸件最小壁厚。
充型能力的好与差,首先取决于铸造合金的流动性;同时又受到外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。
3、流动性:液态金属本身的流动能力。
衡量流动性一般采用螺旋试样长度。
金属的种类、成分、结晶特征及其它物理性能,决定了流动性4、收缩:金属液态、凝固及固态冷却过程中发生体积减少的现象。
5、铸件在冷却和凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的地方出现孔洞。
容积大而比较集中的孔洞称为缩孔;细小而分散的孔洞称为缩松。
6、缩孔形成条件:金属在恒温或较窄的温度范围内结晶,铸件由表及里逐层凝固。
缩松形成条件:金属结晶温度范围较宽,呈体积凝固方式(糊状凝固)。
7、铸件在凝固和随后的冷却过程中,固态收缩受到阻碍而引起的内应力,称为铸造应力。
热应力、相变应力、机械阻碍应力8、偏析:铸件(尤其是厚壁铸件)凝固后截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象。
偏析产生的原因是由于各种铸造合金在结晶过程中发生了溶质再分配的结果。
9、熔炼:固态炉料按比例装入熔炉加热熔化,通过一系列冶金反应,转化成具有一定化学成分和温度符合铸造成形要求的液态金属。
10、金属熔化后,液态金属通过浇注系统充填铸型型腔的过程称为浇注过程。
11、浇注系统:铸型中液态金属流入铸型型腔的通道。
12、砂型铸造:以粘土砂为主要造型材料13、特种铸造:通过改变铸型材料、浇注方法、充型形式、凝固条件等形成的铸造技术14、金属固态塑性成形:在外力作用下,使金属材料产生预期的塑性变形,以获得所需的形状、尺寸和力学性能的毛坯或零件的加工方法。
15、金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得优质毛坯或零件的难易程度。
材料成形技术基础 知识点总结
材料成形技术基础知识点总结滑移系:晶体中一个滑移面及该面上的一个华滑移方向的组合。
纤维组织:金属经冷加工变形后,晶粒形状发生改变,其变化趋势大致与金属的宏观变形一致,若变形程度很大,则晶粒呈现一片纤维状的条纹。
拉深:当凸模下降与坯料接触,坯料首先弯曲,于凸模圆角接触的材料发生胀形形变,凸模继续下降,法兰部分坯料在切向压应力,径向拉应力的作用下沿凹模圆角向直壁流动,形成筒部,进行拉深变形。
自发形核:在单一的液相中,通过自身的结构起伏形成新相核心的过程。
非自发形核:在不均匀的液体中,依靠外来杂质和容器壁面提供衬底而进行形核的过程。
焊接热循环:在焊接热源的作用下,焊件上的某一点温度随时间变化的过程。
焊接残余应力:由于焊接过程中的不均匀加热等因素而导致的焊接结构中存在残余应力。
温度场:加热和冷却过程中某一瞬间温度分布。
材料成型过程中的三种流:材料流,能量流,信息流。
液态金属在凝固和冷却到室温时发生:液态,凝固,固态三种收缩。
减小及消除焊接残余应力的措施有:热处理,温差拉伸,拉力载荷,爆炸冲击,振动法等。
液态金属结构:液态金属有许多近程有序的原子集团组成,原子集团内部原子规则排列,其结构与原固体相似;有大的能量起伏,激烈的热运动和大量的空穴;所有原子集团和空穴时聚时散,时小时大,始终处于瞬息万变的状态。
形核剂应具备哪些条件:失配度小,粗糙度大,分散性好,高温稳定性好。
加工硬化:金属经冷塑性变形后,随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低,这种现象叫。
其成因与位错的交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶,位错缠结等障碍,以致形成胞装亚结构,使位错难以越过这些障碍而被限制在一定范围内运动,这样,要使金属继续变形就需要不断增加外力才能克服位错间强大的交互作用力。
滑移变形时通常把滑移因子u为0.5或接近0.5的取向称为软取向,把u为0或接近0 的取向称为硬取向。
材料成型技术基础总结
第十章 熔焊工艺
第一节 熔焊原理及过程
二、熔化焊的三要素
第三节 焊接变形与焊接应力 三、减少和防止焊接应力与变形的措施 第六节 熔焊方法及工艺 一、手弧焊
2. 手弧焊的工艺
(1)直流手弧焊
(3)焊条的型号和牌号
焊条组成
焊芯、药皮的作用 (4)焊条的种类
酸性焊条和碱性焊条的特点及工艺性 二、埋弧焊 1. 埋弧焊的原理及特点 3. 埋弧焊的应用
其余
收缩率1%
Φ50 Φ15×4均布 25 8 Φ200
120 下
上
第五章 铸件结构设计
第一节 铸件设计的内容
铸件结构设计指的是铸件结构应符合铸造生产要求,满 足铸造性能和铸造工艺对铸件结构的要求。 铸件结构应尽可能使制模、造型、造芯、合箱和清理过程 简化,并为实现机械化生产创造条件。铸件结构设计的要考虑 如下问题:
P199 .(9)、(10)
第十三章 金属材料的焊接性能
第一节 金属材料的可焊性 一、可焊性的概念 二、估算钢材可焊性的方法 P230 第二节 碳钢的焊接
.(1)、
第十四章 焊接结构设计
第二节 焊接接头的工艺设计 一、焊缝的布置
模膛
切断模膛
一、模锻模膛 2. 终锻模膛
飞边槽、冲孔连皮
二、制坯模膛
制坯模膛种类及作用
第八章 板料的冲压工艺
第一节 分离工序 一、 落料及冲孔 第二节 成形工序 一、 拉深 2. 拉深中常见的废品及防止措施 (1) 拉裂 拉伸系数 防止拉裂的措施。 第四节 冲压工艺的制定过程 二、 拟订冲压工艺方案
挖砂造型
三箱造型
活块造型
对铸件上妨碍起模的小部分做成活 用于妨碍起模部分的铸件 动部分。起模时先取出主体部分, 的单件、小批生产 再取出活动部分
材料成形技术基础知识总结
第一章绪论1. 现代制造过程的分类:质量增加、质量不变、质量减少2. 质量增加过程:渗碳,渗氮,氰化处理,电镀3. 质量减少过程:切削,切割,电解,落料,冲孔,剪切4. 质量不变过程:锻造,轧制第二章液态材料铸造成形技术过程1. 充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。
表征方式:最小壁厚2. 充型能力弱:产生浇不足,冷隔,气孔,夹杂,缩孔,热裂等缺陷3. 充型能力取决于:金属自身的流动能力(主要),铸型性质(速度,热交换强度,蓄热系数),浇筑条件(速度温度),铸型结构(折算厚度)4. 金属的流动性:1. 定义:液态金属自身的流动能力2. 测量方法:将金属液浇入螺旋型试样铸型中,表征方式:螺旋线试样长度5. 收缩铸件在液态,凝固和固态冷却过程中所产生的体积和尺寸减小的现象6. 收缩的三个阶段1. 液态凝固阶段表现:腔内液面降低2. 凝固收缩阶段3. 固态收缩阶段表现:铸件外形尺寸减少;是产生拉力、变形、裂纹等缺陷的基本原因凝固:逐层凝固,体积凝固,中间凝固。
7. 铸件的实际收缩1. 铸型表面的摩擦阻力2. 热阻力(壁厚均匀则无3. 机械阻力只受到1,自由收缩否则为受阻收缩8. 缩孔:凝固过程,大而密集的孔洞形成条件:金属在恒温/很窄的温度范围结晶,铸件由表及里逐层凝固原因:金属的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿形成部位:铸件最后凝固区域9. 缩松:凝固过程小而分散的孔洞形成条件:结晶温度范围较宽,体积凝固原因:金属的液态收缩和凝固收缩大于固态收缩形成部位:铸件壁中心区域厚大部位10. 防止方法:1. 采用顺序凝固即a.合理设计内浇口位置和浇注工艺b.合理应用冒口、冷铁和补贴等技术措施2. 加压补缩11. 铸造应力:铸件在凝固和随后的冷却过程中,固态收缩受到阻碍而引起的内应力分类:热应力【薄壁、细小部位:冷的快,受压应力(凸出);厚壁、粗大部位:冷得慢,受拉应力(凹进)】,相变应力,机械阻碍应力12.减少措施:选弹性模量,收缩系数小;同时凝固;浇冒口,缓冷;选退让性好的砂芯13. 热裂:形状特征:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色防止措施:改善型砂退让性冷裂:形状特征:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色14. 吸气性:金属在熔炼过程中会溶解气体(主要H2、N2、O2)15. 吸气过程:气分子撞击金属液表面,高温而离解为原子,吸附在金属表面,扩散到内部16. 偏析:铸件凝固后,截面上不同部位,以至于晶粒内部产生化学成分不均匀的现象宏观偏析:成分不均匀现象表现在较大尺寸范围,分类:正偏析(k>1),逆偏析(k<1)k:溶质平衡分配系数(固相溶质/液相溶质)微观偏析:微小范围内的化学成分不均匀,分类:晶内偏析(消除:扩散退火,均匀化退火)和晶界偏析(细化晶粒)17. 气孔分类:侵入气孔:砂型或型芯中的挥发物挥发生成析出气孔:溶解于金属液的气体因溶解度下降析出反应气孔:化学反应产生的气体18. 浇注系统结构和功能1. 结构:浇口杯,直浇道,横浇道,内浇道2. 功能:连接型腔浇包,平稳导入液态金属;挡渣及排除腔中气体;调节温度分布控制凝固顺序;合理地充满铸型19. 冒口定义:储存金属液补偿铸件收缩,防止缩松缩孔。
材料成形技术基础知识点总结
材料成形技术基础第一章1-1一、铸造的实质、特点与应用铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A适应性大(铸件重量、合金种类、零件形状都不受限制);B成本低C工序多,质量不稳定,废品率高D力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。
二、铸造工艺基础1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。
它由晶核的形成和长大两部分组成。
通常情况下,铸件的结晶有如下特点:A以非均质形核为主B以枝状晶方式生长为主。
结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。
晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。
(2)铸件的凝固方式逐渐的凝固方式有三种类型:A逐层凝固 B糊状凝固 C中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。
对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。
材料成型知识点归纳总结
材料成型知识点归纳总结一、焊接部分1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。
实质――金属原子间的结合。
2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。
3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。
与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。
5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。
电极可以是焊条、钨极和碳棒。
用直流电焊机时有正接法和反接法.6.引弧方式接触短路引弧高频高压引弧7.常见接头形式:对接搭接角接 T型接头8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。
2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。
3、进行脱氧和脱磷。
9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类 10.焊缝由熔池金属结晶而成。
冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。
11.热影响区的组织过热区正火区部分相变区熔合区12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。
13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。
2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。
3.碳素钢、低合金结构钢构件,用焊后正火消除。
4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。
材料成形技术基础(第二版)知识点总结
合金的收缩三个阶段:液态收缩、凝固收缩、固态收缩定向(顺序)凝固:在可能出现缩孔的厚大部位安放冒口,并同时采取其他措施,先使铸件上远离冒口或浇注部位凝固,然后使靠近冒口部位凝固,最后冒口本身凝固。
使先凝固的收缩量由后凝固的液体补充,最后将缩孔转移至冒口中。
措施:合理安放冒口;在该厚大部位设置冷铁,以加快其冷却速度,使其最先凝固,以实现自下而上的顺序凝固。
同时凝固的原则:(1)减小铸件各部分间的温度差,使其均匀冷却。
(2)改善铸型和型芯的退让行;(3)去应力退火浇注位置的选择:1铸件上重要加工面或质量要求高的面或大平面,尽可能置于铸型的下部或处于侧立位置。
(防气孔、砂眼、夹渣、拱起或开裂等缺陷)3面积较大的薄壁部分置于铸型下部或使其垂直或倾斜。
(免浇不足和冷隔)4厚大部分置于铸型的顶部或侧面。
(补缩)5尽量减少型芯数量,且便于安放、固定分型面的选择:1选择分型面应考虑方便起模和简化造型:应选在最大截面处,尽量平直,尽可能减少分型面数目、活块数目和型芯的数目。
2尽可能将铸件的重要加工面或大部分加工面与加工基准面放在同一砂箱内,以保证其精度。
3应便于下芯、扣箱(合型)及检查型腔尺寸等操作,尽量使型腔和主要型芯位于下箱。
铸造工艺参数的确定:机械加工余量和最小铸出孔槽、起模斜度、收缩率、型芯及芯头铸件结构工艺过程简化:1外形结构力求简单(避免外侧侧凹,减少分型面;使铸件分型面平直,避免圆角;加强肋、凸台的设计应便于起模;侧壁应具有斜度)2铸件的内腔结构应简单实用,避免不必要的复杂结构(应尽量少用或不用型芯;应便于型芯的固定、排气、定位和清理)熔模铸造:制造蜡模、制造型壳、脱蜡、型壳焙烧、浇注、脱壳清理金属型铸造:1铸型排气(型腔上设排气孔、通气塞,分型面开通气槽)2铸型涂料(金属性与高温金属液接触面喷刷耐火涂料)3铸型预热压力铸造:不能进行热处理离心铸造:不用铸芯即可铸出中空回旋铸件、铸件组织致密、充型能力强、便于制造双金属铸件实型铸造:无分型面,无需起模,无分型面,无型芯;铸件尺寸精度高金属塑性:塑性和变形抗力综合衡量塑性变形规律:最小阻力定律,加工硬化,体积不变定律自由锻:(是大型锻件的唯一加工方法,锻件形状简单精度低)镦粗、拔长、冲孔、弯曲、扭转、错移、切割绘制锻件图因素:敷料、锻件余量、锻件公差自由锻件的结构工艺性:尽量避免锥体或斜面结构、避免交接处形成空间曲线、避免加强筋、凸台、工字形、椭圆形或其他非规则截面及外形、合理采用组合结构模膛:制坯模膛(拔长、滚挤、弯曲),模锻模膛(预锻、终锻)绘制模锻件图:1分模面(顺利取出锻件,通常选最大截面。
材料成形技术基础知识点总结
材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。
常见的成形方法包括压力成形、热成形、热力复合成形等。
不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。
2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。
常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。
这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。
3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。
常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。
热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。
4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。
常见的热力复合成形技术包括焊接、热压焊、热胶合等。
这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。
5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。
工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。
工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。
6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。
工具设计包括毛坯设计、凸模设计、模具结构设计等。
材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。
7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。
常用的监测和控制技术包括传感器、自动控制系统等。
这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。
材料成型基本原理知识点总结
材料成型基本原理知识点总结1. 引言材料成型是指通过对原材料进行加工和塑形,使其获得特定的形状和性能。
材料成型在工业生产中起着至关重要的作用。
本文将介绍材料成型的基本原理及常见的成型方法,帮助读者对材料成型过程有更深入的了解。
2. 塑性变形塑性变形是材料成型的基本原理之一。
在塑性变形过程中,材料会受到外力的作用,原子、分子和晶粒发生移动和重排,从而改变材料的形状。
塑性变形的主要特点是可逆性,即材料在去除外力后可以恢复原来的形状。
常见的塑性变形过程包括挤压、拉伸、压延和锻造等。
挤压是将材料通过模具挤压成所需形状的过程。
拉伸是将材料拉长并变细的过程。
压延是将材料通过辊压变薄的过程。
锻造是通过对材料施加冲击力使其变形成所需形状的过程。
塑性变形的成功与否取决于材料的塑性性能、变形条件和成型方法等因素。
3. 热变形热变形是利用材料在高温条件下的塑性变形特性进行成型的一种方法。
通过加热材料可以降低其流动应力,有利于成型过程中的塑性变形。
常见的热变形方法包括热挤压、热拉伸、热轧和热锻等。
热挤压是将加热至一定温度的材料通过模具挤压成所需形状的过程。
热拉伸是将加热至一定温度的材料拉伸成所需形状的过程。
热轧是将加热至一定温度的材料通过辊压变薄的过程。
热锻是将材料加热至一定温度并施加冲击力使其变形成所需形状的过程。
热变形的优点是可降低变形应力、改善材料的塑性、提高成形精度。
但是,热变形过程中需注意控制温度和冷却速度,以避免材料过热或过冷引起材料性能的改变。
4. 化学变形化学变形是指在化学反应过程中,材料的形状和结构发生变化。
化学变形常见的方法有溶胶-凝胶法、沉积法和电化学沉积等。
溶胶-凝胶法是通过将溶胶溶液中的成分凝胶化,使其形成固体凝胶。
固体凝胶可以通过进一步的热处理或压制成所需的形状。
沉积法是将溶液中的溶质通过化学反应沉积在衬底上形成薄膜或形状。
电化学沉积是利用电化学反应使溶液中的溶质在电极表面沉积成薄膜或形状。
《材料成型》基础知识点
《材料成型》基础知识点《材料成型》基础知识点1.简述铸造生产中改善合金充型能力的主要措施。
(1)适当提高浇注温度。
(2)保证适当的充型压力。
(3)使用蓄热能力弱的造型材料。
如砂型。
(4)预热铸型。
(5)使铸型具有良好的透气性。
2.简述缩孔产生的原因及防止措施。
凝固温度区间小的合金充满型腔后,由于逐层凝固,铸件表层迅速凝固成一硬壳层,而内部液体温度较高。
随温度下降,凝固层加厚,内部剩余液体由于液态收缩和补充凝固层的凝固收缩,体积减小,液面下降,铸件内部产生空隙,形成缩孔。
措施:(1)使铸件实现“定向凝固”,按放冒口。
(2)合理使用冷铁。
3.简述缩松产生的原因及防止措施。
出现在呈糊状凝固方式的合金中或断面较大的铸件中,被树枝状晶体分隔开的液体区难以得到补缩所致。
措施:(1)、尽量选用凝固区域小的合金或共晶合金。
(2)、增大铸件的冷却速度,使铸件以逐层凝固方式进行凝固。
(3)、加大结晶压力。
(不清楚)4.缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?缩孔和缩松使铸件的有效承载面积减少,且在孔洞部位易产生应力集中,使铸件力学性能下降;缩孔和缩松使铸件的气密性、物理性能和化学性能下降。
缩孔可以采用顺序凝固通过安放冒口,将缩孔转移到冒口之中,最后将冒口切除,就可以获得致密的铸件。
而铸件产生缩松时,由于发达的树枝晶布满了整个截面而使冒口的补缩通道受阻,因此即使采用顺序凝固安放冒口也很无法消除。
5.什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合?定向凝固就是在铸件上可能出现缩孔的厚大部位安放冒口,使铸件上远离冒口的部位先凝固然后是靠近冒口的部位凝固,最后才是冒口本身的凝固。
同时凝固,就是采取必要的工艺措施,使铸件各部分冷却速度尽量一致。
实现定向凝固的措施是:设置冒口;合理使用冷铁。
它广泛应用于收缩大或壁厚差较大的易产生缩孔的铸件,如铸钢、高强度铸铁和可锻铸铁等。
工程材料与成型技术基础复习总结重点
工程材料与成型技术基础1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。
2.工程上常用的强度指标有屈服强度和抗拉强度。
3.弹性模量即引起单位弹性变形所需的应力。
4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。
5.产生塑性变形而不断裂的性能称为塑性。
6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。
7.发生塑性变形而力不增加时的应力称为屈服强度。
8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。
9.硬度是检验材料性能是否合格的基本依据之一。
10.11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。
12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。
13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。
14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。
熔点。
16.晶格:表示金属内部原子排列规律的抽象的空间格子。
晶面:晶格中各种方位的原子面。
晶胞:构成晶格的最基本几何单元。
17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。
面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。
密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。
18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。
19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。
20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。
21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。
结晶过程由形成晶核和晶核长大两个阶段组成。
22.纯结晶是在恒温下进行的。
23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。
材料成形技术基础第一章重点知识点
第一章金属的液态成形技术1、金属液态成形有液态浇注、液态冲压和液态模锻等。
2、铸造成形(即液态浇注)的优点:1)可获得形状复杂的零件毛坯,如:发动机机体、机床箱体和床身、燃气轮机的蜗轮片、复杂工艺品等。
2)适应性广。
各种金属、铸件均可铸造;3)成本低。
所用原材料来源广,价格低,可回收利用;4)机械切削加工量少。
因为铸件的尺寸和形状与零件非常接近。
一、金属液态成形原理主要指金属的铸造性能。
金属的铸造性能包括金属的流动性、充型能力、收缩、偏析、吸气性等。
(一)金属的流动性1、定义:指金属液本身的流动性。
2、影响因素:金属种类、化学成分、凝固方式3、锰和硫会形成高熔点夹杂物,降低金属流动性。
磷形成低熔点夹杂物,提高金属流动性。
(二)金属的充型能力1、定义:金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。
2、影响因素:金属流动性、浇注条件、铸型条件。
1)金属流动性:流动性越好,充型能力越强;否则会浇不足、冷隔。
2)浇注条件:①浇注温度(正比;温度过高会使吸气量和总收缩量增大,易产生气孔、缩孔)②充型压力:液态金属在流动方向上所受到的压力。
(正比,压力铸造和离心铸造可增加充型压力)3)铸型条件:包括铸型材料、结构、其中气体含量。
3、“高温出炉,低温回炉”的原理:高温出炉可以使一些难熔的固体质点熔化;低温浇注能使一些尚未熔化的质点及气体在浇包镇静阶段有机会上浮而使铁水净化,从而提高金属流动性。
(三)收缩1、定义:金属由液态向固态的冷却中,其体积和尺寸减小的现象。
2、包括液态收缩(缩孔——顺序凝固原则)和凝固收缩(缩松)、固态收缩(内应力,有变形和裂纹)。
体积收缩线收缩同时凝固原则3、影响因素:化学成分、浇注温度、铸件结构、铸型条件。
4、缩孔:液态金属充满铸型后,铸件在凝固过程中由于补缩不良而产生的洞孔。
✓预防缩孔措施:遵循“顺序凝固”原则,即在造型工艺上人为地设置冒口、冷铁,按照一定的冷却顺序,使缩孔移到铸件的外面或消失。
材料成型技术基础知识点
第一章铸造1 铸造通常是将液态金属浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,以获得毛坯或零件的生产方法。
2 铸造的特点(1)较强的适应性(铸件形状、质量、尺寸、材料不受限制)(2)良好的经济性(3)铸件力学性能较差、质量不够稳定(4)铸造生产条件和环境差(铸造生产过程中、混沙、造型、清沙过程中产生大量的粉尘,熔炼浇注温度很高,铸造过程中还有大量的烟雾、刺激性气体产生,工人劳动强度很大)3 铸件被广泛应用于国防军工、航空航天、矿山冶金、交通运输工具、石化通用设备、农业机械、建筑机械等领域。
4 液态金属的充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力5 影响充型能力的主要因素有:液态金属的流动性、铸型性质、浇注条件以及铸件结构等6 金属的凝固方式:逐层凝固、体积凝固、中间凝固。
7 铸件在冷却过程中,体积和尺寸缩小的现象叫做收缩,收缩性是铸造合金固有的物理性质。
8 金属从液态冷却到室温,要经历三个相互联系的收缩阶段(1)液态收缩-----从浇注温度冷却至凝固开始温度之间的收缩(2)凝固收缩-----从凝固开始温度冷却至凝固结束温度之间的收缩(3)固体收缩-----从凝固完毕时的温度冷却至室温之间的收缩9 影响铸件收缩的主要因素有:化学成分、浇注温度、铸件结构、铸型条件等。
10 铸造的内应力分为:热应力、相变应力、收缩应力。
(1)热应力是铸件在凝固和冷却过程中,不同部位由于收缩不均衡而引起的应力(2)相变应力是由于固态相变,各部分体积发生不均衡变化引起的应力(3)收缩应力是由于铸型、型芯等阻碍铸件的收缩产生的应力,收缩应力一般使铸件产生拉伸或剪切应力。
11热裂是在铸件凝固末期高温下形成的裂纹;12冷裂是铸件在低温时形成的裂纹。
13防止冷裂和热裂的主要方法是减小铸造内应力。
14灰口铸铁的性能特点:熔点较低,凝固温度范围小,流动性好,凝固收缩小,具有良好的铸造性能,综合机械性能低,抗压强度比抗拉强度高3-4倍。
材料成型技术基础总复习知识点归纳
材料成型技术基础总复习知识点归纳二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。
2.铸造方法:砂型铸造(手工造型)及两箱造型。
3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。
参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变)3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力(避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图(余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸(首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。
材料成型技术基础
材料成型技术基础一填空1.凝固组织就宏观状态而言,指的是铸态晶粒的形态,大小,取向和分布等情况;2.合金的结晶温度范围愈小(大),凝固区域愈窄(宽),愈倾向于逐层凝固(糊状凝固)。
3.具有逐层凝固倾向的合金有灰铸铁,吕硅合金易于制造,尽量选用。
当必须采用糊状凝固倾向的合金有锡青铜,球墨铸铁。
4.铸型有关的因素,铸型的蓄热能力,铸型温度,铸型中的气体,铸件结构。
5.通常以体收缩来表示体积收缩,它们是铸件产生缩孔,缩松缺陷的基本原因。
用线收缩表示固态收缩尺寸变化。
固态收缩是铸件产生内应力,裂纹和变形等缺陷的主要原因。
6.缩孔通常隐藏在铸件上部或最后凝固部位。
7.合金的浇注温度愈高,液态收缩愈大,愈易形成缩孔。
结晶温度范围宽的合金,倾向于糊状凝固,易形成缩松。
8.铸件各部分由于冷却速度的不同,收缩量的不同而引起的阻碍称热阻碍,铸型,型芯对铸件收缩的阻碍称机械阻碍。
由热阻碍引起的应力称热应力,由机械阻碍引起的应力称收缩应力。
9.当残留铸造应力超过铸件材料的屈服强度极限时,铸件将发生塑性变形。
当铸造应力超过材料的抗拉强度时,铸件产生裂纹。
10.塑性差的合金较易产生冷裂,塑性好的合金因内应力可通过其塑性变形来自行缓解,冷裂倾向小,铸钢中的含磷量愈高,冷裂倾向愈大。
11.整模造型适合最大截面位于一端并且为平面的简单铸件的单件,小批量生产。
刮板造型主要用于等截面或回转体大,中型铸件的单件,小批量生产,如大皮带轮,铸管等。
两箱铸造是造型的基本方法,适用于各种铸型,各种批量。
12.熔模铸造适用于燃汽轮机叶片,切削刀具。
13.金属型铸造铸造小汽车发动机活塞。
14.形状复杂的大型铸铁件选用实型铸造。
15.一次塑性加工是冶金工业中生产板料,型材,管材,线材等加工方法。
16.碳素钢轴类锻件锻造比2.0—2.517.蒸汽—空气锤采用蒸汽或压缩空气作为动力,其规格1—5t,可以来锻造1500kg以下的锻件。
目前大型水压机可达万吨以上,能锻造100t的钢锭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料成形技术基础第一章1-1一、铸造的实质、特点与应用铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A适应性大(铸件重量、合金种类、零件形状都不受限制);B成本低C工序多,质量不稳定,废品率高D力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。
二、铸造工艺基础1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。
它由晶核的形成和长大两部分组成。
通常情况下,铸件的结晶有如下特点:A以非均质形核为主B以枝状晶方式生长为主。
结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。
晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。
(2)铸件的凝固方式逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。
对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。
具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断面,发达的枝状晶彼此相互交错而把尚未结晶的金属液分割成许多小而分散的封闭区域,当该区域内的金属液凝固时,收缩得不到外来金属液的补偿,而形成了分散的小缩孔,即缩松。
这类合金即采用顺序凝固加冒口的措施也无法彻底消除缩松缺陷。
因此,对于气密性要求不高,而要求内应力小的场合可采用同时凝固措施来满足要求。
B 铸件内应力主要是由于铸件在固态下的收缩受阻而英气的。
这些阻碍包括机械阻碍和热阻碍。
热应力与铸件结构有关。
壁厚不均铸件,冷却过程中各部分冷速不一,薄壁部分有趣冷速快,率先从塑性变形阶段进入弹性变形阶段,此时,由于厚壁部分仍处于塑性变形收缩时,由于这两部分为一整体,厚壁部分的弹性收缩必然收到薄壁部分对它的拉应力,而薄壁部分则收到相反的力——压应力,。
因此,必须尽力那个使铸件壁厚均匀,避免金属局部积聚,以减小热应力。
铸件的内应力将导致铸件变形,甚至开裂。
1-2铸造方法铸造按工艺方法分为砂型铸造和特种铸造砂型铸造1、砂型铸造的特点:(1)生产周期短,产品成本低;(2)产品批量、大小不受限制;(3)劳动强度大,劳动条件较差;(4)铸件质量不稳定,易产生缺陷。
常用砂型主要特点及适用范围2、常用的造型方法按使用的工具不同,分为手工造型和机器造型。
(1)手工造型:指全部用手工或手动工具完成的造型工序1)特点:操作灵活,适应性强,成本低,生产准备时间短,铸件质量差,劳动强度大,生产率低。
2)应用:单件、小批量生产,各种大、小型铸件。
3)手工造型分类(2)机器造型指用机器完成全部或至少完成紧砂操作的造型工序。
1)特点:①提高了生产率,铸件尺寸精度较高;②节约金属,降低成本;③改善了劳动条件;④设备投资较大。
2)应用:成批、大量生产各类铸件。
3)机械造型方法①震压造型:先震击紧实,再用较低的比压(0.15-0.4MPa )压实。
紧实效果好,噪音大,生产率不够高。
②微震压实造型:对型砂压实的同时进行微震。
紧实度高、均匀,生产率高,噪音仍较大。
③高压造型:用较高的比压(0.7-1.5MPa)紧实型砂。
紧实度高,噪音小,灰尘少,生产率高,但设备造价高。
④抛砂造型:利用离心力抛出型砂,完成填砂和紧实。
紧实度均匀,噪音小;但生产率低。
特种铸造一.特种铸造:是指与砂型铸造有显著区别的一些铸造方法。
例如:熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造、陶瓷型铸造、壳型铸造和连续铸造等。
二.特点:(1)不用砂或少用砂,改善了劳动条件,减轻了劳动强度。
(2)铸件精度较高、性能较好。
(3)生产率高,工艺简单。
(4)成本高,生产周期长,在工艺上和应用上各有一定的局限性。
三.分类:1、金属型铸造(1)金属型铸造:将金属液浇入金属铸型获得铸件的方法。
(2)特点:1)铸件力学性能比砂型铸件高。
2)铸件精度和表面质量好。
3)可节约金属,生产率较高。
4)不用砂或少用砂,改善了劳动条件。
5)铸件成本高,易产生浇不足、开裂等缺陷。
6)铸造工艺要求严格。
(3)应用:主要用于有色金属件的大批量生产。
例如:铝活塞、汽缸体等。
(4)金属型的结构:1)整体型; 2)水平分型;3)垂直分型;4)综合分型。
(5)工艺特点:1)金属型要预热2)喷刷涂料3)及时开型取件2.压力铸造(1)压力铸造:指熔融金属在高压下快速压入型腔,并在压力下结晶,获得铸件的方法。
(2)应用:主要用于大量生产非铁合金中、小型铸件。
(铝合金、锌合金等)例如:汽缸体、化油器、离合器等。
(3)压力铸造的特点1)铸件尺寸精度高,表面质量好;2)铸件力学性能好;3)可压铸形状复杂的薄壁铸件;4)可嵌铸其它材料,节省贵重材料;5)生产率高,易于实现机械化和自动化;6)铸件料质受限制;7)设备投资大,不宜小批量生产;8)压铸件不能进行大余量的机械加工和热处理。
(压铸件易产生小气孔)3.低压铸造(1)低压铸造:将合金液在压力下由铸型底部注入型腔,并在压力(60-150kPa)下结晶,获得铸件的方法。
(2)应用:铝、镁合金中、小型件的成批大量生产。
例如:汽缸体、缸盖、活塞等。
(3)低压铸造的特点1)充型压力和速度便于控制;2)铸件组织致密,力学性能高;3)铸件形状可较复杂,精度较高;4)金属利用率高,一般在90%以上;5)但升液管寿命较短,生产率低于压力铸造。
4.离心铸造(1)离心铸造:将金属液浇入高速旋转的铸型中,在离心力的作用下凝固成铸件的方法。
(2)应用:主要用于大批量生产空心回转体铸件。
例如:铸铁管、汽缸套、铜套等。
(3)离心铸造的特点1)简化了套筒、管类铸件的生产过程;2)离心铸件力学性能高,缺陷较少;3)可生产流动性较差的薄壁及双金属铸件;4)铸件的形状和尺寸受限制;5)内表面粗糙,易产生偏析;6)设备投资大,不宜单件、小批量生产。
5.熔模铸造(1)熔模铸造:即用易熔材料制成模样,用造型材料将其包覆,制成型壳,熔出模样,经高温焙烧,浇注获得铸件的方法。
(2)熔模铸造的特点1)铸件精度和表面质量较高。
2)可以铸造形状复杂的薄壁铸件。
3)生产批量不受限制。
4)原材料价格贵,铸件成本高。
5)工艺过程繁杂,生产周期长。
6)铸件尺寸不能太大,质量一般小于25Kg。
(3)应用:各种铸造合金,特别适于高熔点、难加工合金的小型铸件的成批、大量生产。
1-3铸造工艺设计铸造工艺设计是根据铸件结构特点、技术要求、生产批量、生产条件等,确定铸造方案和工艺参数,绘制图样和标注符号,编制工艺卡和工艺规范等。
一、铸件浇注位置和分型面的选择1、浇注位置的选择1)铸件的重要加工面应朝下或位于侧面2)铸件宽大平面应朝下3)面积较大的薄壁部分应置于铸型下部或垂直、倾斜位置4)易形成缩孔的铸件,应将截面较厚的部分置于上部或侧面,便于安放冒口,使铸件自下而上定向凝固5)应尽量减少型芯的数量,且便于安放、固定和排气2、铸型分型面的选择1)便于起膜,使造型工艺简化2)尽量将铸件重要加工面或大部分加工面、加工基准面放在同一个砂箱中3)使型腔和主要芯位于下箱,便于下芯、合型和检查型腔尺寸二、铸造工艺参数确定包括:收缩余量、加工余量、起膜斜度、铸造圆角及芯头、芯座等。
三、铸造工艺简图绘制1、铸造工艺符号及表示方法2、典型零件工艺分析1-4铸件结构工艺性一:合金铸造性能对铸件结构的要求铸件的结构如果不能满足合金铸造的性能要求,将可能产生浇不足、冷隔、缩孔、气孔、裂纹和变形等缺陷。
防止这些缺陷的方法包括设计合理的铸件壁厚、设计铸件加强筋、铸件结构尽量减小收缩受阻、铸件结构避免过大水平壁、注意不同铸造合金对铸件结构的要求。
设计合理壁厚:a,铸件壁厚应合理,每种铸造合金都有其适宜的铸件壁厚要求; b, 铸件壁厚应当均匀,防止壁厚相差过大凝固时产生缩孔、缩孔,此外冷却速度不均会产生热应力致使裂纹;c,铸件壁的链接,①结构圆角,壁间转角处设计出结构圆角②厚壁与薄壁间的连续要逐步过渡③避免十字交叉和锐角相连接设计铸件加强筋:筋可以增加铸件的刚度和强度防止铸件变形,减小铸件壁厚,防止铸件产生缩孔和裂纹。
(注:铸件结构内容比较重要,特别是P36-39的设计图,各种铸造合金的性能结构特点参照P30的表格)二:铸造工艺对结构的要求1 铸件外形的设计 a,避免外部的侧凹,减少分型面或外部型芯;b,分型面应当平直;c,凸台和筋的设计应便于造型和起模;d,铸件的垂直壁上应当给出结构斜度2 铸件内腔的设计 a,不用或者少用型芯;b,使型芯安放稳定、排气通畅、清理方便三:铸造方法对铸件结构的要求(了解)1-5铸造技术的发展趋势计算机的应用1.计算机辅助工艺设计(CAPP):(1)模拟:充型过程流动场、温度场、应力场等。
(2)优化设计:浇注位置、浇冒口系统等。
2.铸造过程的自动控制于检测监控:(1)型砂性能及砂处理过程;(2)炉料配比及熔炼质量;(3)铸型性能及造型线工作状况等。
先进制造技术的应用1.精密铸造技术⏹高压造型、气冲造型、自硬砂造型等高紧实度砂型铸造以及压铸、熔模铸造、实型铸造等特种铸造技术。
⏹压铸和实型铸造发展迅速,压住机正趋于大型化,轿车车门已能整体铸出。
⏹实型铸造在生产近无余量、形状复杂的铸件以及绿色生产方面的优越性已逐步显现。
2. 快速成形技术即采用激光固化、激光烧结或熔化沉积等多种方式,将树脂、塑料、蜡或金属等材料快速叠加获得制品的成形技术。
该技术在铸造生产中已用于生产蜡模、铸型、型壳、型芯等。
金属熔炼1.大型冲天炉:向着热风、水冷、大吨位、连续熔炼的方向发展。
2.小型冲天炉:向着进一步提高铁液质量的方向发展,主要是强化送风,加氧送风和脱湿送风等措施。