高三一轮复习1.1集合的概念与运算教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§集合的概念与运算

【2014高考会这样考】 1.考查集合中元素的互异性,以集合中含参数的元素为背景,探求参数的值;2.求几个集合的交、并、补集;3.通过集合中的新定义问题考查创新能力.

【复习备考要这样做】 1.注意分类讨论,重视空集的特殊性;2.会利用Venn图、数轴等工具对集合进行运算;3.重视对集合中新定义问题的理解.

1.集合与元素

(1)集合元素的三个特征:确定性、互异性、无序性.

(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.

(3)集合的表示法:列举法、描述法、图示法.

(4)常见数集的记法

2.

(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).

(2)真子集:若A⊆B,且A≠B,则A⊂B(或B⊃A).

(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅⊂B(B≠∅).

(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.

(5)集合相等:若A⊆B,且B⊆A,则A=B.

3.集合的运算

4.

并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.

交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.

补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.

[难点正本疑点清源]

1.正确理解集合的概念

正确理解集合的有关概念,特别是集合中元素的三个特征,尤其是“确定性和互异性”在解题中要注意运用.在解决含参数问题时,要注意检验,否则很可能会因为不满足“互异性”而导致结论错误.

2.注意空集的特殊性

空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A⊆B,则需考虑A=∅和A≠∅两种可能的情况.

3.正确区分∅,{0},{∅}

∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.∅⊆{0},∅⊆{∅},∅∈{∅},{0}∩{∅}=∅.

题型一 集合的基本概念

例1

(1)

下列集合中表示同一集合的是 ( B ) A .M ={(3,2)},N ={(2,3)} B .M ={2,3},N ={3,2}

C .M ={(x ,y)|x +y =1},N ={y|x +y =1}

D .M ={2,3},N ={(2,3)} 例如:

(2)设a ,b∈R ,集合{1,a +b ,a}=⎩

⎨⎧⎭⎬⎫

0,b a ,b ,则b -a =___2_.

思维启迪:解决集合问题首先要考虑集合的“三性”:确定性、互异性、无序性,理解集合中元素的特征. 解析 (1)选项A 中的集合M 表示由点(3,2)所组成的单点集,集合N 表示由点(2,3)所组成的单点集,故集合M 与N 不是同一个集合.选项C 中的集合M 表示由直线x +y =1上的所有的点组成的集合,集合N 表示由直线x +y =1上的所有的点的纵坐标组成的集合,即N ={y|x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 有两个元素,而集合N 只含有一个元素,故集合M 与N 不是同一个集合.对选项

B ,由集合元素的无序性,可知M ,N 表示同一个集合.

(2)因为{1,a +b ,a}=⎩

⎨⎧⎭⎬⎫

0,b a ,b ,a≠0,

所以a +b =0,得b

a =-1,

所以a =-1,b =1.所以b -a =2.

探究提高 (1)用描述法表示集合时要把握元素的特征,分清点集、数集;(2)要特别注意集合中元素的互异性,在解题过程中最容易被忽视,因此要对计算结果进行检验,防止所得结果违背集合中元素的互异性.

若集合A ={x|ax 2

-3x +2=0}的子集只有两个,则实数a

= 0或98

_.

解析 ∵集合A 的子集只有两个,∴A 中只有一个元素. 当a =0时,x =2

3

符合要求.

当a≠0时,Δ=(-3)2

-4a×2=0,∴a=98.故a =0或98.

题型二 集合间的基本关系

例2

已知

集合A ={x|-2≤x≤7},B ={x|m +1

则⎩⎪⎨⎪

m +1≥-22m -1≤7m +1<2m -1

,解得2

综上,m 的取值范围为m≤4.

变式:(1)集合A 与B 中的等号问题,(四种情况:两开两闭,一开一闭) (2)集合A 与B 的关系。例如:,,A B A B A B ⊂⋂=∅⋂≠∅等

探究提高 (1)集合中元素的互异性,可以作为解题的依据和突破口;(2)对于数集关系问题,往往利用数轴进行分析;(3)对含参数的方程或不等式求解,要对参数进行分类讨论.

已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=_4___.

解析由log2x≤2,得0

即A={x|0

而B=(-∞,a),

由于A⊆B,如图所示,则a>4,即c=4.

变式:集合A与B的关系。

题型三集合的基本运算

相关文档
最新文档