51单片机中断号

合集下载

51单片机的中断优先级及中断嵌套

51单片机的中断优先级及中断嵌套

51 单片机的中断优先级及中断嵌套
说最基本的,老的51 单片机(80C51 系列)有5 个中断源,2 个优先级,
可以实现二级中断服务嵌套。

现在很多扩展的51 单片机已经有4 个优先级(或更多)和更多的中断源了。

在说到中断之前,我先来定义一下优先级,明白了什幺是优先级,后面的阐述就容易明白了。

实际上很多人都是混淆了优先级的含义,所以才觉得糊里糊涂。

中断的优先级有两个:查询优先级和执行优先级。

什幺是查询优级呢?我们从datasheet 或书上看到的默认(IP 寄存器不做设
置,上电复位后为00H)的优先级:
外部中断0 > 定时/计数器0 > 外部中断1 > 定时/计数器1 > 串行中断
或int0,timer0,int1,timer1,serial port 或INT0、T0、INT1、T1、UART
或PX0>PT0>PX1>PT1>PS>......
其实都是查询优级。

首先查询优先级是不可以更改和设置的。

这是一个中断优先权排队的问题。

是指多个中断源同时产生中断信号时,中断仲裁器选择对哪个中断源优先处理的顺序。

而这与是否发生中断服务程序的嵌套毫不。

MCS-51单片机的中断系统

MCS-51单片机的中断系统

MCS-51单⽚机的中断系统单⽚机中断技术概述在任何⼀款事件驱动型的CPU⾥⾯都应该会有中断系统,因为中断就是为响应某种事件⽽存在的。

中断的灵活应⽤不仅能够实现想要的功能,⽽且合理的中断安排可以提⾼事件执⾏的效率,因此中断在单⽚机应⽤中的地位是⾮常重要的。

单⽚机中断(Interrupt)是硬件驱动事件,它使得CPU暂停当前的主程序,转⽽去执⾏⼀个中断服务⼦程序。

为了更形象地理解中断,下⾯以学⽣上⾃习时接电话为例阐述⼀下中断的概念。

单⽚机的中断系统有5个中断源、2个中断优先级,可实现两级中断服务程序嵌套。

如果单⽚机没有中断系统,单⽚机的⼤量时间可能会浪费在查询是否有服务请求发⽣的定时査询操作上。

采⽤中断技术完全消除了单⽚机在査询⽅式中的等待现象,⼤⼤地提⾼了单⽚机的⼯作效率和实时性。

单⽚机中断系统结构及中断控制中断系统结构图如图5-2所⽰。

由图5-2可见,MCS-51中断系统共有5个中断请求源:INT0——外部中断请求0,中断请求信号由INT0引脚输⼊。

定时/计数器T0计数溢出发出的中断请求。

INT1——外部中断请求1,中断请求信号由INT1引脚输⼊。

定时/计数器T1计数溢出发出的中断请求。

串⾏⼝中断请求。

中断优先级从⾼到底排列。

单⽚机如何知道有中断请求信号?是否能够响应该中断?若5个中断源请求信号同时到来,单⽚机如何响应?这些问题都可以由中断寄存器来解决。

单⽚机中断寄存器有中断标志寄存器TCON和SCON、中断使能寄存器IE和中断优先级寄存器IP,这些寄存器均为8位。

中断标志寄存器5个中断请求源的中断请求标志分别由TCON和SCON的相应位锁存,单⽚机通过这些中断标志位的状态便能知道具体是哪个中断源正在申请中断。

TCON寄存器TCON寄存器为定时/计数器的控制寄存器,字节地址为88H,可位寻址。

特殊功能寄存器TCON的格式如图5-3所⽰。

TCON各标志位功能如下。

TF1——定时/计数器T1的溢出中断请求标志位。

c51中interrupt关键字的作用

c51中interrupt关键字的作用

c51中interrupt关键字的作用C51中interrupt关键字的作用C51是一种经典的单片机开发工具,具有广泛的应用范围。

在C51中,interrupt关键字起着非常重要的作用,它用于定义中断服务函数,实现单片机的中断功能。

本文将详细介绍C51中interrupt 关键字的作用及其应用。

一、中断的概念及作用在单片机系统中,中断是指由硬件或软件触发的一种特殊事件,它可以打断程序的正常执行流程,转而执行一段预定义的中断服务函数。

中断的作用在于实现对特定事件的及时响应,提高系统的实时性和可靠性。

二、中断的分类在C51中,中断可以分为外部中断和定时器中断两种。

1. 外部中断:C51单片机通常具有多个外部中断引脚,当外部中断引脚的电平发生变化时,会触发相应的中断事件。

外部中断常用于实现对外部事件的响应,如按键输入、传感器信号等。

2. 定时器中断:C51单片机通常具有多个定时器模块,定时器中断可以根据计时器的设定时间周期性地触发中断事件。

定时器中断常用于实现定时任务,如周期性的数据采集、数据发送等。

三、使用interrupt关键字定义中断服务函数为了实现中断功能,C51提供了interrupt关键字,用于定义中断服务函数。

使用interrupt关键字定义的函数,会在相应的中断事件发生时自动被调用。

下面是使用interrupt关键字定义外部中断服务函数的示例代码:```c#include <reg51.h>void ExternalInterrupt() interrupt 0{// 中断服务函数的代码}void main(){// 主函数的代码}```在上述示例代码中,使用interrupt关键字定义了一个外部中断服务函数ExternalInterrupt,并使用interrupt 0指定了它对应的中断号。

当外部中断0事件发生时,该中断服务函数会被自动调用。

类似地,使用interrupt关键字定义定时器中断服务函数的示例代码如下:```c#include <reg51.h>void TimerInterrupt() interrupt 1{// 中断服务函数的代码}void main(){// 主函数的代码}```在上述示例代码中,使用interrupt关键字定义了一个定时器中断服务函数TimerInterrupt,并使用interrupt 1指定了它对应的中断号。

51单片机汇编中断程序调用子程序

51单片机汇编中断程序调用子程序

文章标题:深度解析:51单片机汇编中断程序调用子程序一、介绍在51单片机的汇编编程中,中断程序和子程序的调用是非常重要的内容。

本文将深入讨论51单片机汇编中断程序如何调用子程序的相关知识,帮助读者更加深入地理解这一主题。

二、51单片机汇编中断程序调用子程序的基本原理在51单片机中,中断是指在程序运行过程中,由硬件或者软件主动触发的一种事件,当中断发生时,CPU会立即暂停正在执行的程序,转而去执行与该中断相关的处理程序,当处理完毕后再返回原程序继续执行。

子程序则是一段独立的代码,可以被主程序或其他子程序调用执行。

中断程序调用子程序的基本原理是,当中断发生时,CPU会跳转到中断服务程序进行处理,在中断服务程序中可以调用需要的子程序进行处理,处理完毕后再返回中断服务程序,最终返回到原来的程序中继续执行。

三、中断程序调用子程序的具体实现方法1. 中断程序的编写首先需要编写中断程序,并向51单片机的中断向量表中注册相应的中断号。

在中断程序中,可以调用需要的子程序进行处理。

2. 子程序的编写编写需要被调用的子程序,并保证其能够正确地处理需要的任务。

子程序的调用和返回是通过特定的指令来实现的。

3. 调用和返回在中断程序中,通过特定的指令调用需要的子程序,等待子程序执行完成后再进行返回。

这里需要特别注意子程序调用的参数传递和返回值的处理。

四、中断程序调用子程序的实际应用中断程序调用子程序在实际应用中有着广泛的用途,比如在实时系统中,可以利用中断程序调用子程序来实现即时响应;在通信系统中,可以利用中断程序调用子程序来实现数据处理和通信协议的处理等。

五、个人观点和总结中断程序调用子程序是51单片机汇编编程中的重要内容,掌握了这一技术可以让我们更加灵活地进行程序设计和开发。

通过本文的深度解析,希望读者能够更加深入地理解和掌握这一知识,并在实际应用中发挥其作用。

完整的文章已经写好并按照知识的文章格式进行了排版,总字数超过3000字。

51单片机中断代码

51单片机中断代码

51单片机中断代码51单片机中断代码是在使用51单片机时经常会遇到的一个概念,它可以帮助我们实现一些特定的功能。

本文将介绍51单片机中断代码的基本原理和用法。

一、简介51单片机是一种广泛使用的单片机型号,它具有低成本、易学易用等特点,因此在嵌入式系统开发中得到了广泛应用。

中断是51单片机中的一个重要功能,通过中断,我们可以在程序运行的过程中,根据外部事件的发生来立即打断当前的程序流程执行特定的代码。

二、中断的原理在详细介绍51单片机中断代码之前,我们首先需要了解中断的原理。

中断是由外部事件触发的,当外部事件发生时,中断请求会被送到单片机的中断控制器,然后中断控制器会暂停当前正在执行的程序,并执行特定的中断服务程序。

中断服务程序会在中断处理完成后,恢复之前被暂停的程序继续执行。

三、中断的使用在51单片机中,我们可以通过设置相关的中断向量和中断服务程序来实现中断的功能。

下面是一个简单的例子,展示了如何在51单片机中使用中断代码。

首先,我们需要引入头文件,头文件中包含了51单片机的寄存器定义和中断相关的宏定义。

```c#include <reg51.h>```接下来,我们需要定义中断服务程序。

中断服务程序是一个函数,具有特定的命名规则和参数。

下面是一个简单的中断服务程序的例子,该例子演示了当外部中断触发时,LED灯会闪烁。

```cvoid interrupt_INT0() interrupt 0{P1 = 0xFF; // 将P1口设置为高电平delay(500); // 延时500毫秒P1 = 0x00; // 将P1口设置为低电平delay(500); // 延时500毫秒}```在上面的中断服务程序中,`interrupt_INT0()`是中断的名称,`interrupt 0`表示该中断是外部中断0。

我们可以根据需求设置外部中断的触发条件和中断优先级。

最后,我们需要在主函数中启用中断,并设置相应的中断向量。

51单片机interrupt用法

51单片机interrupt用法

51单片机interrupt用法1. 什么是51单片机interrupt?51单片机是一种常用的嵌入式微控制器,被广泛应用于各种电子设备中。

中断是一种特殊的处理机制,它允许单片机在执行某个任务的过程中,临时暂停当前的任务,去处理其他紧急事件。

这些紧急事件可以是来自外部设备的信号、计时器溢出等。

2. 为什么要使用interrupt?使用interrupt的好处是可以及时响应外部事件,提高系统的实时性和可靠性。

不使用interrupt的话,单片机只能按照预定的程序执行,无法即时响应外部事件,造成系统的延迟和不稳定。

3. 如何使用interrupt?首先,我们需要了解51单片机的interrupt架构。

51单片机有两个interrupt源,分别是外部中断和定时器/计数器中断。

外部中断:单片机的P3口(即引脚INT0和INT1)可以接收外部中断信号。

当INT0引脚检测到高电平脉冲时(可以通过软件设置为下降沿触发或低电平触发),单片机就会执行外部中断的相关程序。

INT1引脚类似。

定时器/计数器中断:单片机的定时器/计数器模块可以设置定时中断。

定时器可以根据一定的时钟源进行计数,当计数值达到预设值时,就会触发中断。

通过设置计数器的工作模式和计数初值,可以灵活控制定时中断的触发时间和频率。

对于外部中断,我们可以通过设置相应的中断控制寄存器来选择触发方式(下降沿触发、低电平触发等)。

然后,在主程序中需要响应外部中断的地方,我们可以编写一个中断服务程序(ISR),用来处理中断事件。

中断服务程序需要使用关键字”interrupt”进行声明,同时需要保存现场(将寄存器的值及其他关键状态保存在堆栈中),以便中断结束后能够正确恢复。

对于定时器/计数器中断,我们首先需要对定时器进行初始化设置,选择时钟源和工作模式。

然后,我们可以设置计数初值和中断触发时间。

当计数器达到预设值时,中断程序会被执行。

下面我们就来介绍一个常见应用案例:使用外部中断实现按键控制LED的亮灭。

51单片机中断程序大全

51单片机中断程序大全

//实例42:用定时器T0查询方式P2口8位控制LED闪烁#include<reg51.h> // 包含51单片机寄存器定义的头文件void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值{//实例43{// EA=1;//{while(TF1==0);TF1=0;sound=~sound; //将P3.7引脚输出电平取反TH1=(65536-921)/256; //定时器T0的高8位赋初值TL1=(65536-921)%256; //定时器T0的高8位赋初值}}//实例44:将计数器T0计数的结果送P1口8位LED显示#include<reg51.h> // 包含51单片机寄存器定义的头文件sbit S=P3^4; //将S位定义为P3.4引脚void main(void){// EA=1; //开总中断// ET0=1; //定时器T0中断允许TMOD=0x02; //使用定时器T0的模式2TH0=256-156; //定时器T0的高8位赋初值TL0=256-156; //定时器T0的高8位赋初值TR0=1; //启动定时器T0while(1)//无限循环等待查询{while(TF0==0) //如果未计满就等待{if(S==0) //按键S按下接地,电平为0P1=TL0; //计数器TL0加1后送P1口显示}//实例45{EA=1;{}//实例46#include<reg51.h> // 包含51单片机寄存器定义的头文件sbit D1=P2^0; //将D1位定义为P2.0引脚unsigned char Countor; //设置全局变量,储存定时器T0中断次数void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式2TH0=(65536-46083)/256; //定时器T0的高8位赋初值TL0=(65536-46083)%256; //定时器T0的高8位赋初值TR0=1; //启动定时器T0Countor=0; //从0开始累计中断次数while(1);}/************************************************************** 函数功能:定时器T0的中断服务程序**************************************************************/ void Time0(void) interrupt 1 using 0{Countor++; //中断次数自加1if(Countor==20) //若累计满20次,即计时满1s{D1=~D1; //按位取反操作,将P2.0引脚输出电平取反Countor=0; //将Countor清0,重新从0开始计数}//实例47{EA=1;}{Countor2++; //Countor2自加1if(Countor1==2) //若累计满2次,即计时满100ms{D1=~D1; //按位取反操作,将P2.0引脚输出电平取反Countor1=0; //将Countor1清0,重新从0开始计数}if(Countor2==8) //若累计满8次,即计时满400ms{D2=~D2; //按位取反操作,将P2.1引脚输出电平取反Countor2=0; //将Countor1清0,重新从0开始计数}TH1=(65536-46083)/256; //定时器T1的高8位重新赋初值TL1=(65536-46083)%256; //定时器T1的高8位重新赋初值}//实例50-1:输出50个矩形脉冲#include<reg51.h> //包含51单片机寄存器定义的头文件sbit u=P1^4; //将u位定义为P1.4/*************************************************函数功能:延时约30ms (3*100*100=30 000μs =30m*************************************************/void delay30ms(void){ unsigned char m,n;for(m=0;m<100;m++)for(n=0;n<100;n++);}{u=1;//实例{//实例51-2#include<reg51.h> //包含51单片机寄存器定义的头文件sbit ui=P3^2; //将ui位定义为P3.0(INT0)引脚,表示输入电压void main(void){TMOD=0x0a; // TMOD=0000 1010B,使用定时器T0的模式2,GATE置1 EA=1; //开总中断ET0=0; //不使用定时器T0的中断TR0=1; //启动T0TH0=0; //计数器T0高8位赋初值TL0=0; //计数器T0低8位赋初值while(1) //无限循环,不停地将TL0计数结果送P1口{while(ui==0) : //INT0为低电平,T0不能启动TL0=0; //INT0为高电平,启动T0计时,所以将TL0清0 while(ui==1): //在INT0高电平期间,等待,计时P1=TL0; //将计时结果送P1口显示} }//实例53:用外中断0的中断方式进行数据采集#include<reg51.h> //包含51单片机寄存器定义的头文件sbit S=P3^2; //将S位定义为P3.2,void main(void){EA=1; //开放总中断EX0=1; //允许使用外中断IT0=1; //选择负跳变来触发外中断P1=0xff;{P1=~P1;//实例54-1sbit u=P1^4;{EA=1;{u=~u; //}//实例54-2sbit u=P3^2;{TMOD=0x02; //TMOD=0000 0010B,使用定时器T0的模式2EA=1; //开放总中断EX0=1; //允许使用外中断IT0=1; //选择负跳变来触发外中断ET0=1; //允许定时器T0中断TH0=0; //定时器T0赋初值0TL0=0; //定时器T0赋初值0TR0=0; //先关闭T0while(1) ; //无限循环,不停检测输入负脉冲宽度}void int0(void) interrupt 0 using 0 //外中断0的中断编号为0{ TR0=1; //外中断一到来,即启动T0计时TL0=0; //从0开始计时while(u==0) //低电平时,等待T0计时;P1=TL0; //将结果送P1口显示TR0=0; //关闭T0}//实例55:方式0控制流水灯循环点亮#include<reg51.h> //包含51单片机寄存器定义的头文件#include<intrins.h> //包含函数_nop_()定义的头文件unsigned char code Tab[]={0xFE,0xFD,0xFB,0xF7,0xEF,0xDF,0xBF,0x7F};//流水灯控制码,该数组被定义为全局变量sbit P17=P1^7;/**************************************************************{{P17=0;_nop_();_nop_();P17=1;;TI=0; //}******************************************/void main(void){unsigned char i;SCON=0x00; //SCON=0000 0000B,使串行口工作于方式0while(1){for(i=0;i<8;i++){Send(Tab[i]); //发送数据delay(); //延时}}}。

51单片机的中断控制

51单片机的中断控制

AEH 0
ADH 0
ACH ES 0
ABH ET1
1
AAH EX1
0
A9H ET0
1
A8H EX0
0
用位操作指令
CLR ES CLR EX0 CLR EX1 SETB ET0 SETB ET1 SETB EA
; ES=0,禁止串行口中断 ; EX0=0,禁止外部中断0 ; EX1=0,禁止外部中断1 ; ET0=1,允许定时/计数中断0 ; ET1=1,允许定时/计数中断0 ; CPU开中断
TI SCON
IE EX0 EA ET0 EX1
ET1 ES
IP
PX0 1
0
PX1 1
0
PT0 1
0
PT1 1
0
PS 1
0

0003H 000BH 0013H 001BH 0023H
CPU
0003H 000BH 0013H 001BH 0023H

2. 51单片机的中断控制
中断的开放与禁止
51系列单片机的5个中断源都是可屏蔽中断,由中断系统内部的专用寄 存器IE负责控制各中断源的开放或屏蔽。
;EA位置 “1” ,CPU开中断 ;EX0位置 “1” ,允许外部中断0产生中断 ;PX1位置 “1” ,外部中断1为高级中断 ;IT1位置 “0” ,外部中断1为电平触发
3. 51单片机中断程序设计
采用中断的程序结构:
主程序起始地址0000H执行,在0000H处用无条件转移指令; 各中断入口地址,用无条件转移指令
IE A8H
7
6
EA
位地址
AF
5
4
3
2
1
0

51单片机中断系统详解

51单片机中断系统详解

51单片机中断系统详解51 单片机中断系统详解(定时器、计数器)51 单片机中断级别中断源INT0---外部中断0/P3.2 T0---定时器/计数器0 中断/P3.4 INT1---外部中断1/P3.3 T1----定时器/计数器1 中断/P3.5 TX/RX---串行口中断T2---定时器/计数器 2 中断第5 最低4 5 默认中断级别最高第2 第3 第4 序号(C 语言用) 0 1 2 3 intrrupt 0中断允许寄存器IE位序号符号位EA/0 ------ET2/1 ES ET1 EX1 ET0 EX0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 EA---全局中允许位。

EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。

EA=0,关闭全部中断。

-------,无效位。

ET2---定时器/计数器2 中断允许位。

ET2=1, 打开T2 中断。

ET2=0,关闭T2 中断。

关,。

ES---串行口中断允许位。

关,。

ES=1,打开串行口中断。

关,。

ES=0,关闭串行口中断。

关,。

ET1---定时器/计数器1 中断允许位。

关,。

ET1=1,打开T1 中断。

ET1=0,关闭T1 中断。

EX1---外部中断1 中断允许位。

EX1=1,打开外部中断1 中断。

EX1=0,关闭外部中断1 中断。

ET0---定时器/计数器0 中断允许位。

ET0=1,打开T0 中断。

EA 总中断开关,置1 为开;EX0 为外部中断0 (INT0) 开关,。

ET0 为定时器/计数器0(T0)开EX1 为外部中断1(INT1)开ET1 为定时器/计数器1(T1)开ES 为串行口(TX/RX)中断开ET2 为定时器/计数器2(T2)开ET0=0,关闭T0 中断。

EX0---外部中断0 中断允许位。

EX0=1,打开外部中断0 中断。

EX0=0,关闭外部中断0 中断。

中断优先级寄存器IP位序号位地址------PS/0 PT1/0 PX1/0 PT0/0 PX0/0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 -------,无效位。

第六章 MCS-51单片机的中断

第六章 MCS-51单片机的中断

TF1
T1 请求
TR1
T1 工作
TF0
T0 请求
TR0
T0 工作
IE1
INT1 请求
IT1
INT1 方式
IE0
INT0 请求
IT0
INT0 方式
有 /无
启 /停
有 /无
启 /停
有 /无
下沿/ 低
电平
有 /无
下沿/低
电平
2、在每条指令结束时,CPU检测各个中断标志位,若中断标志位置1,则认为有 中断请求。 3、外中断有2种触发方式:低电平和下降沿,由TCON中的IT0和 IT1决定。
PC
4.2.2 MCS-51中断处理全过程
返回
4.2.2 MCS-51中断处理全过程
1、中断请求
⑴ MCS51单片机内部的中断检测电路随时检测各个中断源,检测到有中断
申请后,将相应的中断标志位置1。
⑵ CPU在每条指令结束时,检测各个中断标志位,若中断标志位置1,则认 为有中断请求。
⑶ CPU读取IE和IP的内容,若中断允许且满足如下条件,则在下一个机器
返回
复位后IP=00H,说明各个中断源都处于低级。 注意: 1、当五个中断源在同一个优先级的情况下INT0优先权最高,串行口优先权最低。 在同一个优先级中,对五个中断源的优先次序安排如下: INT0→T0→INT1→T1→串口 (中断优先级从高到低) 2、对于外中断来说,可以用软件查询法和硬件排队电路法确定优先级。 3、通过对IP寄存器的编程,可以把五个中断源分别定义在两个优先级中,软件 可以随时对IP的各位清0或置1。 例如 某软件中对寄存器IE、IP设置如下:MOV IE,#10001111B MOV IP,#00000110B

51单片机中断

51单片机中断

中断一、中断允许寄存器 IEEA-----全局中断允许位EA=0打开全局中断控制。

EA=1关闭全部中断。

ET2----定时器/计数器2中断允许位 ET2=1打开T2中断。

ET2=0关闭T2中断。

ES----串口中断允许位。

ES=1打开串口中断。

ES=0关闭串口中断。

EX1----外部中断1中断允许位; EX1=1打开外部中断1中断。

EX1=0关闭外部中断1中断。

ET0----定时期计数器0中断允许位 ET0=1,打开T0中断。

ET0=0,关闭T 中断。

EX0----外部中断0中断允许位。

位序号 D7 D6 D5 D4 D3 D2 D1 D0 位符号 EA -- ET2 ES ET1 EX1 ET0 EX0 位地址 AFH -- ADH ACH ABH AAH A9H A8HEX0EA PX001ET0PT001EX1PX101ET1PT101ES PS 01≥1RI TISCONTCONIE0TF0IE1TF11101IT0IT1INT0INT1T0T1RX TXIEIP11111111硬件查询自然优先级自然优先级中断入口中断入口高级低级中断源中断源EX0=1打开外部中断0中断。

EX0=0关闭外部中断0中断。

二、中断优先级级寄存器IP位序号D7 D6 D5 D4 D3 D2 D1 D0 位符号-- -- -- PS PT1 PX1 PT0 PX0 位地址-- -- -- BCH BBH BAH B9H B8H 单片机的定时器中断一、定时器/计数器工作方式寄存器TMOD位序号D7 D6 D5 D4 D3 D2 D1 D0 位符号GATE C/T M1 M0 GATE C/T M1 M0 二、定时器/计数器控制寄存器TCON位序号D7 D6 D5 D4 D3 D2 D1 D0位符号TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 位地址8FH 8EH 8DH 8CH 8BH 8AH 89H 88H。

51单片机中断函数

51单片机中断函数

51单片机中断函数(原创版)目录1.51 单片机中断函数概述2.51 单片机中断函数的分类3.51 单片机中断函数的响应过程4.51 单片机中断函数的应用实例5.总结正文一、51 单片机中断函数概述在 51 单片机中,中断函数是一种在程序运行过程中,响应外部或内部事件的机制。

通过中断函数,单片机可以在执行过程中,暂停当前任务,转去处理其他更重要的任务,待处理完毕后,再回到原任务继续执行。

这种机制可以有效提高程序的实时性和响应速度,使得单片机更加智能化和灵活。

二、51 单片机中断函数的分类51 单片机的中断函数主要分为两大类:外部中断函数和内部中断函数。

1.外部中断函数:外部中断函数是由外部设备产生的中断请求信号触发的,例如按键、传感器等。

当外部设备产生中断请求时,单片机会暂停当前任务,转去处理外部中断,待处理完毕后,再回到原任务继续执行。

2.内部中断函数:内部中断函数是由单片机内部产生的中断请求信号触发的,例如定时器中断、串行通信中断等。

当单片机内部产生中断请求时,单片机会暂停当前任务,转去处理内部中断,待处理完毕后,再回到原任务继续执行。

三、51 单片机中断函数的响应过程当外部或内部事件产生中断请求时,51 单片机会进行如下响应过程:1.中断请求信号被捕获:当外部或内部事件产生中断请求时,单片机会捕获到该信号。

2.中断响应:单片机接收到中断请求信号后,会立即停止当前任务的执行,转去处理中断请求。

3.中断处理:单片机会根据中断类型,调用相应的中断服务函数进行处理。

4.中断返回:中断服务函数处理完毕后,单片机会返回原任务继续执行。

四、51 单片机中断函数的应用实例以定时器中断为例,定时器中断是一种常见的内部中断,当定时器计数值到达设定值时,会产生中断请求。

单片机接收到中断请求后,会调用定时器中断服务函数进行处理,例如更新计时器计数值、执行特定任务等。

处理完毕后,单片机会返回原任务继续执行。

五、总结51 单片机中断函数是一种在程序运行过程中,响应外部或内部事件的机制。

51单片机中断详解

51单片机中断详解

一、中断的概念CPU在处理某一事件A时,发生了另一事件B请求C PU迅速去处理(中断发生);CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务);待C PU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断二、中断源在51单片机中有5个中断源中断号优先级中断源中断入口地址0 1(最高)外部中断0 0003H1 2 定时器0 000BH2 3 外部中断1 0013H3 4 定时器1 0018H4 5 串口总段0023H三、中断寄存器单片机有10个寄存器主要与中断程序的书写控制有关1.中断允许控制寄存器IE2.定时器控制寄存器TC ON3.串口控制寄存器SCON4.中断优先控制寄存器IP5.定时器工作方式控制寄存器TMOD6.定时器初值赋予寄存器(TH0/TH1,TL0/TL1)四、寄存器功能与赋值说明注:在用到中断时,必须要开总中断EA,即EA=1。

//开总中断1.中断允许控制寄存器IEEX0(EX1):外部中断允许控制位EX0=1 外部中断0开关闭合//开外部0中断EX0=0 外部中断0开关断开ET0(ET1):定时中断允许控制位ET0=1 定时器中断0开关闭合//开内部中断0ET0=0 定时器中断0开关断开ES: 串口中断允许控制位ES=1 串口中断开关闭合//开串口中断ES=0 串口中断开关断开2.定时器控制寄存器TCON //控制外部中断和定时器中断外部中断:IE0(IE1):外部中断请求标志位当INT0(INT1)引脚出现有效的请求信号,此位由单片机自动置1,cpu开始响应,处理终端,而当入中断程序后由单片机自动置0.//外部中断,即外部中断相应的引脚接入低电平或下降沿信号时,中断开始响应。

IT0(IT1):外部中断触发方式控制位//选择有效信号IT0(IT1)=1:脉冲触发方式,下降沿有效。

IT0(IT1)=0:电平触发方式,低电平有效。

浅谈51单片机2个外部中断的应用案例

浅谈51单片机2个外部中断的应用案例

浅谈51单片机2个外部中断的应用案例51单片机是一种常见的微控制器,具有丰富的外部中断功能。

在本文中,将浅谈51单片机中两个外部中断的应用案例,旨在帮助读者更好地理解和应用该功能。

外部中断是指通过外部信号触发单片机的中断执行程序。

51单片机具有2个外部中断引脚,分别是INT0和INT1,它们可以用于各种不同的应用。

下面将介绍两个典型的外部中断的应用案例。

1.停车场车位计数器停车场车位计数器可以利用51单片机的外部中断功能来实现。

假设停车场有3个车位,当车辆入场时,外部中断INT0触发,计数器加1;当车辆出场时,外部中断INT1触发,计数器减1、通过读取计数器的值,可以实时查看停车场内的剩余车位。

具体实现的步骤如下:1)初始化外部中断INT0和INT1,设置为下降沿触发。

2)将车位计数器初始化为0。

3)当接收到INT0中断信号时,车位计数器加14)当接收到INT1中断信号时,车位计数器减15)在主循环中,可以通过查询车位计数器的值来实时显示剩余车位数。

这个应用案例使得车辆管理变得更加智能化和便捷,方便停车场管理员实时了解停车位的使用情况。

2.控制智能家居设备智能家居设备的控制可以利用51单片机的外部中断功能来实现。

例如,当外部中断INT0触发时,可以控制家居设备的开关状态,比如打开或关闭灯光、电器等。

具体实现的步骤如下:1)初始化外部中断INT0,设置为下降沿触发。

2)在INT0中断服务程序中,判断当前设备的开关状态。

如果是关闭状态,则打开设备;如果是打开状态,则关闭设备。

3)在主循环中,可以通过查询当前设备的开关状态来实时显示设备状态。

这个应用案例使得智能家居设备的控制更加智能化和灵活,用户可以通过触发外部中断来实现对设备的远程控制。

总结:以上是两个常见的51单片机外部中断的应用案例。

通过合理应用外部中断功能,能够实现更多智能化、便捷化的功能,提高系统的可靠性和实用性。

希望本文能够对读者有所帮助,并激发更多的创意和思考。

c51单片机中断详解

c51单片机中断详解
• 中断技术的特点
分时操作
——CPU可以同多个外设“同时” 工作
实时处理
——CPU及时处理随机事件
故障处理
——电源掉电、存储出错、运算 溢出
MCS-51中断系统资料仅的供参考 结构及中断源
中断源有以下几种情况:
(1)I/O设备(2)硬件故障(3) 实时时钟(4)为调试而设置的 中断。
MCS-51有5个中断请求源,两个中 断优先级,可两级嵌套。

资料仅供参考
例6-1 若允许片内2个定时器/计数器中
断,禁止其它中断源的中断请求。编写
设置IE的相应程序段。
(1)用位操作指令来编写如下程序段:
CLR ES
;禁止串行口中断
CLR EX1
;禁止外部中断1中断
CLR EX0
;禁止外部中断0中断
SETB ET0
;允许T0中断
SETB ET1
;允许中断
串行口中断
0023H
使用时,通常在这些入口地址处存放一条
跳转指令,使程序跳转到用户安排的中断服务
程序起始地址上去!
注意:中断服务子程序入口地址又称为中断
矢量或中断向量。单片机中5个中断源的矢量
地址是固定的,不能改动。

资料仅供参考
三、中断处理 编写中断中断服务程序即可
资料仅供参考
四、中断返回
▪中断返回由专门的中断返回指令 RETI来实现。

中断源
中断级别

外部中断0
最高

T0溢出中断

外部中断1 T1溢出中断 串行口中断
置 原 则?
最低
资料仅供参考
可归纳为下面三条基本规则: (1)低优先级可被高优先级中断,反之

51单片机(STC89C52)的中断和定时器

51单片机(STC89C52)的中断和定时器

51单⽚机(STC89C52)的中断和定时器STC89C51/STC89C52 Timer内部不带振荡源, 必须外接晶振采⽤11.0592MHz,或22.1184MHz,可⽅便得到串⼝通讯的标准时钟.STC89和STC90系列为12T, STC11/STC12系列为1T, 也就是⼀个指令⼀个机器周期, 这些都需要外置晶振; STC15系列有内置晶振.中断中断允许控制寄存器 IE字节地址A8H, CPU对中断系统所有中断以及某个中断源的开放和屏蔽是由中断允许寄存器IE控制的D7D6D5D4D3D2D1D0EA—ET2ES ET1EX1ET0EX0EA (IE.7): 整体中断允许位, 1:允许ET2(IE.5): T2中断允许位, 1:允许(for C52)ES (IE.4): 串⼝中断允许位, 1:允许ET1(IE.3): T1中断允许位, 1:允许EX1(IE.2): 外部中断INT1允许位, 1:允许ET0(IE.1): T0中断允许位, 1:允许EX0(IE.0): 外部中断INT0允许位, 1:允许52单⽚机⼀共有6个中断源, 它们的符号, 名称以及各产⽣的条件分别如下1. INT0 - 外部中断0, 由P3.2端⼝线引⼊, 低电平或下降沿引起2. INT1 - 外部中断1, 由P3.3端⼝线引⼊, 低电平或下降沿引起3. T0 - 定时器/计数器0中断, 由T0计数器计满回零引起4. T1 - 定时器/计数器1中断, 由T1计数器计满回零引起5. T2 - 定时器/计数器2中断, 由T2计数器计满回零引起 <--这个是52特有的6. TI/RI - 串⾏⼝中断, 串⾏端⼝完成⼀帧字符发送/接收后引起定时器中断51单⽚机内部共有两个16位可编程的定时器,即定时器T0和定时器T1, 52单⽚机内部多⼀个T2定时器. 它们既有定时功能,也有计数功能。

可通过设置与它们相关的特殊功能寄存器选择启⽤定时功能还是计数功能. 这个定时器系统是单⽚机内部⼀个独⽴的硬件部分,它与CPU和晶振通过内部某些控制线连接并相互作⽤,CPU⼀旦设置开启定时功能后,定时器便在晶振的作⽤下⾃动开始计时,但定时器的计数器计满后,会产⽣中断。

51单片机定时器、串口、中断

51单片机定时器、串口、中断

51单⽚机定时器、串⼝、中断⽂章⽬录MCS-51功能单元⼀、定时器&计数器1. 数量:两个可编程的16位的定时器/计数器T0和T1;都是16位加法计数结构;分为⾼8位和低8位;TH0、TL0,TH1、TL1;定时器/计数器T0、T1是80C51的中断源之⼀,当数据寄存器溢出,则向CPU申请中断。

数据寄存器的复位状态为0。

为使计数值或定时值满⾜⾃⼰的要求,需预先将数据寄存器赋值,称为初值设定,中断中也要重新设定初值。

2. 定时器和计数器本质:都是计数器,对下降沿进⾏计数,计数达到溢出后置为标志位或者进⼊中断;3. 两者的区别:定时器是对内部的机械周期脉冲进⾏计数,每个脉冲都是⼀个机械周期;定时时间=机器周期*(2^L-初值) (L=13,16,8)计数器则是通过外部IO⼝进⾏脉冲计数,⼀个脉冲加⼀个数;对应IO⼝:T0-P3.4,T1-P3.5;计数长度:计数长度=(2^L-初值) (L=13,16,8)两者的模式切换通过TMOD控制4. TMOD结构图:5. TMOD详解GATE:门控位GATE =1,由中断引脚INT0(P3.2)、INT1(P3.3)和TCON中的位TR0、TR1共同控制来启动定时器/计数器GATE =0,由TR0和TR1置位来启动定时器/计数器**(⼀般为0)**C/!T:模式选择位:1时,计数器模式;0时,定时器模式;M0 & M1共同控制⼯作⽅式:项⽬开发⼀般⽤01,考试⼤概率考00;6. 启动停⽌与中断控制寄存器TCONTFx:定时器或者计数器溢出时置位1,请求中断,中断程序进⼊后⾃动清零;TRx:定时器启动控制位,当其等于1时定时器/计数器启动;7. 中断允许控制寄存器:IEETx:定时器/计数器的中断允许位EA:CPU总中断的允许位8. 定时器/计数器使⽤:(重点)⼯作⽅式的设置://设置定时器0⼯作在16位模式//C语⾔TMOD=0x01; //定时器//汇编MOV TMOD, #01H;计数初值的计算+装载:伪代码://机械周期1us,设置500us中断⼀次为FE0C//C语⾔TH0=0xFE;TL0=0x0C;//汇编MOV TH0, #0FEH ;MOV TL0, #0cH ;中断允许位的设置:伪代码://CEA=1;ET0=1;//assemblySETB EA ;turn on all interruptSETB ET0 ;turn on 0 interrupt开启定时器:伪代码://cTR0=1;//assemblySETB TR0 ;turn onCLR TR0 ;turn off !9. 使⽤实例:定时器使⽤⽅式(中断⽅式):ORG 0000H;AJMP MAIN;ORG 001BH;AJMP IRQ1;MAIN:MOV TMOD, #00H ;⼯作模式0,⾼8+低5MOV TH1, #0FCHMOV TL1, #03HSETB TR1;SETB ET1;SETB EA;AJMP $;IRQ1:MOV TMOD, #00HMOV TH1, #0FCHCPL P1.0RETI ;中断返回⼀定要加!计数器使⽤⽅式(中断⽅式):ORG 0000H;AJMP MAIN;ORG 001BH;AJMP IRQ1;MAIN:MOV TMOD, #04H ;计数器模式MOV TH1, #0FCH ;⼀千个下降沿中断⼀次 MOV TL1, #03HSETB TR1;SETB ET1;SETB EA;AJMP $;MOV TMOD, #00HMOV TH1, #0FCHCPL P1.0RETI ;中断返回⼀定要加!查询⽅式则是判断TF溢出标志,变⾼后进⼊⾃定义韩式处理数据,清空标志;⼆、并⾏⼝&串⾏⼝并⾏⼝:并⾏传输数据(不常⽤)占据资源⼤,错误率⾼,但快串⾏⼝:(重要)稳定,占据IO⼝⼩,准确,稍微慢1. 串⾏⼝控制寄存器SCON:SM0和SM1:串⾏⼝⽅式选择位;00-移位寄存器⽅式01-8位UART,波特率可变10-9位UART,波特率为fosc/64或fosc/32(PCON决定)11-9位UART,波特率可变⽅式1为常⽤通信⽅式;⽅式2、3为多机通信,⽅式0为移位寄存器,不常⽤;重要标志位:TI:发送完成标志RI:接收完成标志2. 串⼝波特率与定时器1关联,公式如下:波特率=2^SMOD * fosc / [32 * 12(2^K-初值)];(fosc系统主频)波特率翻倍寄存器:PCON只有最⾼位(SMOD)有效:为1时波特率翻倍,为0时不翻倍⽅式1串⼝通信接收代码:ORG 0000HLJMP MAINORG 0023HLJMP RX_TIMAIN:MOV SCON, #50HMOV PCON, #00HMOV TMOD, #02HMOV TH1, #0FDHMOV TL1, #0FDHSETB TR1SETB EASETB ESRX_TI:PUSH ACCMOV TH1, #0FDHMOV TL1, #0FDHMOV A, SBUF;处理POP ACCRETI发送套⽤代码:MOV SBUF, AJNB TI, $CLR TIRET三、中断系统所有中断控制位:TCON:TF1、TF0:定时器溢出标志、请求中断:IE1、IE0:外部中断溢出请求:IT1、IT0:外部中断触发⽅式选择-1下降沿触发、0低电平触发SCON:内部TI、RI触发接收发送中断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机中断号
若51单片机使用C语言编程,51单片机中断号的排列顺序是按中断向量地址由低到高来排列中断号,不是按中断查询的优先级或者中断服务顺序的优先级来排列中断号的。

本内容简单介绍了C51单片机的中断号以及中断向量,方便大家了解和学习
关键词:中断向量C51单片机
一、中断号
二、interrupt 和 using 在C51中断中的使用
8051 系列 MCU 的基本结构包括:32 个 I/O 口(4 组8 bit 端口);两个16 位定时计数器;全双工串行通信;6 个中断源(2 个外部中断、2 个定时/计数器中断、1 个串口输入/输出中断),两级中断优先级;128 字节内置RAM;独立的 64K 字节可寻址数据和代码区。

中断发生后,MCU 转到 5 个中断入口处之一,然后执行相应的中断服务处理程序。

中断程序的入口地址被编译器放在中断向量中,中断向量位于程序代码段的最低地址处,注意这里的串口输入/输出中断共用一个中断向量。

8051的中断向量表如下:
C51单片机的中断号以及中断向量
C51单片机的中断号以及中断向量
一、中断号
外部中断0 0
定时器T0 1
外部中断1 2
定时器T1 3
串口中断 4
二、interrupt 和 using 在C51中断中的使用
8051 系列 MCU 的基本结构包括:32 个 I/O 口(4 组8 bit 端口);两个16 位定时计数器;全双工串行通信;6 个中断源(2 个外部中断、2 个定时/计数器中断、1 个串口输入/输出中断),两级中断优先级;128 字节内置RAM ;独立的 64K 字节可寻址数据和代码区。

中断发生后,MCU 转到 5 个中断入口处之一,然后执行相应的中断服务处理程序。

中断程序的入口地址被编译器放在中断向量中,中断向量位于程序代码段的最低地址处,注意这里的串口输入/输出中断共用一个中断向量。

8051的中断向量表如下:
中断源 中断向量 上电复位 0000H 外部中断0 0003H 定时器0 溢出 000BH 外部中断1 0013H 定时器1 溢出 001BH 串行口中断 0023H 定时器2 溢出 002BH
51单片机定时器中断号 [
复制链接
]
admin
849 主题 987 帖子 3106 积分 管理员 积分 3106 • 发消息 电梯直达
楼主
发表于 2013-11-10 23:37:34 | 只看该作者
| | 有用的中断号知识
void 表示函数类型
interrupt 0 ←这里的0表示中断源编号
using 1 ←这里的1表示选用的寄存器组别
在MCS-51单片机中,单片机类型不同,中断源个数也有差别.例如8051有5
个中断源,8052有6个中断源.现以8051为例
中断源 中断服务入口地址 中断标志
外部中断INT0 0003H IE0
定时器T0 000BH TF0
外部中断INT1 0013H IE1
串行口TI/RI 00023H TI/RI
中断优先级别从上到下依次降低
interrupt 表示中断优先级,using表示所用工作寄存器组。

interrupt x using y
跟在interrupt 后面的xx 值得是中断号,就是说这个函数对应第几个中
断端口,一般在51中
0 外部中断0
1 定时器0
2 外部中断1
3 定时器1
4 串行中断
其它的根据相应得单片机有自己的含义,实际上c在编译的时候就是把你
这个函数的入口地址放到这个对应中断的跳转地址
using y 这个y是说这个中断函数使用的那个寄存器组就是51里面一般有4个r0 -- r7寄存器,如果你的终端函数和别的程序用的不是同一个寄存器组则进入中断的时候就不会将寄存器组压入堆栈返回时也不会弹出来,节省代码和时间
void intsvr0(void) interrupt 0 using 1
定时/计数器T0
void timer0(void) interrupt 1 using 1
外部中断INT1
void intsvr1(void) interrupt 2 using 1
定时/计数器T1
void timer1(void) interrupt 3 using 1
串口中断
void serial0(void) interrupt4 using 1。

相关文档
最新文档