高二数学抽样方法

合集下载

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

三种抽样方法(全)

三种抽样方法(全)
(3)系统抽样比简单随机抽样的应用范围更广.
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样

高二数学必修3 简单随机抽样 ppt

高二数学必修3 简单随机抽样 ppt

抽签法的步骤: 抽签法的步骤 1、把总体中的N个个体编号; 、把总体中的 个个体编号 个个体编号; 2、 把号码写在号签上,将号签放在一个容器中 、 把号码写在号签上, 搅拌均匀; 搅拌均匀; 3、每次从中抽取一个号签,连续抽取n次,就得到 、每次从中抽取一个号签,连续抽取 次 一个容量为n的样本 的样本。 一个容量为 的样本。
问题 2006年春节联欢晚会结束后,中央电视台想在较短时间内 年春节联欢晚会结束后, 年春节联欢晚会结束后 得到节目的收视率,请问如何调查得出合理的结果呢? 得到节目的收视率,请问如何调查得出合理的结果呢? 一个水库养了某种鱼10万条 ,如何调查它们的体重情况 一个水库养了某种鱼10万条 10 从中捕捞了20条 称得它们的体重(单位: )如下: 从中捕捞了 条,称得它们的体重(单位:kg)如下: 2.3 2.1 2.2 2.1 2.2 2.6 2.5 2.4 2.3 2.4 2.4 2.3 2.2 2.5 2.4 2.6 2.3 2.5 2.2 2.3
思考2、 思考 、你设计的方法,个体抽取的机会均等吗?
抽样方法:当总体个数较多时,可将总体均匀地分成n个 抽样方法: 部分,然后按照预先给定的规则,从每一部分 中抽取一个个体,得到所需的样本,—— 称 系统抽样. 为系统抽样 系统抽样 讨论1、怎样均分? 讨论 、 讨论2、 讨论 、怎样定规则? 讨论3、 讨论 、第一个个体怎样选取?
问题1: 问题
疾病的预防与个人的身体素质有关,为此学校 决定在高二(3)班77位同学中抽取20个同学进行抗 病原情况调查,假如你是一位学校防疫中心的领导, 你将如何抽取样本?
的特征:(1)逐个抽取; (2)每个个体机会均等; (3)样本个体间没有联系。
为了扩大调查面,使调查结果更符合学校实际, 问题2: 问题 : 学校要求将调查面扩大到全校学生,学校现有 学生3387名,要求从中抽取114人进行抗病原调 查,你将如何抽取样本? 你不觉得太累了吗? —— 与疾病的预防不利! 思考1、 思考 、能否设计一个方案,使得抽取方法简化?

高二数学期末必背知识点:随机抽样

高二数学期末必背知识点:随机抽样

2019年高二数学期末必背知识点:随机抽样数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。

小编准备了高二数学期末必背知识点,具体请看以下内容。

1.简单随机抽样(1)抽取方式:不放回抽取;(2)每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法.[探究] 1.简单随机抽样有什么特点?提示:(1)被抽取样本的总体个数N是有限的;(2)样本是从总体中逐个抽取的;(3)是一种不放回抽样;(4)是等可能的抽取.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;(3)在第1段用简单随机抽样确定第一个个体编号l(l(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.[探究] 2.系统抽样有什么特点?提示:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.[探究] 3.分层抽样有什么特点?提示:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学期末必背知识点,希望大家喜欢。

高中数学知识点:抽样方法

高中数学知识点:抽样方法

高中数学知识点:抽样方法
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。

1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

二、活用随机抽样
系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,
ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可
得第k组抽取号码应该为9+30*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

四、分层抽样。

高中数学教案抽样方法

高中数学教案抽样方法

高中数学教案抽样方法
年级:高中
学科:数学
目标:学生能够理解和应用不同的抽样方法进行统计调查,能够根据具体情况选择合适的抽样方法。

教学重点:简单随机抽样、系统抽样、分层抽样、整群抽样
教学难点:理解和区分各种抽样方法,能够应用到实际问题中
教学准备:教材、教具、实验工具、教学PPT
教学过程:
1.导入:通过一个小调查开始,了解同学们对抽样方法的了解程度,引入本节课的主题。

2.简单随机抽样:
-介绍简单随机抽样的定义和步骤
-通过实例演示简单随机抽样的过程和计算方法
-让学生自行完成一个简单随机抽样的实验
3.系统抽样:
-介绍系统抽样的定义和原理
-通过实例演示系统抽样的过程和计算方法
-让学生自行完成一个系统抽样的实验
4.分层抽样:
-介绍分层抽样的定义和目的
-通过实例演示分层抽样的过程和计算方法
-让学生自行完成一个分层抽样的实验
5.整群抽样:
-介绍整群抽样的定义和适用情况
-通过实例演示整群抽样的过程和计算方法
-让学生自行完成一个整群抽样的实验
6.实际应用:
-讨论各种抽样方法的优缺点及适用范围
-让学生通过实际案例分析,选择合适的抽样方法进行统计调查
7.总结:总结各种抽样方法的特点和应用场景,强调实际问题中的抽样方法选择的重要性。

作业布置:布置练习题,要求学生熟练掌握各种抽样方法的步骤和原理。

教学反馈:通过课堂讨论和练习题的批改,及时纠正学生的错误,加强对抽样方法的理解
和应用能力。

人教版高二数学必修三统计知识点:分层抽样

人教版高二数学必修三统计知识点:分层抽样

人教版高二数学必修三统计知识点:分层抽样(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!人教版高二数学必修三统计知识点:分层抽样本店铺高二频道为正在拼搏的你整理了《人教版高二数学必修三统计知识点:分层抽样》希望你喜欢!(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

高中数学抽样方法-课文知识点解析

高中数学抽样方法-课文知识点解析

⾼中数学抽样⽅法-课⽂知识点解析然后请抽取的⼏个同学如实填写问卷,统计出数据,填⼊下表.⼒,这也符合素质教育的要求.抽样⽅法-课⽂知识点解析1.常⽤抽样⽅法:简单随机抽样、分层抽样和系统抽样.2.简单随机抽样⼀般地,从总体中抽取⼀定量的样本,在抽取过程中要保证每个个体被抽到的概率相同,这样的抽样⽅法叫简单随机抽样.通常采⽤抽签法和产⽣随机数字的⽅法(利⽤⼯具产⽣随机数).(1)抽签法抽签法的实施步骤:a.给调查对象群体(共有N个)中的每个对象编号(号码可以从1到N).b.准备“抽签”⼯具(签可以是纸条、卡⽚或⼩球),实施“抽签”.先把号码写在形状、⼤⼩相同的签上,然后把签放在同⼀个箱⼦⾥,进⾏均匀搅拌,每次从中抽出⼀个签,连续抽n次,就得到⼀个容量为n的样本.c.对样本中的每⼀个体进⾏测量或调查,得到数据,通过分析数据得出结论.例如:请⽤抽签法设计⼀个调查⽅案,调查你所在学校学⽣喜欢体育活动的情况.(以总体数量为N)抽取n个样本为例.第⼀步,给全体同学编号,号码从1到N;第⼆步,准备N个⼤⼩、形状相同的签,把号码(1~N)写在签全析提⽰我们知道要做到绝对地随机抽取样本⾮常困难,因此在抽样过程中尽可能避免⼈为因素的影响,⽽抽签法和产⽣随机数字法恰好具备此特点.抽签法最⼤的优点是简便易⾏,但此种⽅法不宜适⽤于总体数量较⼤的对象,⼀般适⽤于个体数量较少的对象.要点提炼上,每次抽取⼀个签,连续抽n次,就得到⼀个容量为n的样本;⼀个调查⽅案的设计⼀定要科学、合理,要易于操作,易得出数据便第三步,对样本中的每⼀个体进⾏调查.可设计⼀个问卷,如下.你对体育活动的喜欢程度A.喜欢B.⼀般C.不喜欢说明:只准选择⼀个答案.查结论,写出调查报告.(2)产⽣随机数把总体中的N个个体依次编上0,1,2,…,N-1的号码,然后利⽤⼯具(转盘或摸球、随机数表、科学计算器或计算机)产⽣0,1,…,N-1中的随机数,产⽣的随机数是⼏,就选⼏号个体,直到抽到预先规定的样本数.利⽤转盘或摸球产⽣随机数,这种⽅法⼤家都⽐较熟悉,并且简便易⾏,尤其当总体容量不⼤时.这种⽅法的缺点是当总体容量很⼤时,制作转盘和进⾏摸球就⽐较困难了.利⽤随机数表产⽣随机数,是其中最重要、最常⽤的⼀种⽅法.下⾯举例说明如何利⽤随机数表来抽取样本.为了检验某种产品的质量,决定从40件产品中抽取10件进⾏检于统计;问卷的设计更要具有科学性,选项要全⾯、合理.通过调查⽅案的设计和实施,有利于提⾼同学们的思维、逻辑、组织和实践能全析提⽰利⽤抽签法抽取样本时,编号应从1开始;⽽利⽤随机数抽取样本时,编号应从0开始.利⽤随机数表产⽣随机数是最常⽤的产⽣随机数的⽅法,要掌握此种⽅法的步骤.查.在利⽤随机数表抽取这个样本时,可按下⾯步骤进⾏.表3-178166572080263140702436997280198 32049243493582003623486969387481 29763413284142412424198593132322 83039822588824101158272964432943 55568526616682312438845546184445 26357900337091601620388277574950 32114919730649167677873399746732 27486198716441487086288885191620 74770111163024042979799196835125 5379707626942927439955198106850192644607202139207766381732561640 58587766317005002593054553707814 28896628675782311589006200473815 51318186370945216665532553832702 90557196217232071114138443594488 79005870260288135509432400304750 36939212055773697162956813129438 03803338013845604230649638060347 02464469971983161285035723892390 7266008168972851466606204596340093124779573789184550399455739229 61116098096573526847303499773770 23104476914806792662206205229234 98268857867566425471882043082105 67038248606469620053818864944509 11109486653339541944151616823404 9651 1456 5613 0357 4244 3341 96053567 8350 5728 4338 0824 7899 1307 5814 8688 6982 51267736 3383 6215 344185782277 64907644 7085 8361 5662 4141 9877 37478570 215081404355 5321 2548 0208 7543 9169 0408 4353 6122 8913 9930 4169 6032 2127 0162 6176 4969 8185 9312 8748 8575 8090 9872 1968 0263 0081 2662 6831 31062959 9011 1448 4346 7019 8148 1557 8400第⼀步,先将40件产品编号,可以编为全析提⽰⽤随机数表产⽣随机数分三步,⼀00,01,02,…,38,39;第⼆步,在随机数表中任选⼀个数开始,由于总体的编号是两位数,我们可以⼀次选取其中的两列,组成⼀个两位数.我们从附表的第17列和第18列的第2⾏开始选数;第三步,从选定的数36开始,得到第⼀个两位数,将它取出;继续向下读,由上⾄下分别是24,11,24,16,76,70,29,43,77,25,15,66,11,55,71,42,12,46,45,68,26,54,00,…其中24,11重复出现,76,70,43,77,66,55,71,42,46,45,68,54超过39,不能选取,这样选取的10个样本的编号分别为36,24,11,16,29,25,15,12,26,00.课本例1,严格地按照⽤随机数表产⽣随机数的步骤进⾏的.在选数的过程中,是从表3-1中第6列和第7列这两列的第4⾏开始,由上⾄下的顺序进⾏选数的.事实上,定位置和选数的顺序是任意的.下⾯我们⽤另外⼀种顺序选取10个样本.第⼀步,将总体中的每个个体进⾏编号:00,01,02, (79)第⼆步,由于总体是⼀个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意⼀个位置,⽐如从表3-1中第1列和第2列这两列的第三⾏开始选数,由左⾄右分别是29,76,34,13,28,41,42,41,24,24,19,85,93,13,23,…其中13,41,24重复出现,83,93超过79,不能选取,这样选取的10个样本的编号分别为29,76,34,13,28,41,42,24,19,23.3.分层抽样将总体按其属性特征分成若⼲类型(有时称作层),然后在每个类型中随机抽取⼀定的样本,这种抽样⽅法通常叫做分层抽样,有时也称为类型抽样.例如教材中的问题2,如若⽤简单随机抽样,则抽到的15个样本很可能不能按照它们的家数之⽐抽取,这样得到的数据就不能是编号;⼆是定位置;三选数.定住位置后,读数的⽅向可以向右,也可以向左、向上、向下等.取数过程中,要把不符合要求的数(超过最⼤编码)和与前⾯重复的数去掉.利⽤随机数表选取样本的⼀般步骤:①编号;②定位;③选数.选数过程中,重复的数字只取⼀个,超过最⼤编号的数不能取.思维拓展定位置是任意的,选数的顺序是任意的,没有任何约束,所以选取的样本的编号可以是多种多样的,并不唯⼀.全析提⽰当已知总体由差异明显的⼏部分组成时,为了使样本充分地反映总体的情况,常将总体分成⼏部分,然后按照各部分所占⽐例进⾏抽样.由于分层抽样充分地利⽤了我们所掌握的信息,使样本具有较好地代表性,⽽在各层中进⾏抽样时,⼤真实地反映情况,误差很⼤;为了避免这种情况,我们按照⼤型、多数情况下采⽤简单随机抽样,有中型、⼩型的⽐例,从100家⼤型商店中抽出1个代表,从500时也会⽤到其他⽅法,这样需根据家中型商店中抽出5个代表,从900家⼩型商店中抽出9个代表.问题的需要来决定.再例如,⼀个单位有职⼯500⼈,其中不到35岁的有125⼈,35岁~49岁的有280⼈,50岁以上的有95⼈.为了了解这个单位职⼯⾝体状况有关的某项指标,要从中抽取⼀个容量为100的样本.由于职⼯年龄与这项指标有关,决定采⽤分层抽样的⽅法进⾏抽取.因为样本容量与总体个数的⽐为100∶500=1∶5,所以在各年龄段抽取的个体数依次是本例符合分层抽样的特点和适⽤范围.。

高二数学抽样方法

高二数学抽样方法

①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121, 180,195,200,265; ③11,38,65,92,119,146, 173,200,227,254; ④30,57,84,111,138, 165, 192,219,246,270.
关于上述样本的下列结论中,正确的是 ( D )
A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样
.
.
.
.
.
.
.
.
.
.
;车吉祥 https:// 车吉祥
简单随机抽样,也叫纯随机抽样.就是从
总体中不加任何分组、划类、排队等,完 全随机地抽取调查单位。特点是:每个样 本单位被抽中的可能性相同(概率相等), 样本的每个单位完全独立,彼此间无一定 的关联性和排斥性。简单随机抽样是其它 各种抽样形式的基础。通常只是在总体单 位之间差异程度较小和数目较少时,才采 用签法;⑵随机数表法
4、某初级中学有学生270人,其中一年 级108人,二、三年级各81人,利用抽样 方法抽取10人参加某项调查,考虑选简单 随机抽样、分层抽样和系统抽样三方案,
使用简单随机抽样和分层抽样时,将学生
一、二、三年级依次统一编号为 1,2,270; 使用系统抽样时,将学生统一随机编号为1, 2,…,270,并将整个编号依次分为10段。 如果抽得号码有下列四种情况:

人教版高二数学必修二知识点:系统抽样

人教版高二数学必修二知识点:系统抽样
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。 因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果 有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的 大小顺序排队的话,使用系统抽样可以大大提高估计精度。
精心整理
人教版高二数学必修二知识点:系统抽样
(1)系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定 的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的, 即不存在某种与研究变量相关的则分布。可以在调查允许的条件下, 从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说 明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重 合。

人教版高二数学下册分层抽样知识点

人教版高二数学下册分层抽样知识点

人教版高二数学下册分层抽样知识点分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2) 不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。

如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

练习题:1、为了了解所加工的一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度() A总体B个体C总体的一个样本D 样本容量2、为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是()A8B400C96D96名学生的成绩3、一总体由差异明显的三部分数据组成,分别有m个、n个、p个,现要从中抽取a个数据作为样本考虑总体的情况,各部分数据应分别抽取____________、___________、_______________.4、某地有2000人参加自学考试,为了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是_________以上就是我们给同学们整理的分层抽样知识点啦!想要了解更多精彩的内容,大家可点击原创专栏来看~~。

《高二数学抽样方法》课件

《高二数学抽样方法》课件

抽样误差是不可避免的,但可以 通过增大样本容量、改进抽样方 法等方式减小抽样误差。
应用实例的启示
抽样方法在不同领域具有广泛应 用,为我们提供了解世界、发现 规律的重要手段。
3
系统抽样
4
按照一定的系统规则从总体中选取样本, 如每隔k个个体选取一个样本。
简单随机抽样
从总体中随机地选取个体,确保每个个 体被选中的概率相等。
整群抽样
将总体划分为互不相交的群体,从每个 群体中抽取全部个体作为样本。
抽样误差
抽样误差是由于样本选择的随机性而引起的估计值与总体参数之间的差异。 可通过增加样本容量、提高抽样方式等方法减小抽样误差。
《高二数学抽样方法》 PPT课件
高二数学抽样方法PPT课件是为了帮助学生更好地理解数学抽样方法而设计的。 本课件内容详实,涵盖了抽样的定义、分类、方法、误差以及应用实例等方 面的知识。
什么是抽样?
抽样是从总体中选取部分个体进行观察和研究的方法。通过抽样,我们可以 从大量的数据中获取有代表性的样本,从而进行有效的分析和推断。
应用实例
市场调研
通过抽样方法了解消费者需求 和市场趋势,为企业决策提供 依据。
社会调查
利用抽样方法收集和分析社会 问题的数据,为社会决策提供 支持。
医学研究
通过抽样方法研究人群的健康 状况和疾病发生规律,为医学 实践提供参考。
总结
抽样方法的优缺点比较
抽样误差及其减小方法
不同抽样方法各有优势和局限性, 选择适合的抽样方法是确保研究 结果可靠的关键。
抽样分类
简单随ห้องสมุดไป่ตู้抽样
随机选择个体,每个个体被选中的概率相等。
整群抽样
将总体划分为若干互不相交的群体,从每个群体 中抽取样本。

新人教版高中数学必修第二册《随机抽样》教案

新人教版高中数学必修第二册《随机抽样》教案

随机抽样【教学目标】1.理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念2.理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法3.理解分层随机抽样的概念,并会解决相关问题【教学重难点】1.抽样调查2.简单随机抽样3.分层随机抽样【教学过程】一、问题导入预习教材内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?二、基础知识1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.名师点拨(1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i为总体均值,又称总体平均数.②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y - =1N ∑ki =1f i Y i W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y - =y 1+y 2+…+y n n =1n∑ni =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x - =x 1+x 2+…+x m m =1m ∑mi =1x i .②第2层的总体平均数和样本平均数分别为Y - =Y 1+Y 2+…+Y N N =1N∑Ni =1Y i,y - =y 1+y 2+…+y n n =1n∑ni =1y i .③总体平均数和样本平均数分别为W - =∑Mi =1X i +∑N i =1Yi M +N ,w - =∑mi =1x i +∑ni =1y i m +nW.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x - +N ×y -M +N =M M +N x - +N M +N y -估计总体平均数W - .(3)在比例分配的分层随机抽样中,m M =n N =m +nM +N ,可得M M +N x - +N M +N y -=m m +n x - +n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w - 估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据三、合作探究总体、样本等概念辨析题例1:为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是()A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100【解析】根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D .【答案】D[规律方法]此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.简单随机抽样的概念例2:下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.[规律方法]要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.抽签法及随机数法的应用例3:某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.[规律方法](1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.分层随机抽样中的有关计算例4:(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:高一年级高二年级高三年级泥塑a b c 剪纸xyz其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6[规律方法]分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.样本平均数的求法例5:(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.[规律方法]在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +nym +n.【课堂检测】1.在简单随机抽样中,每一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:选B.在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1500米跑的成绩,得出相应的数值,在这项调查中,样本是指()A.120名学生B.1 200名学生C.120名学生的成绩D.1 200名学生的成绩解析:选C.本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为()A.20B.25C.30D.35解析:选D.高一年级抽取的人数为3501 000×100=35.故选D.4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767.第四步,把与号码相对应的人抽出,即可得到所要的样本.。

高二数学下第三讲 随机抽样1

高二数学下第三讲   随机抽样1

第三讲 随机抽样一 2011高考大纲:了解随机抽样的意义,/会用简单随机抽样方法从总体中抽取样本/。

了解分层抽样.系统抽样方法。

二 知识梳理1.简单随机抽样:(1)设一个总体的个体数为N .从中 抽取n 个个体作为样本,如果每次抽取时总体内的各个个体被抽到的机会 ,就把这种抽样方 法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.(1)先将总体的N 个个体 .(2)确定 ,对编号进行 ,当N n 是整数时,取k =N n. (3)在第1段用 确定第一个个体编号l (l ≤k ).(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号 ,再 加k 得到第3个个体编号 ,依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照 ,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围当总体是由 组成时,往往选用分层抽样.4.如何选择抽样方法提示(1)根据各种抽样的定义及特征判断抽样的方法为特征判断法.(2)选择抽样方法的步骤:①看总体是否由差异明显的几个层次组成.若是,则选用分层抽样;否则考虑用简 单随机抽样或系统抽样.②看总体容量和样本容量的大小,当总体容量较小时,采用抽签法;当总体容量较 大、样本容量较小时,采用随机数法;当总体容量较大、样本容量也较大时,采用 系统抽样.三 典例分析题型一 简单随机抽样【例1】 山东大学为了支持第十一届全运会,从报名的24名大一的学生中选6人组 成志愿小组,请用抽签法和随机数法设计抽样方案.反思感悟:善于总结,养成习惯(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.(2)随机数表中共随机出现0,1,2,…,9十个数字,也就是说,在表中的每个位置上出现各个数字的机会都是相等的.在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.迁移发散1 (1)从含有500个个体的总体中一次性地抽取25个个体,每个个体被抽到的概率相等,那么总体中的每个个体被抽到的概率等于________.(2)某工厂有1 200名职工,为了研究职工的健康状况,决定从中随机抽取一个容量为n的样本,若每个职工被抽到的概率是没有被抽到的概率的一半,则样本容量n等于________题型二系统抽样【例2】一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.反思感悟:善于总结,养成习惯(1)当总体容量较大,样本容量也较大时,可用系统抽样法.(2)在利用系统抽样时,经常遇到总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体能被样本容量整除.迁移发散2.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数,(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.题型三分层抽样【例3】200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.反思感悟:善于总结,养成习惯分层抽样是等概率抽样,它是公平的.用分层抽样从个体数为N的总体中抽取一个容量为n的样本时,每个个体被抽到的概率相等,都等于nN.分层抽样是建立在简单随机抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,从而它在实践中的应用也就更为广泛.迁移发散3.某校共有学生2 000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则四课后小结1.三种抽样方法的共同点:都是等概率抽样,即抽样过程中每个个体被抽取的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每一个个体被抽到的概率都是nN.2.抽样方法经常交叉使用,比如系统抽样中分段后的第一均衡部分,可采用简单随机抽样,分层抽样中,若每层中个体数量仍很大时,则可辅之以系统抽样.家庭作业姓名一、选择题(每小题5分,共25分)1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为() A.15,10,20 B.10,5,30 C.15,15,15 D.15,5,252.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, (270)使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10 段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250 ②5,9,100,107,111,121,180,195,200,265③11,38,65,92,119,146,173,200,227,254 ④30,57,84,111,138,165,192,219,246,270关于上述样本的下列结论中,正确的是() A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样3.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工抽取人数为() A.9 B.18 C.27 D.364.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为() A.50 B.60 C.70 D.805.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人数为() A.8 B.9 C.10 D.11二、填空题(每小题4分,共16分)6.经问卷调查某班学生对摄影分别执“喜欢”“不喜欢”“一般”三种态度,其中执“一般”态度的比“不喜欢”的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班学生人数的一半还多________人.7.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980 h,1 020 h,1 032 h,则抽取的100件产品的使用寿命的平均值为________h.8.某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表:由于不小心,表格中A、C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是________件.9.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9 个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m =8,则在第8组中抽取的号码是________.三、解答题(共3小题,共34分)10.(本小题满分10分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本 平均数与总体平均数之差的绝对值不超过0.5的概率.11.(本小题满分12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人 占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用 分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.答案:例1 解:第一步:将24名志愿者编号,编号为1,2,3, (24)第二步:将24个号码分别写在24张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将24个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.随机数法第一步:将24名学生编号,编号为01,02,03, (24)第二步:在随机数表中任选一数开始,按某一确定方向读数;第三步:凡不在01~24中的数或已读过的数,都跳过去不作记录,依次记录下得数; 第四步:找出号码与记录的数相同的学生组成志愿小组.迁移发散1 解析:(1)由于抽样保证每个个体被抽到的概率相等,由等可能事件的概率计算公式,得P =25500=0.05.故总体中的每个个体被抽到的概率等于0.05. (2)因为每个职工被抽到的概率是没有被抽到的概率的一半,所以每个职工被抽到的概率P =13.∵P =n N ,且N =1 200,∴n =13×1 200=400.答案:(1)0.05 (2)400 例2 解析:由题意第7组中抽取的号码的个位数字为3,这是因为6+7=13,而十位数字为6,故抽取的号码为63,应填63. 答案:63迁移发散2 解:(1)当x =24时,按规则可知所抽取的样本的10个号码依次为: 24,157,290,323,456,589,622,755,888,921.(2)当k =0,1,2,…,9时,33k 的值依次为0,33,66,99,132,165,198,231,264,297;又 抽取样本的10个号码中有一个的后两位数是87,从而x 可以为87,54,21,88,55, 22, 89,56,23,90,所以x 的取值范围是{21,22,23,54,55,56,87,88,89,90}.例3 解析:将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x 人,则40200=x 100,解得x =20. 答案:37 ,20迁移发散3 解析:由已知条件得:x 2 000=0.19,则x =380,y +z =2 000-(373+377+380+370)=500用分层抽样的方法应在三年级抽取的学生人数为642 000×500=16. 答案:B 家庭作业答案 1.解析:高一年级抽取的人数为:300900×45=15,高二年级抽取的人数为:200900×45=10,高三年级抽取的人数为:400900×45=20. 答案:A 2. 答案:D3.解析:设老年职工人数为x 人,中年职工人数为2x ,所以160+x +2x =430,得x =90.由题意老年职工抽取人数为90×32160=18(人). 答案:B 4.解析:由分层抽样方法得:33+4+7×n =15,解得n =70. 答案:C 5.解析:抽样比为25200=18,由于超过45岁的共有80人,因此应抽取80×18=10(人).答:C 6.解析:设喜欢的学生为5x ,不喜欢的为x ,一般的为3x ,则3x -x =12,x =6.全班共有学生9×6=54(人),其中为喜欢的为30人. 答案:37.解析:利用分层抽样可知从3个分厂抽出的100个电子产品中,每个厂中的产品个数比也为1∶2∶1,故分别有25,50,25个.再由三个厂算出的平均值可得100件产品的总的平均寿命为980×25+1 020×50+1 032×25100=1 013 (h). 答案:1 013 8.解析:设样本的总容量为x ,则x 3 000×1 300=130,∴x =300. ∴A 产品和C 产品在样本中共有300-130=170(件).设C 产品的样本容量为y ,则y +y+10=170,∴y =80.∴C 产品的数量为3 000300×80=800. 答案:800 9.解析:由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76. 答案:7610.解:(1)该总体的平均数为x =16(5+6+7+8+9+10)=152.(2)用简单随机抽样方法从6名学生中抽取2名,不同的方法种数为A 26=30.其中样本平均数与总体平均数之差的绝对值不超过0.5的抽法种数为14种,由古典概型公式P =1430=715. 11. 解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%,解得b =50%,c =10%.故a =100%- 50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人).。

高中数学抽样方法-课文知识点解析

高中数学抽样方法-课文知识点解析

然后请抽取的几个同学如实填写问卷,统计出数据,填入下表.力,这也符合素质教育的要求.抽样方法-课文知识点解析1.常用抽样方法:简单随机抽样、分层抽样和系统抽样.2.简单随机抽样一般地,从总体中抽取一定量的样本,在抽取过程中要保证每个个体被抽到的概率相同,这样的抽样方法叫简单随机抽样.通常采用抽签法和产生随机数字的方法(利用工具产生随机数).(1)抽签法抽签法的实施步骤:a.给调查对象群体(共有N个)中的每个对象编号(号码可以从1到N).b.准备“抽签”工具(签可以是纸条、卡片或小球),实施“抽签”.先把号码写在形状、大小相同的签上,然后把签放在同一个箱子里,进行均匀搅拌,每次从中抽出一个签,连续抽n次,就得到一个容量为n的样本.c.对样本中的每一个体进行测量或调查,得到数据,通过分析数据得出结论.例如:请用抽签法设计一个调查方案,调查你所在学校学生喜欢体育活动的情况.(以总体数量为N)抽取n个样本为例.第一步,给全体同学编号,号码从1到N;第二步,准备N个大小、形状相同的签,把号码(1~N)写在签全析提示我们知道要做到绝对地随机抽取样本非常困难,因此在抽样过程中尽可能避免人为因素的影响,而抽签法和产生随机数字法恰好具备此特点.抽签法最大的优点是简便易行,但此种方法不宜适用于总体数量较大的对象,一般适用于个体数量较少的对象.要点提炼上,每次抽取一个签,连续抽n次,就得到一个容量为n的样本;一个调查方案的设计一定要科学、合理,要易于操作,易得出数据便第三步,对样本中的每一个体进行调查.可设计一个问卷,如下.你对体育活动的喜欢程度A.喜欢B.一般C.不喜欢说明:只准选择一个答案.查结论,写出调查报告.(2)产生随机数把总体中的N个个体依次编上0,1,2,…,N-1的号码,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,…,N-1中的随机数,产生的随机数是几,就选几号个体,直到抽到预先规定的样本数.利用转盘或摸球产生随机数,这种方法大家都比较熟悉,并且简便易行,尤其当总体容量不大时.这种方法的缺点是当总体容量很大时,制作转盘和进行摸球就比较困难了.利用随机数表产生随机数,是其中最重要、最常用的一种方法.下面举例说明如何利用随机数表来抽取样本.为了检验某种产品的质量,决定从40件产品中抽取10件进行检于统计;问卷的设计更要具有科学性,选项要全面、合理.通过调查方案的设计和实施,有利于提高同学们的思维、逻辑、组织和实践能全析提示利用抽签法抽取样本时,编号应从1开始;而利用随机数抽取样本时,编号应从0开始.利用随机数表产生随机数是最常用的产生随机数的方法,要掌握此种方法的步骤.查.在利用随机数表抽取这个样本时,可按下面步骤进行.表3-178166572080263140702436997280198 32049243493582003623486969387481 29763413284142412424198593132322 83039822588824101158272964432943 5556852661668231243884554618444526357900337091601620388277574950 32114919730649167677873399746732 27486198716441487086288885191620 74770111163024042979799196835125 5379707626942927439955198106850192644607202139207766381732561640 58587766317005002593054553707814 28896628675782311589006200473815 51318186370945216665532553832702 9055719621723207111413844359448879005870260288135509432400304750 36939212055773697162956813129438 03803338013845604230649638060347 02464469971983161285035723892390 7266008168972851466606204596340093124779573789184550399455739229 61116098096573526847303499773770 23104476914806792662206205229234 98268857867566425471882043082105 6703824860646962005381886494450911109486653339541944151616823404 9651 1456 5613 0357 4244 3341 96053567 8350 5728 4338 0824 7899 1307 5814 8688 6982 51267736 3383 6215 344185782277 64907644 7085 8361 5662 4141 9877 37478570 215081404355 5321 2548 0208 7543 9169 0408 4353 6122 8913 9930 4169 6032 2127 0162 6176 4969 8185 9312 8748 8575 8090 9872 1968 0263 0081 2662 6831 31062959 9011 1448 4346 7019 8148 1557 8400第一步,先将40件产品编号,可以编为全析提示用随机数表产生随机数分三步,一00,01,02,…,38,39;第二步,在随机数表中任选一个数开始,由于总体的编号是两位数,我们可以一次选取其中的两列,组成一个两位数.我们从附表的第17列和第18列的第2行开始选数;第三步,从选定的数36开始,得到第一个两位数,将它取出;继续向下读,由上至下分别是24,11,24,16,76,70,29,43,77,25,15,66,11,55,71,42,12,46,45,68,26,54,00,…其中24,11重复出现,76,70,43,77,66,55,71,42,46,45,68,54超过39,不能选取,这样选取的10个样本的编号分别为36,24,11,16,29,25,15,12,26,00.课本例1,严格地按照用随机数表产生随机数的步骤进行的.在选数的过程中,是从表3-1中第6列和第7列这两列的第4行开始,由上至下的顺序进行选数的.事实上,定位置和选数的顺序是任意的.下面我们用另外一种顺序选取10个样本.第一步,将总体中的每个个体进行编号:00,01,02, (79)第二步,由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如从表3-1中第1列和第2列这两列的第三行开始选数,由左至右分别是29,76,34,13,28,41,42,41,24,24,19,85,93,13,23,…其中13,41,24重复出现,83,93超过79,不能选取,这样选取的10个样本的编号分别为29,76,34,13,28,41,42,24,19,23.3.分层抽样将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中随机抽取一定的样本,这种抽样方法通常叫做分层抽样,有时也称为类型抽样.例如教材中的问题2,如若用简单随机抽样,则抽到的15个样本很可能不能按照它们的家数之比抽取,这样得到的数据就不能是编号;二是定位置;三选数.定住位置后,读数的方向可以向右,也可以向左、向上、向下等.取数过程中,要把不符合要求的数(超过最大编码)和与前面重复的数去掉.利用随机数表选取样本的一般步骤:①编号;②定位;③选数.选数过程中,重复的数字只取一个,超过最大编号的数不能取.思维拓展定位置是任意的,选数的顺序是任意的,没有任何约束,所以选取的样本的编号可以是多种多样的,并不唯一.全析提示当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占比例进行抽样.由于分层抽样充分地利用了我们所掌握的信息,使样本具有较好地代表性,而在各层中进行抽样时,大真实地反映情况,误差很大;为了避免这种情况,我们按照大型、多数情况下采用简单随机抽样,有中型、小型的比例,从100家大型商店中抽出1个代表,从500时也会用到其他方法,这样需根据家中型商店中抽出5个代表,从900家小型商店中抽出9个代表.问题的需要来决定.再例如,一个单位有职工500人,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工身体状况有关的某项指标,要从中抽取一个容量为100的样本.由于职工年龄与这项指标有关,决定采用分层抽样的方法进行抽取.因为样本容量与总体个数的比为100∶500=1∶5,所以在各年龄段抽取的个体数依次是本例符合分层抽样的特点和适用范围.125280955,5,5,即25,56,19.在各年龄段分别抽取时,可采用简单随机抽样,将各年龄段抽取的个体合在一起,就是所要抽取的样本.课本例2,显然不同类型的农田之间的产量有较大差异,也就是说,总体由差异明显的几部分组成,故采用分层抽样的方法,对不同类型的农田按其总数的比例来抽取.假设本例中共有农田500亩,山地、丘陵、平原和洼地各占农田总数的10%、20%、40%和30%,欲抽取50亩进行产量调查,则应抽取5亩山地、10亩丘陵、20亩平原和15亩洼地.课本例3,由于不同层次管理人员的收入差异很大,故采取分层抽样的方法.不同层抽取样本的数目等于抽取样本总数与不同层次管理人员所占总体比例的积,所以应抽取:高层管理人员:100×5%=5(人),中层管理人员:100×15%=15(人),一般员工:100×80%=80(人).4.系统抽样系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按照相同的间隔(称为抽抽样距)抽取其他样本,这种抽样方法有时也叫等距抽样或机械抽样.例如,为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽一个容量为50的样本.假定这1000名学生的编号是1,2,…,1000,由于50∶1000=1∶20,我们将总体分成50个部分,其中每一部分包括20个个体,例如第一部分的编号是1,2,3,…,20,然后在第一部分随机抽取一个号码,比如它是18号,那么可以从第18号起,每隔20个抽取一个号码,这样得到了一个容量为50的样本,它们的号码分别是:18,38,58,…,978,998.由于总体中的个体数1000正好能被样本容量整除,可以用它们的比值作为抽样距.如果不能整除,比如总体中的个数为1003,样本容量仍为50,这时可先用简单随机抽样先从总体中剔除3个个体,使剩下的个体数1000能被50整除,然后再按系统抽样法往下进行.在抽样时,如果总体的排列存在明显的周期性或者事先是排好序的,那么利用系统抽样进行抽样时将会产生明显的偏差,因为这要点提炼采用分层抽样时,不同层次所选取的样本数=抽取样本总数×该层所占总体的比例.全析提示当总体容量和样本容量都很大时,采用简单随机抽样或分层抽样,都是非常麻烦的,系统抽样正好能解决这个问题.要点提炼用系统抽样抽取一定容量的样本时,首先要分清总体中的个数是否能被样本容量整除,否则就会出现抽样距不等的情况,就不合乎系统抽样的原则.全析提示在利用系统抽样进行抽样时,要注意总体的排列有没有明显的周期性,这时抽样距的选取要恰当,要打乱周期性;如果总体事先排好序,要先打乱顺序,再抽样,以达到抽取的样本具有广泛的代表性.系统抽样的步骤:①确定分段情况和抽样距;②编号;③确定第一个样本编号;④等距抽样.在确定第一个样本编号时,一定要采用简单随机抽样,并且一定要在样抽取的样本不具有代表性.如课本P20思考交流中的两个问题,第一段内抽取,否则无法保证等距第一个问题中,抽取的样本不具备代表性,身体偏高;第二个问题中,采取这样的抽样方法,只对周一的交通流量进行了统计,无法代表一个月的状况,只要改变抽样距,如抽样距改为6,就可以了.课本例4,由于总体个体数太大,又无明显的层次差异,所以不能采用简单随机抽样和分层抽样,采用系统抽样是比较合适的.抽样.对于系统抽样,经常遇见的两种情况要加以区分,以避免不必要的麻烦.三种抽样方法的比较 课本给出了系统抽样的一般步骤,要严格地按步骤进行抽样. 第一步,确定分段情况,所抽取样本数就是需要分的段数,应为 50;确定抽样距,抽样距=总体个体数/抽取样本数 =10000/50=200;第二步,按顺序进行编号;第三步,采用简单随机抽样从第一个时间段抽取第一个样本; 第四步,等距抽样,顺序抽取相应编号的样本.课本例 5,本例与例 4 的不同之处在于,总体个体数不能被样本 总数整除,这时可把商作为抽样距,余数得通过简单随机抽样从 总体中剔除,对剩余进行编号,其余完全同例 4. 5.三种抽样方法的比较上面介绍了简单随机抽样、分层抽样和系统抽样.下面通过列表 将它们作一个简单的比较.熟悉三种抽样方法各自的特点和适 用范围,以便针对不同的实际问题, 采取不同的抽样方法.。

高二数学抽样方法人教版

高二数学抽样方法人教版

高二数学抽样方法人教版【同步教育信息】一. 本周教学内容抽样方法1. 简单随机抽样(1)概念一般地,设一个总体的所有个体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

(2)简单随机抽样的特征① 它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析。

② 这样的抽样是从总体中逐个进行抽取,便于操作。

③ 它是不放回抽样,具有实用性,而且在整个抽样过程中所抽取的样本中没有被重复抽取的个体,便于分析和计算。

④ 它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率相等,一般地,如果用简单随机抽样从个体数为N 的总体中抽取一个容量为n 的样本,那么每个个体被抽到的概率相等都等于Nn ,以下加以证明: 从总体中第一次抽取个体时,其中任意一个个体设为a 被抽取的概率为NP 11= 从总体中第二次抽取个体时,恰好抽到个体a 的概率为N A A P NN12112==-,… 依次类推,以总体中第n 次抽到个体a 的概率为N A A P n Nn N n 111==-- 由互斥事件加法公式有个体a 在整个抽样过程中被抽到的概率为Nn P P P P n =+++= 21 (3)常用的简单随机抽样方法① 抽签法将总体中所有个体编号,并把号码写在形状、大小相同的号签上,然后将这些号签放在同一个盒子里,每次从中抽出一个号签,连续抽取n 次,就得到一个容量为n 的样本,这种方法适用于总体个数不多时。

② 随机取数法事先制好,表中共随机出现0、1、2、…、9十个数字,且表中每个位置数字是等概率出现的。

2. 分层抽样(1)概念将总体分成几部分,然后按各部分所占的比进行抽样,这种抽样叫分层抽样,其中所分成的各部分叫层。

(2)分层抽样的特征① 分层抽样适用于总体由差异明显的n 部分组成的情形。

高中数学抽样方法-课文知识点解析

高中数学抽样方法-课文知识点解析

抽样方法-课文知识点解析1.常用抽样方法:简单随机抽样、分层抽样和系统抽样.2.简单随机抽样一般地,从总体中抽取一定量的样本,在抽取过程中要保证每个个体被抽到的概率相同,这样的抽样方法叫简单随机抽样.通常采用抽签法和产生随机数字的方法(利用工具产生随机数). (1)抽签法抽签法的实施步骤:a.给调查对象群体(共有N个)中的每个对象编号(号码可以从1到N).b.准备“抽签”工具(签可以是纸条、卡片或小球),实施“抽签”.先把号码写在形状、大小相同的签上,然后把签放在同一个箱子里,进行均匀搅拌,每次从中抽出一个签,连续抽n次,就得到一个容量为n的样本.c.对样本中的每一个体进行测量或调查,得到数据,通过分析数据得出结论.例如:请用抽签法设计一个调查方案,调查你所在学校学生喜欢体育活动的情况.(以总体数量为N)抽取n个样本为例.第一步,给全体同学编号,号码从1到N;第二步,准备N个大小、形状相同的签,把号码(1~N)写在签上,每次抽取一个签,连续抽n次,就得到一个容量为n的样本;第三步,对样本中的每一个体进行调查.可设计一个问卷,如下. 你对体育活动的喜欢程度A.喜欢B.一般C.不喜欢说明:只准选择一个答案.然后请抽取的几个同学如实填写问卷,统计出数据,填入下表.由样本情况估计全校所有同学喜欢体育活动的情况,从而得出调查结论,写出调查报告.(2)产生随机数把总体中的N个个体依次编上0,1,2,…,N-1的号码,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,…,N-1中的随机数,产生的随机数是几,就选几号个体,直到抽到预先规定的样本数.利用转盘或摸球产生随机数,这种方法大家都比较熟悉,并且简便易行,尤其当总体容量不大时.这种方法的缺点是当总体容量很大时,制作转盘和进行摸球就比较困难了.利用随机数表产生随机数,是其中最重要、最常用的一种方法.下面举例说明如何利用随机数表来抽取样本.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查.在利用随机数表抽取这个样本时,可按下面步骤进行. 全析提示我们知道要做到绝对地随机抽取样本非常困难,因此在抽样过程中尽可能避免人为因素的影响,而抽签法和产生随机数字法恰好具备此特点.抽签法最大的优点是简便易行,但此种方法不宜适用于总体数量较大的对象,一般适用于个体数量较少的对象.要点提炼一个调查方案的设计一定要科学、合理,要易于操作,易得出数据便于统计;问卷的设计更要具有科学性,选项要全面、合理.通过调查方案的设计和实施,有利于提高同学们的思维、逻辑、组织和实践能力,这也符合素质教育的要求.全析提示利用抽签法抽取样本时,编号应从1开始;而利用随机数抽取样本时,编号应从0开始.利用随机数表产生随机数是最常用的产生随机数的方法,要掌握此种方法的步骤.表3-17816 6572 0802 6314 0702 4369 9728 0198 3204 9243 4935 8200 3623 4869 6938 7481 2976 3413 2841 4241 2424 1985 9313 2322 8303 9822 5888 2410 1158 2729 6443 2943 5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 4950 3211 4919 7306 4916 7677 8733 9974 6732 2748 6198 7164 4148 7086 2888 8519 1620 7477 0111 1630 2404 2979 7991 9683 5125 5379 7076 2694 2927 4399 5519 8106 85019264 4607 2021 3920 7766 3817 3256 1640 5858 7766 3170 0500 2593 0545 5370 7814 2889 6628 6757 8231 1589 0062 0047 3815 5131 8186 3709 4521 6665 5325 5383 2702 9055 7196 2172 3207 1114 1384 4359 44887900 5870 2602 8813 5509 4324 0030 4750 3693 9212 0557 7369 7162 9568 1312 9438 0380 3338 0138 4560 4230 6496 3806 0347 0246 4469 9719 8316 1285 0357 2389 2390 7266 0081 6897 2851 4666 0620 4596 34009312 4779 5737 8918 4550 3994 5573 9229 6111 6098 0965 7352 6847 3034 9977 3770 2310 4476 9148 0679 2662 2062 0522 9234 9826 8857 8675 6642 5471 8820 4308 2105 6703 8248 6064 6962 0053 8188 6494 45091110 9486 6533 3954 1944 1516 1682 3404 9651 1456 5613 0357 4244 3341 9605 3567 8350 5728 4338 0824 7899 1307 5814 8688 6982 5126 7736 3383 6215 3441 8578 2277 6490 7644 7085 8361 5662 4141 9877 37478570 2150 8140 4355 5321 2548 0208 7543 9169 0408 4353 6122 8913 9930 4169 6032 2127 0162 6176 4969 8185 9312 8748 8575 8090 9872 1968 0263 0081 2662 6831 3106 2959 9011 1448 4346 7019 8148 1557 8400第一步,先将40件产品编号,可以编为00,01,02, (38)39;全析提示用随机数表产生随机数分三步,一第二步,在随机数表中任选一个数开始,由于总体的编号是两位数,我们可以一次选取其中的两列,组成一个两位数.我们从附表的第17列和第18列的第2行开始选数;第三步,从选定的数36开始,得到第一个两位数,将它取出;继续向下读,由上至下分别是24,11,24,16,76,70,29,43,77,25,15,66,11,55,71,42,12,46,45,68,26,54,00,…其中24,11重复出现,76,70,43,77,66,55,71,42,46,45,68,54超过39,不能选取,这样选取的10个样本的编号分别为36,24,11,16,29,25,15,12,26,00.课本例1,严格地按照用随机数表产生随机数的步骤进行的.在选数的过程中,是从表3-1中第6列和第7列这两列的第4行开始,由上至下的顺序进行选数的.事实上,定位置和选数的顺序是任意的.下面我们用另外一种顺序选取10个样本.第一步,将总体中的每个个体进行编号:00,01,02,…,79; 第二步,由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如从表3-1中第1列和第2列这两列的第三行开始选数,由左至右分别是29,76,34,13,28,41,42,41,24,24,19,85,93,13,23,…其中13,41,24重复出现,83,93超过79,不能选取,这样选取的10个样本的编号分别为29,76,34,13,28,41,42,24,19,23. 3.分层抽样将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中随机抽取一定的样本,这种抽样方法通常叫做分层抽样,有时也称为类型抽样.例如教材中的问题2,如若用简单随机抽样,则抽到的15个样本很可能不能按照它们的家数之比抽取,这样得到的数据就不能真实地反映情况,误差很大;为了避免这种情况,我们按照大型、中型、小型的比例,从100家大型商店中抽出1个代表,从500家中型商店中抽出5个代表,从900家小型商店中抽出9个代表. 再例如,一个单位有职工500人,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工身体状况有关的某项指标,要从中抽取一个容量为100的样本.由于职工年龄与这项指标有关,决定采用分层抽样的方法进行抽取.因为样本容量与总体个数的比为 100∶500=1∶5,所以在各年龄段抽取的个体数依次是 5125,5280,595,即25,56,19.在各年龄段分别抽取时,可采用简单随机抽样,将各年龄段抽取的个体合在一起,就是所要抽取的样本.是编号;二是定位置;三选数.定住位置后,读数的方向可以向右,也可以向左、向上、向下等.取数过程中,要把不符合要求的数(超过最大编码)和与前面重复的数去掉.利用随机数表选取样本的一般步骤:①编号;②定位;③选数.选数过程中,重复的数字只取一个,超过最大编号的数不能取.思维拓展定位置是任意的,选数的顺序是任意的,没有任何约束,所以选取的样本的编号可以是多种多样的,并不唯一.全析提示当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占比例进行抽样.由于分层抽样充分地利用了我们所掌握的信息,使样本具有较好地代表性,而在各层中进行抽样时,大多数情况下采用简单随机抽样,有时也会用到其他方法,这样需根据问题的需要来决定.本例符合分层抽样的特点和适用范围.课本例2,显然不同类型的农田之间的产量有较大差异,也就是说,总体由差异明显的几部分组成,故采用分层抽样的方法,对不同类型的农田按其总数的比例来抽取.假设本例中共有农田500亩,山地、丘陵、平原和洼地各占农田总数的10%、20%、40%和30%,欲抽取50亩进行产量调查,则应抽取5亩山地、10亩丘陵、20亩平原和15亩洼地.课本例3,由于不同层次管理人员的收入差异很大,故采取分层抽样的方法.不同层抽取样本的数目等于抽取样本总数与不同层次管理人员所占总体比例的积,所以应抽取:高层管理人员:100×5%=5(人),中层管理人员:100×15%=15(人),一般员工:100×80%=80(人).4.系统抽样系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按照相同的间隔(称为抽抽样距)抽取其他样本,这种抽样方法有时也叫等距抽样或机械抽样.例如,为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽一个容量为50的样本.假定这1000名学生的编号是1,2,…,1000,由于50∶1000=1∶20,我们将总体分成50个部分,其中每一部分包括20个个体,例如第一部分的编号是1,2,3,…,20,然后在第一部分随机抽取一个号码,比如它是18号,那么可以从第18号起,每隔20个抽取一个号码,这样得到了一个容量为50的样本,它们的号码分别是:18,38,58,…,978,998.由于总体中的个体数1000正好能被样本容量整除,可以用它们的比值作为抽样距.如果不能整除,比如总体中的个数为1003,样本容量仍为50,这时可先用简单随机抽样先从总体中剔除3个个体,使剩下的个体数1000能被50整除,然后再按系统抽样法往下进行.在抽样时,如果总体的排列存在明显的周期性或者事先是排好序的,那么利用系统抽样进行抽样时将会产生明显的偏差,因为这样抽取的样本不具有代表性.如课本P20思考交流中的两个问题,第一个问题中,抽取的样本不具备代表性,身体偏高;第二个问题中,采取这样的抽样方法,只对周一的交通流量进行了统计,无法代表一个月的状况,只要改变抽样距,如抽样距改为6,就可以了.课本例4,由于总体个体数太大,又无明显的层次差异,所以不能采用简单随机抽样和分层抽样,采用系统抽样是比较合适的.课本给出了系统抽样的一般步骤,要严格地按步骤进行抽样.第一步,确定分段情况,所抽取样本数就是需要分的段数,应为50;确定抽样距,抽样距=总体个体数/抽取样本数=10000/50=200;第二步,按顺序进行编号;要点提炼采用分层抽样时,不同层次所选取的样本数=抽取样本总数×该层所占总体的比例.全析提示当总体容量和样本容量都很大时,采用简单随机抽样或分层抽样,都是非常麻烦的,系统抽样正好能解决这个问题.要点提炼用系统抽样抽取一定容量的样本时,首先要分清总体中的个数是否能被样本容量整除,否则就会出现抽样距不等的情况,就不合乎系统抽样的原则.全析提示在利用系统抽样进行抽样时,要注意总体的排列有没有明显的周期性,这时抽样距的选取要恰当,要打乱周期性;如果总体事先排好序,要先打乱顺序,再抽样,以达到抽取的样本具有广泛的代表性.系统抽样的步骤:①确定分段情况和抽样距;②编号;③确定第一个样本编号;④等距抽样.在确定第一个样本编号时,一定要采用简单随机抽样,并且一定要在第一段内抽取,否则无法保证等距抽样.对于系统抽样,经常遇见的两种情况要加以区分,以避免不必要的麻烦.第三步,采用简单随机抽样从第一个时间段抽取第一个样本;第四步,等距抽样,顺序抽取相应编号的样本.课本例5,本例与例4的不同之处在于,总体个体数不能被样本总数整除,这时可把商作为抽样距,余数得通过简单随机抽样从总体中剔除,对剩余进行编号,其余完全同例4.5.三种抽样方法的比较上面介绍了简单随机抽样、分层抽样和系统抽样.下面通过列表将它们作一个简单的比较.三种抽样方法的比较熟悉三种抽样方法各自的特点和适用范围,以便针对不同的实际问题,采取不同的抽样方法.。

高二数学随机抽样2

高二数学随机抽样2
抽样方法小结课
三种抽样方法的比较
类 别 共同点 各自特点
相互联系
使用范围
简单 随机 抽样
系 统 抽 样
分层 抽样
(1)抽样 过程中每 个个体被 抽取的概 率相等 (2) 每次 抽出个体 后不再将 它放回, 即不放回 抽样
从总体中逐个抽 取
总体中的个 体数较少
将总体均分成几 部分,按事先确 定的规则在各部 分抽取
①采用随机抽样法将零件编号为00,01,…,99,抽签取出20个。 ②采用系统抽样法,将所有零件分成20组,每组5个,然后从每组中随机抽 取1个。 ③采用分成抽样法,从一级品中随机抽样4个,从二级品随机抽样6个,从三 级品中随机抽取10个。
对于上述问题的下列说法正确的是( A )
A.不论采用哪一种抽样方法,这100个零件每一个被抽到的概率都是0.2
山区抽_个乡1 ,在丘陵地区抽_乡,2在平原地区抽_ 个乡2 。
(2).高三某班有男生56人,女生42人,现在用分 层抽样的方法,选出28人参加一项活动,则男生 和女生的人数分别是:____1_6_和__1_2_____
形的秋闪纯金宝石体。那是用透出一种奇特的浓浓异香并能发出好听声响的宝石,经过特殊工艺镶嵌而成。一条宽阔笔直,异常宁静的大道通向巨大烟状玉,整个路面
是用金红色的荡球鼓锤形的光云玛瑙和亮蓝色的荡棱菱形的彩云珊瑚铺成,上面还铺着一条亮红色的光闪闪,软绒绒的豪华地毯……远远看去,这次创意表演所用的器
物很有特色。只见在巍巍巨树下面摆放着闪着奇光的双兽怪影人工树!那上面悬浮着七块旧面花!在七块旧面花上面悬浮着缓慢旋转的七只肥猫,再看巍巍巨树的上空
了一声,突然耍了一套倒立扭曲的特技神功,身上忽然生出了七只美如船尾一般的深黄色翅膀!最后颤起闪着荧光的薄耳朵一颤,快速从里面跳出一道银辉,他抓住银

高二数学随机抽样2

高二数学随机抽样2
以每个个体的入样概率是( A )
A.相等的 C.与L有关
B.不相等的 D.与编号有关
分析:由系统抽样的定义和特点知,在抽样过程中 每个个体被抽取的概率是相等的,即每个个体的入 样概20个,二级品30个,三级 品50个,从中抽取20个作为样本。
①采用随机抽样法将零件编号为00,01,…,99,抽签取出20个。

;https:/// 信用卡提额
总体中的个 体数较多
将总体分成几层, 各层抽样时采用 总体由差异
分层进行抽取
简单随机抽样或 明显的几部
系统抽样
分组成
例2,系统抽样又称为等距抽样,从N个个体中抽取n
个个体为样本,先确定抽样间隔,即抽样距k。从第 一段1,2,…,k个号码中随机抽取一个入样号码L, 则L, L+k, …,L+(n-1)k号码均入样构成样本,所
三种抽样方法的比较
类 别 共同点
各自特点
相互联系
使用范围
简单 随机 抽样
系 统 抽 样
分层 抽样
(1)抽样 过程中每 个个体被 抽取的概 率相等 (2) 每次 抽出个体 后不再将 它放回, 即不放回 抽样
从总体中逐个抽 取
总体中的个 体数较少
将总体均分成几 部分,按事先确 定的规则在各部 分抽取
在起始部分抽 样时采用简单 随机抽样
②采用系统抽样法,将所有零件分成20组,每组5个,然后从每组中随机抽 取1个。 ③采用分成抽样法,从一级品中随机抽样4个,从二级品随机抽样6个,从三 级品中随机抽取10个。
对于上述问题的下列说法正确的是( A )
A.不论采用哪一种抽样方法,这100个零件每一个被抽到的概率都是0.2
B. ①,②两种抽样方法,这100件零件中每一个被抽到的概率为0.2,③不是 C. ①,③两种抽样方法,这100个零件中每个零件的概率是0.2,②不是 D.采用不同的抽样方法,这100个零件中每个零件被抽到的概率各不相同

高二数学第一章统计知识精讲 人教版

高二数学第一章统计知识精讲 人教版

高二数学第一章统计知识精讲 人教版一. 本周教学内容:高三新课:第一章 统计二. 知识内容:1. 抽样方法统计的基本方法是用样本估计总体,即通常不是直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况估计总体相应情况,为使样本能更充分反映总体的情况,采用简单随机抽样和分层抽样这两种常用的抽样方法,这两种方法的共同特点是在抽样过程中,每个个体被抽取的概率相等,体现了抽样的客观性和公平性。

其中简单随机抽样是最简单和最基本的抽样方法,在进行分层抽样时要用到简单随机抽样。

(1)简单随机抽样① 定义:一般地,设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

② 简单随机抽样的特征。

<1> 它要求被抽取的样本的总体个数有限,以便对其中各个个体被抽取的概率进行分析。

<2> 这种抽样是从总体中逐个进行抽取,便于操作。

<3> 它是不放回方式的抽样,具有实用性,而且在整个抽样过程中所抽取的样本中没有被重复抽取的个体,便于分析和计算。

<4> 它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率相等,从而保证抽样的公平性,一般地如果用简单随机抽样从个体为N 的总体中抽取一个容量为n 的样本,那么每个个体被抽到的概率都等于Nn ,证明如下: 设个体a 为总体中的任意一个个体,第一次抽取时,个体a 被抽到的概率NP 11=;第二个抽取时,个体a 被抽到的概率2112NNA A P -=N 1=;…第n 次抽取时,个体a 被抽到的概率为N A A P n Nn N n 111==--,由互斥事件的加法公式,在整个抽样过程中个体a 被抽到的概率为Nn P P P P n =+++= 21。

另外,如果采用一次性从总体为N 的个体中抽取容量为n 的个体,任何一个个体被抽到的概率也是Nn 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸿运国际官网
[多选]建筑石膏的技术性质有()。A、微膨胀性B、凝结硬化快C、抗冻性强D、耐水性强E、防水性强 [单选]干线货物运输不是()货物运输。A.大运量B.快速C.短距离D.大范围 [判断题]二氧化碳灭火剂在甲板上比舱室内灭火效果好.A.正确B.错误 [填空题]液氨罐检修置换。顺序为开放空阀-打开人孔-()-排水-()-鼓风机吹扫-活动物试验-检测氨浓度-合格后交出检修。 [判断题]境外个人手持外币现钞汇出,当日累计超过等值1万美元的,除凭本人有效身份证件外,还应提供经海关签章的《中华人民共和国海关进境旅客行李物品申报单》或本人原存款银行外币现钞提取单据。A.正确B.错误 [单选,A1型题]颈深部化脓性蜂窝织炎的临床处理是()A.不可行气管切开B.穿刺引流C.长期抗生素治疗D.早期切开彻底引流E.避免手术治疗 [单选]毛周角化病的临床特点,描述正确的是()A.常见于青少年,皮损常随年龄增长而加重B.皮损为针尖到粟粒大小与毛孔一致的坚硬丘疹,顶端有淡褐色角栓C.皮损对称,好发于大腿内侧D.一般无红斑 [单选]关于无资质承揽工程,下列表述中正确的是()。A.无资质承包主体签订的专业分包合同或劳务分包合同都是无效合同B.当作为无资质的"实际施工人"的利益受到损害时,不能向合同相对人主张权利C.当无资质的"实际施工人"以分包人为被告起诉时,法院不应受理D.无资质的"实际施 [单选,A2型题,A1/A2型题]目前公认的引起先天性胆总管囊肿的原因中,不包括()A.肝内胆管闭锁B.胆总管远端神经节细胞发育异常C.胆胰管连接部异常D.胆道上皮增生不平衡E.病毒感染 [问答题,简答题]防护镜、防护面罩的作用 [单选,A2型题,A1/A2型题]小儿腹股沟斜疝发病的相关因素为()A.生后腹膜鞘状突未闭B.腹股沟区解剖结构薄弱C.剧烈哭闹等腹压增高因素D.小儿多仰卧,双髋屈曲,使腹肌松弛E.以上都是 [单选]企业在办理出口退(免)税资格认定时,按照规定报送有关材料后,税务机关和对资料是否齐全、是否符合法定形式,对于符合条件的()。A、当场受理,并在1个工作日内转下一环节,由税务管理部门进行调查核实B、当场受理,并在1个工作日内将相关资料信息转下一环节按规定程序审 [单选]注意的广度是指()A.同一时间意识能清楚把握的对象的数量B.意识能长时间地保持在所选择的对象上C.任务要求时意识由一个对象转到另一个对象D.同一时间内把意识指向不同的对象 [单选]下列不符合发票开具要求的是()。A.开具发票时应按号顺序填开,填写项目齐全、内容真实、字迹清楚B.填写发票应当使用中文C.可以拆本使用发票D.开具发票时限、地点应符合规定 [单选]一般来讲,招收应届毕业人才的主要途径是()A、人才交流会B、各种广告C、大专院校及职业技工学校D、职业介绍所 [填空题]A,B两组分等摩尔扩散的代表单元操作是(),A在B中单向扩散的代表单元操作是()。 [单选]在实施ERP时,企业方项目组的角色中,不存在的是:()A.项目领导小组B.项目经理C.用户组D.生产的一线工人 [单选]情报的()是情报分发范围的依据。A、合法性B、确实性C、可靠性D、秘密等级 [填空题]液氨充装系数:在10℃充装液氨时,只可装容器体积的()。在0℃充装时,允许装料为容器的()。当在-10℃充装时则更少,装料不可超过容器体积的()。只有这样,才能保证在设计温度()下,容器内仍有10%的气相空间。 [单选]根据影像获取的部位可将放射性核素显像分为()A.局部显像和全身显像B.静态显像和动态显像C.平面显像和断层显像D.早期显像和晚期显像E.阴性显像和阳性显像 [单选,A2型题,A1/A2型题]幼儿期是指()。A.生后28天至满2周岁B.生后1个月至满2周岁C.生后1周岁至满2周岁之前D.生后1周岁至满3周岁之前E.生后2周岁至满3周岁之前 [单选,A1型题]能涌吐痰食,祛湿退黄的药物是()A.瓜蒂B.半夏C.天南星D.桔梗E.胆矾 [单选]()接口:承载BSS和PCF之间信令的传输,用于维护BSS到PCF之间的A8连接。A8B.A9C.A10D.A11 [单选]下列关于等深线用途的说法中,何者是错误的()。A.等深线可用于避险B.等深线可用于导航C.等深线可用来缩小概率船位区D.等深线可用来测定仪器误差 [单选]下列痹证的治法。哪项是最常用的()A.益气养血B.祛邪通络C.活血行瘀D.健脾化湿E.补益肝肾 [单选]亚急性感染性心内膜炎最常见的并发症是()A.心肌脓肿B.心力衰竭C.急性心肌梗死D.肾脓肿E.化脓性脑膜炎 [单选]某设备供应商,不按设备采购合同的约定交付设备,设备供应商应承担()。A.侵权责任B.刑事责任C.违约责任D.行政责任 [单选]客运专线预制梁混凝土拌和物入模温度宜在()℃。A、3~40B、5~35C、5~30 [单选,A1型题]水解后主要产生没食子酸和葡萄糖(或多元酚)的鞣质是()A.没食子鞣质B.逆没食子鞣质C.咖啡鞣质D.缩合鞣质E.含有没食子酰基的缩合鞣质 [单选]不属于容器连接件的是()。A、螺栓B、管法兰C、容器筒体端部D、封头 [单选]在消费者与保险公司之间基于保险合同内容发生争议后,对于合同争议的解决方式说法不正确的是()A.调解是指在合同管理机关或法院的参与下,通过说服协调,使双方自愿达成协议平息争端B.自行协商解决方式简便,有利于增进双方的进一步信任与合作,并且有助于合同的继续执行C [单选]学龄前期易患疾病,下列哪项不正确()A.缺铁性贫血B.龋齿C.外伤D.维生素D缺乏性佝偻病E.寄生虫病 [单选]()既是注册消防工程师步入行业的"通行证",又是具体行业立足的基础。A.维护公共安全原则B.诚实守信原则C.依法执业原则D.公平竞争原则 [单选]沿岸航行,一般情况下,小船的航线应设计在()。A.10m等深线以外B.20m等深线以外C.2倍于本船吃水的海区D.A、C中水深较大的海区 [单选]甲公司销售产品每件500元,若客户购买300件(含300件)以上每件可得到50元的商业折扣。某客户2008年10月8日购买甲公司产品300件,按规定现金折扣条件为2/10,1/20,n/30。适用的增值税税率为17%。甲公司于10月12日收到该笔款项,则实际收到的款项为元。(假定计算现金折扣时考 [单选]无识别标志的航空器因特殊情况需要飞行的:()。A.必须经相关管制单位批准B.必须经中国人民解放军空军批准C.必须经中国民用航空总局空中交通管理局批准 [单选,A2型题,A1/A2型题]不索取和非法收受患者财物;不收受医疗器械、药品、试剂等生产、经营企业或人员以各种名义、形式给予的回扣、提成;不违规参与医疗广告宣传和药品医疗器械促销”体现了哪项基本行为规范()A.廉洁自律,恪守医德B.遵纪守法,依法执业C.严谨求实,精益求精 [单选]在双子叶植物次生结构中具有细胞分裂能力的结构是()。A、周皮B、韧皮部C、形成层D、木质部 [单选,A1型题]颈部副神经损伤的临床表现为()A.肩下垂B.上睑下垂C.呼吸困难D.声音嘶哑E.上臂下垂 [单选]检查隐患,除观察表面迹象外,对于隐患的具体情况应采用()方法查明。
相关文档
最新文档