四川省成都市2018届高中毕业班摸底测试数学理科试题 含答案
2018届四川省成都市高中毕业班第二次诊断性检测数学(理)试题(解析版)
2018届四川省成都市高中毕业班第二次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题,第Ⅱ卷(非选择题),满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.设集合{}11P x x =-<,{}12Q x x =-<<,则PQ =( )A .11,2⎛⎫⎪⎝⎭B .()1,2-C .()1,2D .()0,2 【答案】 D【解析】集合{}{}1102P x x x x =-<=<<,所以()0,2P Q =,故选D.考点:集合的基本运算.2.已知向量()()()2,1,3,4,,2k ===a b c .若()3-a b c ,则实数k 的值为( ) A .8- B .6- C .1- D .6 【答案】 B【解析】由题意得()33,1-=-a b ,所以60,6k k +==-.故选B. 考点:1、平面向量坐标运算;2、平面向量共线的坐标表示. 3.若复数z 满足()31i 12i z +=-,则z 等于( )A 2B .32C .2D .12【答案】 A【解析】由31i 12i z +=-,得312i 1i2z -===+.故选A.考点:复数的模及其运算.4.设等差数列{}n a 的前n 项和为n S .若4520,10S a ==,则16a =( )A .32-B .12C .16D .32 【答案】 D【解析】由41514620,410S a d a a d =+==+=,解得2d =,所以1651132a a d =+=.故选D. 考点:等差数列基本运算.5.已知,m n 是空间中两条不同的直线,,αβ为空间中两个互相垂直的平面,则下列命题正确的是( ) A .若m α⊂,则m β⊥ B .若,m n αβ⊂⊂,则m n ⊥ C .若,m m αβ⊄⊥,则m α D .若,m m n αβ=⊥,则n α⊥【答案】 C【解析】若m α⊂,可能mβ,所以A 不正确;若,m n αβ⊂⊂,则m 与n 平行或相交,所以B 不正确;因为αβ⊥,m β⊥,所以m α或m α⊂,又m α⊄,所以C 正确;对于D 选项缺少条件n β⊂,所以D 不正确.故选C.考点:点、线、面的平行和垂直关系.6.若6x⎛-⎝的展开式中含32x 项的系数为160,则实数a 的值为( )A .2B .2-C .D .- 【答案】 B【解析】展开式通项为()3662166rr r rrrr a T C xa C x --+⎛=-=- ⎝,令33622r -=,得3r =,所以()333620160a C a -=-=,所以2a =-.故选B.考点:二项式定理.7.已知函数()()s in 0,0,2f x A x A ωϕωϕπ⎛⎫=+>><⎪⎝⎭,的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( ) A.()2s in 24gx x π⎛⎫=+ ⎪⎝⎭B .()2s in 24g x x 3π⎛⎫=+⎪⎝⎭C .()2co s 2g x x =D .()2s in 24g x x π⎛⎫=-⎪⎝⎭【答案】 D【解析】由图象可知2A =,534884T πππ=-=,T ∴=π,2ω=,代入点5,28π⎛⎫-⎪⎝⎭得5s in 14ϕπ⎛⎫+=- ⎪⎝⎭,4ϕπ∴=,()2s in 24fx x π⎛⎫=+ ⎪⎝⎭,所以()2s in 244g x f x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.故选D. 考点:1、三角函数的图象;2、三角函数图象的变换.8.若x 2x ≤≤223x x+≤≤”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】 B【解析】由223x x+≤≤,解得12x ≤≤,所以“2x ≤≤”是“223x x+≤≤” 必要不充分条件.故选B.考点:1、充分条件与必要条件;2、简单的分式不等式的解法. 9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A 3B .C D .24π【答案】 C【解析】由阳马的定义和正视图和侧视图该几何体的直观图如图所示,其中1,2P A A D A B ===,以A 为原点,A B 为x 轴,A D 为y轴,A P 为z轴建立空间直角坐标系,则可设球心O 的坐标为11,,2x ⎛⎫ ⎪⎝⎭,点()0,0,1P , 由A O O P =得()221111144xx ++=++-,解得12x =,所以球的半径2R =,所以体积为343V Rπ==.故选C.考点:1、三视图;2、空间几何体的体积.10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n > 【答案】 D【解析】该程序框图的功能为求2462n S n =++++,所以()156n S n n =+=,所以7n =,所以则判断框中的条件可以是6?n >.故选D. 考点:1、算法与程序框图;2、等差数列求和. 11.已知函数()()1ln 0,0e m f x n x m n x=-->≤≤在区间[]1,e 内有唯一零点,则21n m ++的取值范围为( ) A .2e 2e,1e e 12+⎡⎤+⎢⎥++⎣⎦ B .2e ,1e 12⎡⎤+⎢⎥+⎣⎦ C .2,1e 1⎡⎤⎢⎥+⎣⎦ D .e 1,12⎡⎤+⎢⎥⎣⎦ 【答案】 A【解析】由题意知()f x 在区间[]1,e 上为减函数,所以()()10,e 0f f ≥⎧⎪⎨≤⎪⎩所以10,10e m m n -≥⎧⎪⎨--≤⎪⎩,所以1,e e 0,0e ,m m n n ≥⎧⎪--≤⎨⎪≤≤⎩所表示的可行区域(如图)是四边形A B C D ,其中()1,0A ,()e,0B ,()2e e ,e C +,()1,e D ,21n m ++表示点(),m n 与点()1,2P --连线的斜率, 又2e 2e e 1P C k +=++,e 12P D k =+,所以2e 22e 1e e 112n m ++≤≤++++.故选A.考点:1、函数的零点;2、线性规划. 12.已知双曲线C :()222210,0x y a b ab-=>>右支上的一点P ,经过点P 的直线与双曲线C 的两条渐近线分别相交于,A B 两点,若点,A B 分别位于第一,四象限,O 为坐标原点,当12A P PB =时,A O B △的面积为2b ,则双曲线C 的实轴长为( ) A .329B .169C .89D .49【答案】 A【解析】双曲线C 渐近线方程为by x a =±,可设11,b A x x a ⎛⎫ ⎪⎝⎭,22,b B x x a ⎛⎫-⎪⎝⎭,()120,0x x >>. 因为122112121211222A O B b b b S x y x y x x x x x x b aaa=-=+==△,所以122x x a =,因为12A P P B =,所以点P 的坐标为()121222,33b x x x x a -⎛⎫+ ⎪⎝⎭,所以()()222121222222199x x bx x aa b+--=,化简得21289x x a =,所以2169a a =,所以169a =,所以双曲线C 的实轴长为329.故选A.考点:双曲线方程及其性质.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在题后横线上.13.已知132a =,2312b ⎛⎫= ⎪⎝⎭,则()2lo g a b = .【答案】 13-【解析】因为2112133333122222a b --⎛⎫=⨯=⨯= ⎪⎝⎭,所以()13221lo g lo g 23a b -==-.考点:指数与对数的运算.14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为 . 【答案】 24【解析】由条形图可得喜欢篮球运动的女生有100名,喜欢篮球运动的男生有300名,所以抽取的男生人数为332244⨯=人.考点:1、统计图表;2、分层抽样.15.已知抛物线C :()220y p x p =>的焦点为F ,准线l 与x 轴的交点为A ,P 是抛物线C 上的点,且P F x ⊥轴.若以A F 为直径的圆截直线A P 所得的弦长为2,则实数p 的值为 .【答案】 【解析】由题意可得,02pF ⎛⎫⎪⎝⎭,,02p A ⎛⎫- ⎪⎝⎭,,2p P P ⎛⎫± ⎪⎝⎭,所以A F P F p ==, 所以A F P △是等腰直角三角形,所以A F 为直径的圆截直线A P 22A F ==,p =考点:抛物线的性质.16.已知数列{}n a 共16项,且181,4a a ==.记关于x 的函数()()32213n n n xf x a x a x =-+-,*n ∈N .若()1115n x a n +=≤≤是函数()n f x 的极值点,且曲线()8y f x =在点()()1616,a f a 处的切线的斜率为15,则满足条件的数列{}n a 的个数为 . 【答案】 1176【解析】由题意可得()()()()222111n n n n n f x x a x a x a x a '=-+-=-+--⎡⎤⎡⎤⎣⎦⎣⎦, 所以11n n a a +=+或11n n a a +=-,所以11n n a a +-=.又()28815f x x x '=-+,所以2161681515a a -+=,所以160a =或168a =.①当160a =时,由()()()812132873a a a a a a a a -=-+-++-=,得()*117,i i a a i i +-≤≤∈N的值有2个为1-,5个为1;由()()()1689810916154a a a a a a a a -=-+-++-=-,得()*1815,i i a a i i +-≤≤∈N的值有个6为1-,2个为1,所以此时数列{}n a 的个数为2278588C C =.①当168a =时,由()()()812132873a a a a a a a a -=-+-++-=,得()*117,i i a a i i +-≤≤∈N的值有2个为1-,5个为1;由()()()1689810916154a a a a a a a a -=-+-++-=,得()*1815,i i a a i i +-≤≤∈N的值有个2为1-,6个为1,所以此时数列{}n a 的个数为2278588C C =.综上,数列{}n a 的个数为222278781176C C C C +=.考点:1、数列的概念;2、函数的极值;3、排列组合.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数()21inc o sc o s2222x x x f x =-+.(I )求函数()f x 的单调递减区间;(Ⅱ)若A B C △的内角,,A B C ,所对的边分别为,,a b c ,()12f A =,a =sin 2sin B C =,求c.【答案】(I )()252,233k k k ππ⎡⎤+π+π∈⎢⎥⎣⎦Z ;(Ⅱ)1c =【解析】考点:1、三角函数的性质;2、正余弦定理.18.(本小题满分12分)近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选200条较为详细的评价信息进行统计,车辆状况和优惠活动评价的22⨯列联表如下:(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与车辆状况好评之间有关系?(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种骑券.用户每次使用APP扫码用车后,都可获得一张骑行券.用户骑行一次获得1元券,获得2元的概率分别是11,25,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X,求随机变量X的分布列和数学期望.参考数据:参考公式:()()()()()22n a d b ca b c d a c b dK-=++++,其中n a b c d=+++.【答案】(I)在犯错误的概率不超过0.001的前提下,不能认为优惠活动好评与车辆状况好评之间有关系;(Ⅱ)1.8元【解析】考点:1、独立性检验;2、独立事件概率公式;3、随机变量的分布列与数学期望.19.(本小题满分12分)如图,D是A C的中点,四边形B D E F是菱形,平面B D E F⊥平面A B C,60∠=,A B B CF B D⊥,==A B B C(I)若点M是线段B F的中点,证明:B F⊥平面A M C;(Ⅱ)求平面A E F与平面B C F所成的锐二面角的余弦值.1【答案】(I)详见解析;(Ⅱ)7【解析】考点:1、空间直线与平面垂直关系;2、面面角的向量求法. 20.(本小题满分12分)已知椭圆C :()222210x y a b ab+=>>的左右焦点分别为12,F F ,左顶点为A ,离心率为2,点B是椭圆上的动点,1A B F △2.(I )求椭圆C 的方程;(Ⅱ)设经过点1F 的直线l 与椭圆C 相交于不同的两点,M N ,线段M N 的中垂线为l '. 若直线l '与直线l 相交于点P ,与直线2x =相交于点Q ,求P Q M N的最小值.【答案】(I )2212xy+=;(Ⅱ)2【解析】考点:1、椭圆的标准方程及其性质;2、直线与椭圆的位置关系;3、基本不等式. 21.(本小题满分12分)已知函数()ln 1f x x x a x =++,a ∈R .(I )当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围; (Ⅱ)当*n ∈N 时,证明:22231ln 2lnln2421n n n n nn +<+++<++.【答案】(I )[)1,-+∞;(Ⅱ)详见解析. 【解析】考点:1、利用导数研究函数的单调性;2、不等式恒成立问题;3、导数与不等式的证明;4、放缩法.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系x O y 中,曲线C 的参数方程为o s 2s in x y αα⎧=⎪⎨=⎪⎩,其中α为参数,()0,απ.在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为4π⎛⎫⎪⎝⎭,直线l 的极坐标方程为s in 04ρθπ⎛⎫-+= ⎪⎝⎭.(I )求直线l 的直角坐标方程与曲线C 的普通方程;(Ⅱ)若Q 是曲线C 上的动点,M 为线段P Q 的中点,求点M 到直线l 的距离的最大值.【答案】(I )100x y --=,()2210124xyy +=>;(Ⅱ)【解析】考点:极坐标与参数方程. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()211f x x x =++-. (Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m .若,,a b c 均为正实数,且122a b c m ++=,求222a b c ++的最小值.【答案】(I )(][),11,-∞-+∞;(Ⅱ)37【解析】考点:1、绝对值不等式解法;2、柯西不等式.。
高三数学-2018【数学】四川省成都市2018届高三班摸底
⾼三数学-2018【数学】四川省成都市2018届⾼三班摸底成都市2018届⾼中毕业班摸底测试数学(理⼯农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两个部分,满分150分,完成时间为120分钟第Ⅰ卷注意事项:1.答第Ⅰ卷前,考⽣务必将⾃⼰的姓名、准考证号、考试科⽬涂写在答题卡上. 2.每⼩题选出答案后,⽤铅笔把答题卡上对应题⽬的答案标号涂⿊.如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号.不能答在试卷上.3.本试卷共1 2⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.参考公式:如果事件A 、B 互斥,那么球的表⾯积公式 P (A +B ) =P (A )+P (B ) 24S R π= 如果事件A 、B 相互独⽴,那么其中R 表⽰球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式如果事件A 在⼀次试验中发⽣的概率是p ,那么 243V R π=在n 次独⽴重复试验中事件A 恰好发⽣k 次的概率其中R 表⽰球的半径n ()(1)(0,1,2,...)k kn k n P k C p p k n -=-=⼀、选择题:1.某学校共有教师200名,其中⽼年教师25名,中年教师75名,青年教师100名,若采⽤分层是抽样的⽅法从这200名教师中抽取40名教师进⾏座谈,则在青年教师中英抽取的⼈数为 (A )15⼈ (B )20⼈ (C )25⼈ (D )30⼈2. 不等式211x x --<0的解集是 (A ){x |x >12} (B ){x |x <12}(C ) {x |12<x <1} (D ){x |x >1或x <12} 3.已知直线x +y +m =0与圆x 2+y 2=4相切,则实数m 的值为(A )42 (B )±42 (C ) 22(D )±224.函数y =ln |x |+1的图象⼤致为(A ) (B ) (C ) (D )5. 若sin α+cos α=25,则sin 2α= (A )425(B )-425(C )2125(D )-21256.已知命题p :若x =y ,则x y =,那么下列叙述正确的是(A )命题p 正确,其逆命题也正确 (B )命题p 正确,其逆命题不正确 (C )命题p 不正确,其逆命题正确 (D )命题p 不正确,其逆命题也不正确7. 已知数列{a n }的前n 项和为S n ,n ∈N *,若2(S n +1)=3a n ,则2514a a a a ++=(A )9 (B )3 (C )32(D )238.安排6名演员的演出顺序时,要求演员甲不第⼀个出场,也不最后⼀个出场,则不同的安排⽅法种数是 (A )120 (B )240 (C )480 (D )7209.△ABC 中内⾓A 、B 、C 满⾜2cosAcosC +cosB =0,则此三⾓形的形状是 (A )等腰三⾓形 (B )钝⾓三⾓形 (C )直⾓三⾓形(D )锐⾓三⾓形 10.如图,正⽅体ABCD -A 1B 1C 1D 1的棱长为4,点P 、Q 在棱CC 1上,PQ =1,则三棱锥P -QBD 的体积是 (A )83(B )43(C )8 (D )与P 点位置有关11. 定义在R 上的偶函数f (x -2),当x >-2时,f (x )=e x +1-2(e 为⾃然对数的底数),若存在k ∈Z ,使⽅程f (x )=0的实数根x 0∈(k -1,k ),则k 的取值集合是(A ){0} (B ){-3}x y 0 1xy 0 11 xy0 1(C ){-4,0} (D ){-3,0}12.已知F 1、F 2分别为椭圆2222x y a b+=1(a >b >0)的左右焦点,经过椭圆上第⼆象限内任意⼀点P 的切线为l ,过原点O 作OM ∥l 交F 2P 于点M ,则|MP |与a 、b 的关系是(A )|MP |=a (B )|MP |>a (C )|MP |=b (D )|MP |<b第Ⅱ卷注意事项:1.⽤钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项⽬填写清楚. 3.本卷共10⼩题,满分90分.⼆、填空题.本⼤题共4⼩题,每⼩题4分,共16分.把答案填在题中横线上. 13、(2+x )3的展开式的第三项的系数是________________.14、在半径为2,球⼼为O 的球⾯上有两点A 、B ,若∠AOB =34π,则A 、B 两点间的球⾯距离为________.15、已知实数x 、y 满⾜4353151x y x y x -≤??+≤??≥?,则2x +y 的最⼤值为__________________.16、已知圆C :x 2+y 2+2x +Ey +F =0(E 、F ∈R ),有以下命题:①E =-4,F =4是曲线C 表⽰圆的充分⾮必要条件;②若曲线C 与x 轴交于两个不同点A (x 1,0),B (x 2,0),且x 1、x 2∈[-2,1),则0≤F ≤1;③若曲线C 与x 轴交于两个不同点A (x 1,0),B (x 2,0),且x 1、x 2∈[-2,1),O 为坐标原点,则|OA OB -|的最⼤值为2;④若E =2F ,则曲线C 表⽰圆,且该圆⾯积的最⼤值为32π. 其中所有正确命题的序号是_______________________.三、解答题:本⼤题共6个⼩题,共74分,解答应写出⽂字说明、证明过程或推演步骤.(本⼩题满分12分)17、某公司购买了⼀博览会门票10张,其中甲类票4张,⼄类票6张,现从这10张票中任取3张奖励⼀名员⼯.(1)求该员⼯得到甲类票2张,⼄类票1张的概率; (2)求该员⼯得到甲类票张数多于⼄类票张数的概率, 18、(本⼩题满分12分)已知向量m =(sin 2x ,cos 2x ),n =(cos 4π,sin 4π),函数f (x )=2m n +2a (其中a 为实常数)(1)求函数f (x )的最⼩正周期; (2)若x ∈[0,]时,函数f (x )的最⼩值为-2,求a 的值.19、(本⼩题满分12分)如图,在四边形ABCD 中,AC ⊥BD ,垂⾜为O ,PO ⊥平⾯ABCD ,AO =BO =DO =1,CO =PO =2,E 是线段P A 上的点,AE ∶AP =1∶3. (1)求证:OE ∥平⾯PBC ; (2)求⼆⾯⾓D -PB -C 的⼤⼩. 20、(本⼩题满分12分)已知等差数列{a n 2}中,⾸项a 12=1,公差d =1,a n >0,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =11n na a ++,数列{b n }的前n 项和为T n ;①求T 120;②求证:当n >3时,2222n n T >+21、(本⼩题满分12分)设直线l (斜率存在)交抛物线y 2=2px (p >0,且p 是常数)于两个不同点A (x 1,y 1),B (x 2,y 2),O 为坐标原点,且满⾜OA OB =x 1x 2+2(y 1+y 2). (1)求证:直线l 过定点;(2)设(1)中的定点为P ,若点M 在射线P A 上,满⾜111||||||PM PA PB =+,求点M 的轨迹⽅程.22、(本⼩题满分14分)对函数Φ(x ),定义f k (x )=Φ(x -mk )+nk (其中x ∈(mk ,m +mk ],k ∈Z ,m >0,n >0,且m 、n 为常数)为Φ(x )的第k 阶阶梯函数,m 叫做阶宽,n 叫做阶⾼,已知阶宽为2,阶⾼为3.(1)当Φ(x )=2x 时①求f 0(x )和f k (x )的解析式;②求证:Φ(x )的各阶阶梯函数图象的最⾼点共线; (2)若Φ(x )=x 2,则是否存在正整数k ,使得不等式f k (x )<(1-3k )x +4k 2+3k -1有解?若存在,求出k 的值;若不存在,请说明理由.。
四川成都市2018级高中毕业班第二次诊断性检测理科试题(解析版)
四川成都市2018级高中毕业班第二次诊断性检测理科试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}lg 1A x x =<,{}3B x x =>,则AB =( ) A .()∞+,0B .()3,10C .(),-∞+∞D .()3,+∞ 【答案】A【详解】由题设,{|010}A x x =<<,而{}3B x x =>, ∴{|0}A B x x ⋃=>.故选:A.2.已知i 为虚数单位.则复数()()12z i i =+-的虚部为( )A .i -B .iC .1-D .1【答案】D【详解】 ()()12=3z i i i =+-+,所以虚部为1.故选:D3.命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤B .0x ∀≤,210x x ++≤C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【详解】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .4.袋子中有5个大小质地完全相同的球.其中3个红球和2个白球,从中不放回地依次随机摸出两个球.则摸出的两个球颜色相同的概率为( )A .15B .25C .35D .45【答案】B【详解】从中不放回地依次随机摸出两个球,基本事件总数2520n A ==,两个球同色的包含的基本事件个数22328n A A =+=,∴两个球同色的概率为82205m p n ===, 故选:B. 5.已知()2sin 3αβ+=,()1sin 3αβ-=,则tan tan αβ的值为( ) A .13- B .13 C .3- D .3【答案】D【详解】 由题意可得,2sin cos cos sin 3αβαβ+=,1sin cos cos sin 3αβαβ-=,所以1sin cos 2αβ=,1cos sin 6αβ=,所以tan sin cos 3tan cos sin ααββαβ==. 故选:D.6.在ABC 中,已知AB AC =,D 为BC 边中点,点O 在直线AD 上,且3BC BO ⋅=,则BC 边的长度为( )AB .C .D .6【答案】A【分析】 由等腰三角形的性质知AD BC ⊥、2BC BD =,有cos 2BC BO OBD =⋅∠,根据向量数量积的几何意义可得232BC =,即可求BC 边的长度. 【详解】在ABC 中,AB AC =,D 为BC 边中点,∴AD BC ⊥,即Rt BDO △中有cos BD BO OBD =⋅∠,且2BC BD =,∴,BC BO 的夹角为OBD ∠,即||||cos 3BC BO BC BO OBD ⋅=⋅⋅∠=,∴232BC =,可得BC . 故选:A.7.已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( )A .4πB .8πC .12πD .16π【答案】B【分析】 先求出球的半径,再设出圆柱的上底面半径为r ,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,最后求出最大值.【详解】设球的半径为R ,由球体的体积公式有3432=33ππR ,得=2R .设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则2cos r α=,圆柱的高为4sin α,∴圆柱的侧面积为4cos 4sin 8sin 2πααπα⨯=, 当且仅当4πα=时,sin 21α=时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.故选:B .8. 已知P 是曲线3πsin cos 0,4y x x x ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭上的动点,点Q 在直线60x y +-=上运动,则当PQ 取最小值时,点P 的横坐标为( )A .π4B .π3C .π2D .2π3【答案】C【分析】 先表示出PQ 最小值,利用导数判断单调性,求出取最小值时对应的x .【详解】设(),sin cos P x x x +,点Q 在直线60x y +-=上, 当PQ 取最小值时,PQ 垂直于直线60x y +-=.此时6sin cos 30,4x x x PQ x π-++⎡⎤=∈⎢⎥⎣⎦记()()36sin cos ,0,4f x x x x x π⎡⎤=-++∈⎢⎥⎣⎦,()f x 最小时,PQ 最小. ()1cos sin 14f x x x x π⎛⎫'=--+-- ⎪⎝⎭ 当30,4x π⎡⎤∈⎢⎥⎣⎦时,,442x πππ⎡⎤-∈-⎢⎥⎣⎦ ∴0,2x π⎡⎤∈⎢⎥⎣⎦时,,444x πππ⎡⎤-∈-⎢⎥⎣⎦,有()0f x '≤,∴()f x 单减;324x ππ⎡⎤∈⎢⎥⎣⎦,时,,442x πππ⎡⎤-∈⎢⎥⎣⎦,有()0f x '≥,∴()f x 单增; ∴当2x π=时,()f x 最小时,PQ 最小.故选:C9.已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得4120<n T 的值为( ) A .17B .18C .19D .20【答案】C【分析】 根据1n n n a S S -=-求{}n a 通项公式,注意讨论1n =、2n ≥并判断是否可合并,再应用裂项法求n T ,可得选项.【详解】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n n T n n n n =⨯-+-++-=⨯-=-+++, 若4120<n T ,则412012<+n n ,解得20<n ,因为*n N ∈,所以n 的最大值为19. 故选:C.【点睛】结论点睛:裂项相消法求数列和的常见类型:(1)等差型111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,其中{}n a 是公差为()0d d ≠的等差数列; (2= (3)指数型()11n n n a a a a +-=-;(4)对数型11log log log n a a n a n na a a a ++=-. 10.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量()mg /L P 与时间()h t 之间的关系为0e kt P P -=.如果前2小时消除了20%的污染物,则污染物减少50%大约需要的时间为(参考数据:ln 20.69≈,ln 3 1.10≈,ln 5 1.61≈)( )A .4hB .6hC .8hD .10h 【答案】B【分析】由题意知,污染物的初始含量为0P ,由前2小时消除了20%的污染物建立关系式求解参数k ,将参数代入解析式中计算污染物减少50%大约需要的时间即可.【详解】前2小时消除了20%的污染物,则2000e.8k P P -= 故l 2n 0.8k =-,ln 0.82k =- ()ln0.82200e 0.8t t P P P ==污染物减少50%,则()2000.80.5t P P =可得0.81lnln 0.5ln 22log 0.542ln 0.82ln 2ln 5ln 5t -====-ln 20.693ln 52ln 2 1.6120.69===--⨯ 故6t =故选:B【点睛】本题考查指数型函数模型的实际运用. 先由具体数据把参数求出来,再利用换底公式计算污染物减少50%大约需要的时间,熟悉对数的运算法则是得分的关键.11.已知F 为抛物线22y x =的焦点,A 为抛物线上的动点,点1,02B ⎛⎫-⎪⎝⎭.则当122+AF AB 取最大值时,AB 的值为( ) A .2B .5C .6D .22【答案】C【详解】方法一: 抛物线x y 22=的焦点⎪⎭⎫⎝⎛0,21F ,准线方程为21-=x , 作F A '垂直于直线1-=x ,垂足为F ', 由抛物线定义知,21+='AF F A ,设θ='∠F AB , 所以='=+=+AF AB AF ABAF AB21122θsin 1,若122+AF AB 最大,则θsin 最小,因为⎪⎭⎫⎝⎛∈20πθ,,所以θ最小, 当直线AB 与抛物线相切时,θ最小.设直线()1+=x k y AB :,由()⎩⎨⎧=+=x y x k y 212得,()0222222=+-+k x k x k ()*, 由()0422422=--=∆k k ,解得212=k , 代入()*式,得0122=+-x x ,解得1=x ,代入x y 22=,得()2,1A 或()2,1-A , 当()2,1A 时,()()220211-++=AB 6=,由抛物线的对称性知,当()2,1-A 时,6=AB ,故选C. 方法二: 设⎪⎪⎭⎫ ⎝⎛t t A ,22,()0,1-B ,48211224222++=+⎪⎪⎭⎫ ⎝⎛-=t t t t AB , 由抛物线定义知2122+=t AF , 所以44482481222424224++++=+++=+t t t t t t t AF AB222422424444144414448tt t t t t t t t +++=+++=++++=234424122=+⋅+≤tt ,当且仅当224t t =,即2±=t 时等号成立, 所以()2,1A 或()2,1-A ,当()2,1A 时,()()220211-++=AB 6=, 由抛物线的对称性知,当()2,1-A 时,6=AB . 故选:C.12.已知四面体ABCD M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论:∴线段MN 的长度为1;∴若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;∴MFN ∠的余弦值的取值范围为⎡⎢⎣⎭;∴FMN 1.其中正确结论的个数为( )A .1B .2C .3D .4【答案】B【分析】将正四面体放在正方体中观察对于∴,可根据,M N 分别为正方体前后两个面的中心可得出结论;对于∴,F 取为AB 的中点,G 取为MN 的中点,此时FG 与CD 相交;对于∴,计算可得cos 35MBN ∠=>对于∴,空间问题平面化的技巧,将三角形ABC与ABD放在同一平面上,可计算出NF+FM≥2【详解】在棱长为1M N分别为正方体前后两个面的中心,故线段MN的长度为正方体棱长1,ABCD,显然,,故∴对;对于∴:如图,F取为AB的中点,G取为MN的中点,I取为CD的中点,则由正方体的性质易知,该三点在一条直线上,故此时FG与CD相交于I,故∴错;对于∴,22BC BN ==BM ===,又有1MN =故131cos MBN +-∠==> 故F 点无限接近B 点时,cos MFN ∠会无限接近3,故MFN ∠的余弦值的取值范围不为⎡⎢⎣⎭,∴错误; 对于∴,如图将等边三角形ABC 与ABD 铺平,放在同一平面上,故有N M M F F N ''≥'+'2=,当且仅当F 为AB 中点时取最小值故在正方体中2≥+FM NF故FMN1 故∴对故选:B 【点睛】把空间中的最短路线问题利用展开图转化为平面上两点间距离最短的问题,从而使问题得到解决,这是求空间中最短路线的一种常用方法.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2,121,1x x x x f x x ⎧-<=⎨+≥⎩,若()2f a =,则a 的值为______.【答案】1-; 【分析】根据函数的解析式,分类讨论,列出方程,即可求解. 【详解】由题意,函数()2,121,1a x x x f x x ⎧-<=⎨+≥⎩,当1a <时,由()2f a =,可得22a a -=,解得1a =-或2a =(舍去); 当1a ≥时,由()2f a =,可得212a +=,即21a =,解得0a =(舍去), 综上可得,实数a 的值为1-. 故答案为:1-.14.正项数列{}n a 满足212++=n n n a a a ,若519a =,241a a =,则2a 的值为______. 【答案】3 【详解】由题意112n n nn a a a a +++=,所以可得数列{}n a 是正项的等比数列, 又因为22431a a a ==,得31a =,由519a =, 可得53211,93a q q a ===,所以323aa q==. 故答案为:3.15.设双曲线()222210,0x y a b a b-=>>的左,右焦点分别为1F ,2F ,以12FF 为直径的圆与双曲线在第一象限内的交点为P ,直线1PF 与双曲线的渐近线在第二象限内的交点为Q .若点Q 恰好为线段1PF 的中点,则直线1PF 的斜率的值为______.【答案】12; 【分析】由题意得到122F PF π∠=,且2tan bQOF a∠=-,求得2||2F P a =,1||2F P b =,结合双曲线的定义求得2b a =,即可求得直线1PF 的斜率. 【详解】如图所示,以12F F 为直径的圆与双曲线在第一象限内的交点为P ,可得122F PF π∠=,又因为Q 为1F P 的中点,O 为12F F 的中点,所以1//OQ PF ,2tan bQOF a ∠=-,21tan b PF F a∠=, 所以2121sin ,cos b aPF F PF F c c∠=∠=,又12122F F OF c ==,得22F P a =,12F P b =,由双曲线的定义可得12222F P F P b a a -=-=,所以2b a =,所以1212121tan 22PF PF a k PF F PF b =∠===, 即直线1PF 的斜率为12. 故答案为:12.16. 已知定义在R 上的函数()f x 满足()()2f x f x =-,且对任意的1x ,[)21x ∈+∞,,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+成立.若()ln 2a f =,()0.2log 0.03b f =,()0.72c f =,则a ,b ,c 的大小关系为______.(用符号“<”连接)【答案】b c a<<.【分析】转化条件为函数()f x 在[)1,+∞上单调递减,结合指数函数、对数函数的性质可得0.70.23log 0.032222ln 21->>>>>,即可得解. 【详解】因为()()()()11221221x f x x f x x f x x f x +<+, 所以()()()12120x x f x f x --<⎡⎤⎣⎦, 所以函数()f x 在[)1,+∞上单调递减,因为函数()f x 满足()()2f x f x =-,所以()()ln22ln2a f f ==-因为12ln ln 2ln e e <<即1ln 212<<,所以312ln 22<-<,又30.7532222>=>=>,0.20.2log 0.03log 0.042>=, 所以0.70.23log 0.032222ln 21->>>>>, 所以()()()0.20.7log 0.0n 2232l f f f -<<即b c a <<.故答案为:b c a <<. 【点睛】关键点点睛:解决本题的关键是利用函数单调性及对称性,将函数值的大小比较转化为自变量的大小比较.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分12分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知)cos cos a C c A -=.(1)求角C 的大小;(2)若a =()2cos cos c a B b A b -=,求ABC 的面积.【答案】(1)4π;(2)12.【详解】解:(1cos sin cos sin cos B C A C C A -=.()cos sin cos cos sin sin B C A C A C A C =+=+. ∴πA C B +=-,∴()sin sin A C B +=.cos sin B C B =.又∴sin 0B ≠,∴cos C =. ∴()0,πC ∈,∴π4C =. (2)由已知及余弦定理,得222222222a c b b c a ac bc b ac bc +-+-⋅-⋅=.222222222a cb bc a b +-+--=化简,得222a b =.又∴a =∴1b =.∴ABC 的面积111sin 1222ABC ab C S ===△. 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.18.(本题满分12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x (单位:年)与失效费y (单位:万元)的统计数据如下表所示:(∴)由上表数据可知,可用线性回归模型拟合y 与x 的关系.请用相关系数加以说明;(精确到0.01)(∴)求出y 关于x 的线性回归方程,并估算该种机械设备使用10年的失效费.参考公式:相关系数()()niix x y y r--=∑线性回归方程ˆˆˆy bx a =+中斜率和截距最小二乘估计计算公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 参考数据:()71()14.00i i i x x y y =--=∑,()7217.08i i y y =-=∑14.10≈.【答案】(∴)答案见解析;(∴)ˆ0.5 2.3yx =+,7.3万元. 【分析】(∴)根据统计数据求x 、y 、()721ii x x =-∑,结合参考数据及相关系数公式,求相关系数r ,进而判断y 与x 的相关程度;(∴)利用最小二乘法公式估计ˆb、ˆa ,写出线性回归方程,进而将10x =代入估算求值. 【详解】(∴)由题意,知123456747x ++++++==,2.903.30 3.604.40 4.805.20 5.904.307y ++++++==,()()()()()()()()72222222211424344454647428ii x x =-=-+-+-+-+-+-+-=∑.∴结合参考数据知:14.000.9914.10r ==≈≈.因为y 与x 的相关系数近似为0.99,所以y 与x 的线性相关程度相当大,从而可以用线性回归模型拟合y 与x 的关系.(∴)∴()()()7172114ˆ0.528iii i i x x y y bx x ==--===-∑∑, ∴ˆˆ 4.30.54 2.3a y bx=-=-⨯=. ∴y 关于x 的线性回归方程为ˆ0.5 2.3y x =+,将10x =代入线性回归方程,得ˆ0.510 2.37.3y=⨯+=. ∴估算该种机械设备使用10年的失效费为7.3万元.19.(本题满分12分)如图∴,在等腰三角形PBC中,PB PC ==6BC =,D ,E 满足2BD DP =,2CE EP =.将PDE △沿直线DE 折起到ADE 的位置,连接AB ,AC ,得到如图∴所示的四棱锥A BCED -,点F 满足2BF FA =.(∴)证明://DF 平面ACE ;(∴)当AB =ACE 与平面DEF 所成锐二面角的余弦值.【答案】(∴)证明见解析;(∴ 【分析】(∴)在AC 上取点G 满足2CG AG =,连接EG ,FG ,根据平行四边形的判定有DEGF 为平行四边形,由线面平行的判定证//DF 平面ACE ;(∴)取DE ,BC 的中点M ,N ,连接AM ,MN ,BM ,根据勾股定理、线面垂直的判定证明AM ⊥平面BCED ,进而构建以M 为坐标原点,MN ,ME ,MA 的方向分别为x 轴,y 轴,z 轴的正方向的空间直角坐标系,确定相关点坐标进而得到EC 、EA 、DE 、DF 的坐标,求面ACE 与面DEF 的法向量,应用向量数量积的坐标表示求二面角的余弦值. 【详解】解:(∴)如图,在棱AC 上取点G 满足2CG AG =,连接EG ,FG .∴2BF FA =,∴//FG BC 且13FG BC =. 由题意,知://DE BC 且13DE BC =. ∴DE FG =且//DE FG ,即四边形DEGF 为平行四边形. ∴//DF EG ,又DF ⊂平面ACE ,EG ⊂平面ACE , ∴//DF 平面ACE .(∴)如图,分别取DE ,BC 的中点M ,N ,连接AM ,MN ,BM . 由题意,知MN BC ⊥,2AM =,4MN =,3BN =.在Rt BMN 中,5BM ==.在ABM 中,AB =222222529AM BM AB +=+==.∴AM BM ⊥,又AM DE ⊥,BM DE M ⋂=,BM ,DE ⊂平面BCED , ∴AM ⊥平面BCED .以M 为坐标原点,MN ,ME ,MA 的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系M xyz -.则()0,0,0M ,()0,0,2A,()4,3,0B -,()4,3,0C ,()0,1,0D -,()0,1,0E ,44,1,33F ⎛⎫- ⎪⎝⎭.∴()4,2,0EC =,()0,1,2EA =-,()0,2,0DE =,44,0,33DF ⎛⎫=⎪⎝⎭. 设平面ACE 的一个法向量为()111,,m x y z =, 由00m EC m EA ⎧⋅=⎨⋅=⎩,得111142020x y y z +=⎧⎨-+=⎩,令11z =,得()1,2,1m =-.设平面DEF 的一个法向量为()222,,n x y z =,由00n DE n DF ⎧⋅=⎨⋅=⎩,得2222044033y x z =⎧⎪⎨+=⎪⎩,令21z =,得()1,0,1n =-.∴2cos ,6m n m n m n ⋅===⨯.∴平面ACE 与平面DEF . 【点睛】 关键点点睛:(∴)平行四边形的判定证平行四边形,根据线面平行的判定证线面平行;(∴)首先证明线面垂直,再构建空间直角坐标系,求二面角对应半平面的法向量,最后应用向量法求二面角的余弦值.20.(本题满分12分)已知椭圆C :()222210x y a b a b +=>>经过点A ⎛ ⎝⎭,其长半轴长为2.(∴)求椭圆C 的方程;(∴)设经过点()1,0B -的直线l 与椭圆C 相交于D ,E 两点,点E 关于x 轴的对称点为F ,直线DF 与x 轴相交于点G ,求∴DEG 的面积S 的取值范围.【答案】(∴)2214x y +=;(∴)⎛ ⎝⎭. 【分析】(∴)由长轴长知2a =,结合椭圆过A 点,求a 、b ,写出椭圆方程;(∴)由题意设直线l 的方程为()10x ty t =-≠,()11,D x y ,()22,E x y ,联立椭圆方程结合韦达定理得12y y +,12y y ,进而写出直线DF 的方程并求G 坐标,而∴DEG 的面积1212S BG y y =⋅-得到关于参数t 的函数,再应用换元法、对勾函数求其范围. 【详解】(∴)由已知,2a =即椭圆C 的方程为22214x y b+=.∴椭圆C 经过点1,2A ⎛ ⎝⎭,∴213144b+=,解得21b =.∴椭圆C 的方程为2214x y +=.(∴)由题意,直线l 的斜率存在且不为0,设直线l 的方程为()10x ty t =-≠,()11,D x y ,()22,E x y .由22144x ty x y =-⎧⎨+=⎩,消去x ,得()224230t y ty +--=. ∴()222412416480t t t ∆=++=+>,∴12224t y y t +=+,12234y y t =-+. ∴F 为点E 关于x 轴的对称点, ∴()22,F x y -.∴直线DF 的方程为()121112y y y y x x x x +-=--,即()()121112y y y y x x t y y +-=--. 令0y =,则()()22112112112112121ty y y ty ty y ty ty y x x y y y y -+-+-+=+=++()121212232142ty y y y t y y t -+⎛⎫==⋅--=- ⎪+⎝⎭.∴()4,0G -.∴∴DEG 的面积1212S BG y y =⋅-===. 令m)m ∈+∞.∴26611m S m m m==++.∴1m m ⎫+∈+∞⎪⎪⎝⎭,∴0,2S ⎛⎫∈ ⎪ ⎪⎝⎭.∴∴DEG 的面积S的取值范围为0,2⎛ ⎝⎭.【点睛】 关键点点睛:(∴)根据椭圆过定点及长轴长,求椭圆标准方程;(∴)设直线方程、D 、E ,联立椭圆方程结合韦达定理求D 、E 纵坐标数量关系:12y y +,12y y ,应用对称性得F 坐标进而求G 点,写出∴DEG 的面积关于参数的函数,应用对勾函数求面积的范围.21.(本题满分12分)已知函数()()1ln 2af x x a x x=+---,其中a ∈R . (∴)若()f x 存在唯一极值点,且极值为0,求a 的值;(∴)讨论()f x 在区间21,e ⎡⎤⎣⎦上的零点个数.【答案】(∴)1a =或e a =;(∴)答案见解析. 【分析】(∴)求出()f x ',分0a ≤、0a >两种情况讨论()f x 的单调性,然后可得答案;(∴)分1a ≤、21e a <<、2e a ≥三种情况讨论()f x 在区间21,e ⎡⎤⎣⎦上的单调性,每种情况下结合()f x 的函数值的符号判断其零点个数.【详解】(∴)由已知,可得()()()()221110x x a a a x x x xf x +--=--=>'. ∴若0a ≤,则当()0,x ∈+∞时,()0f x '>恒成立, ∴()f x 在()0,∞+上单调递增,与()f x 存在极值点矛盾; ∴若0a >,则由()0f x '=得x a =.∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>. ∴()f x 在()0,a 上单调递减,在(),a +∞上单调递增. ∴()f x 存在唯一极小值点x a =.∴()()()()11ln 211ln 0f a a a a a a =+---=--=. ∴1a =或e a =.(∴)∴当1a ≤时,()0f x '≥在21,e ⎡⎤⎣⎦上恒成立,∴()f x 在21,e ⎡⎤⎣⎦上单调递增.∴()110f a =-≤,()222ee2eaf a =+-, (∴)当0a ≤时,()222221ee2e 20e e a f a a ⎛⎫=+-=+-> ⎪⎝⎭;(∴)当01a <≤时,()222ee 2210eaf a a =+->=≥. ∴()2e 0f >.∴由零点存在性定理,知()f x 在21,e ⎡⎤⎣⎦上有1个零点;∴当21e a <<时,∴当[)1,x a ∈时,()0f x '<;当(2,e x a ⎤∈⎦时,()0f x '>,∴()f x 在[)1,a 上单调递减,在(2,e a ⎤⎦上单调递增.∴()()()()min 11ln f x f a a a ==--.(∴)当e a =时,()min 0f x =,此时()f x 在21,e ⎡⎤⎣⎦上有1个零点;(∴)当1e a <<时,()min 0f x >,此时()f x 在21,e ⎡⎤⎣⎦上无零点;(∴)当2e e a <<时,()min 0f x <,()110f a =->.(a )当()222e e 20e a f a =+-<,即422e e 2e 1a <<-时,()f x 在21,e ⎡⎤⎣⎦上有1个零点;(b )当()222e e 20e a f a =+-≥,即42e e 2e 1a <≤-时,()f x 在21,e ⎡⎤⎣⎦上有2个零点; ∴当2e a ≥时,()0f x '≤在21,e ⎡⎤⎣⎦上恒成立,()f x 在21,e ⎡⎤⎣⎦上单调递减.∴()110f a =->,()222222211ee2e 2e e 10e e f a ⎛⎫⎛⎫=+-≤+-=-+< ⎪ ⎪⎝⎭⎝⎭, ∴()f x 在21,e ⎡⎤⎣⎦上有1个零点,综上,当1e a <<时,()f x 在21,e ⎡⎤⎣⎦上无零点;当1a ≤或e a =或42e 2e 1a >-时,()f x 在21,e ⎡⎤⎣⎦上有1个零点;当42e e 2e 1a <≤-时,()f x 在21,e ⎡⎤⎣⎦上有2个零点.关键点睛:解答本题的关键是要掌握分类讨论的思想,利用函数的单调性和函数值的符号讨论函数的零点个数.(二)选考题:共10分.请考生在第22,23题中任选一题作答.在答题卷上将所选题号涂黑,如果多做,则按所做的第一题计分. 22. 【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,已知曲线C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),直线l 的方程为60x -=.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 和直线l 的极坐标方程;(2)若点(),P x y 在直线l 上且0y >,射线OP 与曲线C 相交于异于O 点的点Q ,求OP OQ的最小值.【答案】(1)2:cos C ρθ=,:sin 36l πρθ⎛⎫+= ⎪⎝⎭;(2)2. 【分析】(1)将曲线C 的参数方程化为普通方程,再由普通方程与极坐标方程之间的转换关系可得出曲线C 的极坐标方程,直接利用普通方程与极坐标方程之间的转换关系可得出直线l 的极坐标方程;(2)设点P 的极坐标为()1,ρθ,点Q 的极坐标为()2,ρθ,02πθ<<,求得1OP ρ==,22cos OQ ρθ==,利用三角恒等变换思想以及正弦函数的有界性可求得OP OQ的最小值.(1)由曲线C 的参数方程,得曲线C 的普通方程为()22221cos sin 1x y ϕϕ-+=+=.即222x y x +=,由极坐标与直角坐标的互化公式cos x ρθ=,sin y ρθ=,得曲线C 的极坐标方程为2cos ρθ=.直线l的极坐标方程为cos sin 60ρθθ-=,即sin 36πρθ⎛⎫+= ⎪⎝⎭; (2)设点P 的极坐标为()1,ρθ,点Q 的极坐标为()2,ρθ,其中π02θ<<. 由(1)知1OP ρ==,22cos OQ ρθ==.12612sin 26OP OQρπρθ∴====⎛⎫++ ⎪⎝⎭. 02πθ<<,72666πππθ∴<+<.1sin 2126πθ⎛⎫∴-<+≤ ⎪⎝⎭.当sin 216πθ⎛⎫+= ⎪⎝⎭,即6πθ=时,OP OQ 取得最小值2.【点睛】方法点睛:在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.23. 【选修4—5:不等式选讲】(10分)设函数()3121f x x x =++-的最小值为m .(∴)求m 的值;(∴)若a ,()0,b ∈+∞,证明:2221111b a m aa b b ⎛⎫⎛⎫++++≥ ⎪⎪⎝⎭⎝⎭.【答案】(∴)3m =;(∴)证明见解析. 【分析】(∴)应用零点分段法,讨论1x <-、112x ≤≤-、12x >时()f x 的取值范围,进而确定其最小值即为所求m 的值.(∴)结合(∴),利用三元基本不等式证明不等式即可,注意等号成立的条件. 【详解】(∴)当1x <-时,()3321523f x x x x =---+=-->;当112x ≤≤-时,()9332143,2f x x x x ⎡⎤=+-+=+∈⎢⎥⎣⎦; 当12x >时,()93321522f x x x x =++-=+>. 综上,当1x =-时,()min 3f x =, ∴3m =.(∴)由(∴)知,求证2211119b a a a bb ⎛⎫⎛⎫++++≥ ⎪⎪⎝⎭⎝⎭.∴a ,()0,b ∈+∞,∴211b a a ++≥,211a b b ++≥.∴2211119b a aa b b ⎛⎫⎛⎫++++≥= ⎪⎪⎝⎭⎝⎭. 当且仅当2211,11b a a abb ⎧==⎪⎪⎨⎪==⎪⎩即1a b ==时,等号成立. 【点睛】关键点点睛:(1)根据零点,应用分类讨论,求绝对值函数的值域,进而确定最值; (2)三元基本不等式的应用,注意等号成立的条件.。
高三数学-2018年上学期四川省成都市高中毕业班摸底测
四川省成都市2018届高中毕业班摸底测试数学(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是 334R V π=球P ,那么n 次独立重复试验中恰好发生k其中R 表示球的半径次的概率k n k k n n P P C k P --=)1()(一、选择题:本题共有12个小题,每小题5分,共60分;每小题给出的四个选项中,只有一项是正确的,把正确的代号填在题后的括号内.1.已知集合2{1,2,3,4,5},{|5,}U A x x x N *==<∈集合则集合C U A =A .{3,5}B .{4,5}C .{3,4,5}D .∅2.若θθθθθ则角且,0tan cos ,0cos sin <⋅>⋅的终边落在A .第一象限B .第二象限C .第三象限D .第四象限3.已知数列}{n a 是等差数列,且,13,504113==+a a a 则数列}{n a 的公差等于A .1B .4C .5D .64.若则,R a ∈“3>a ”是“方程x a y )9(22-=”表示开口向右的抛物线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在B C A A C B ABC 则角已知中,sin sin 3sin sin sin ,222=--∆的大小为A .150°B .30°C .120°D .60°6.来成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为53,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为A .12536 B .12544 C .12554 D .12598 7.给出下列命题:①如果平面α内的一条直线m 与平面α的一条斜线l 在平面α内的射影n 垂直,那么l m ⊥;②如果平面α内的一条直线b 与平面β垂直,那么βα⊥;③经过平面α外一点有且只有一条直线与平面α平行;④对角线相交于一点且被这点平分的四棱柱是平行六面体. 其中,逆否命题为真命题的命题个数有A .4个B .3个C .2个D .1个8.函数()log ||101a f x x a =+<<()的图象大致为9.若椭圆14222=+my x 的一条准线经过抛物线x y 162=的焦点,则椭圆的离心率e 的值为 A .22 B .23 C .31 D .21 10.已知曲线⎩⎨⎧=+=θθsin 2cos 2:y a x C (θ为参数)被直线2=-y x 所截得的弦长为22,则实数a的值为A .0或4B .1或3C .-2或6D .-1或311.从1、3、5、7中任取2个数字,从0、2、4、6、8中任取2个数字组成没有重复数字的四位数,其中能被5整除的四位数的个数有A .360B .720C .300D .24012.已知直线∈-=k x k y )(3(R )与双曲线12722=-y m x ,某学生作了如下变形;由22(3)127y k x x y m =-⎧⎪⎨-=⎪⎩消去y 后得到形如20Ax Bx C ++=的方程. 当A =0时,该方程恒有一解;当04,02≥-=∆≠AC B A 恒成立. 假设学生演算过程是正确的,根据该学生的演算过程所提供的信息,求出实数m 的范围为 A .),9[+∞B .]9,0(C .]3,0(D .),3[+∞第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在题中横线上.13.设实数y x 和满足约束条件y x z y x y x 2,122+=⎪⎩⎪⎨⎧≥+≤≤则的最小值为 .14.若6)(a x +的展开式中2x 项的系数为60,则实数a = . 15.如图,若正方体ABCD —A 1B 1C 1D 1的棱长为1,则点C 到平面A 1BD 的距离为 .16.已知实数0≠a ,给出下列命题:①函数)32sin()(π+=x a x f 的图象关于点)0,6(π-和直线3π=x 对称;②函数)32sin()(π+=x a x f 的图象可由函数x a x g 2sin )(=的图象向左平移6π个单位而得到;③当]12,0[)32sin()(,0ππ在函数时+=>x a x f a 上是增函数,在]2,12[ππ上是减函数; ④若函数∈++=x x a x f )(32sin()(ϕπR )为偶函数,则)(6Z k k ∈+=ππϕ.其中正确命题的序号有 .(把你认为正确的命题的序号都填上)三、解答题:(本大题共6小题,共74分)解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知空间向量).2,0(,51),1,cos 2,1(),cos ,1,(sin παααα∈=⋅=-=b a b a (1)求ααsin 2sin 及、αcos 的值;(2)设函数∈+-=x x x x f (2cos )2cos(5)(αR ),指出)(x f 的最小正周期并求)(x f 取得最大值时的x 的值.18.(本小题满分12分)将如图1的直角梯形ABEF (图中数字表示对应线段的长度)沿直线CD 折成直二面角,连结部分线段后围成一个空间几何体,如图2所示.(1)求异面直线BD 与EF 所成角的大小; (2)求二面角D —BF —E 的大小;(3)求F 、A 、B 、C 、D 这五个点在同一球面上,求该球的表面积.19.(本小题满分12分)某项赛事,在“五进三”的淘汰赛中,需要加试综合素质测试,每位参赛选手需回答3个问题. 组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目. 测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.(1)求某选手在3次抽取中,只有第一次抽到的是艺术类题目的概率; (2)求某选手抽到体育类题目数ξ的分布数列和数学期望ξE .20.(本小题满分12分)已知函数t m x f x+⋅=2)(的图象经过点A (1,1)、B (2,3)及C (n S n ,),S n 为数列{n a }的前n 项和,*∈N n .(1)求S n 及a n ;(2)若数列{}n b 满足22log 1n n b a =+,记11122334111111ni i i n n bb b b b b b b b b =++=++++∑ )(*N n ∈, 求证:∑=+<≤n i i i b b 11.2113121.(本小题满分13分)已知函数)(x f y =的图象与函数86)(2-+-=x x x h 的图象关于点(1,0)对称.(1)求函数)(x f 的表达式;(2)设函数∈-++-=a a x x x f x g (|1|2)()(R ),求)(x g 的最小值.22.(本小题满分13分)如图,在平面直角坐标系中,O 为坐标原点,M 为动点,且5,5||==过点M 作,.,111111N N M M OT T N x NN N M y MM +=⊥⊥满足又动点轴于点作过轴于其轨迹为曲线C .(1)求曲线C 的方程;(2)已知点A (5,0)、B (1,0),过点A 作直线l 交曲线C 于两个不同的点P 、Q .问△BPQ 的面积S 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.参考答案一、选择题(每小题5分,共60分)1.C 2.C 3.B 4.A 5.A 6.D 7.B 8.A 9.D 10.A 11.C 12.B 二、填空题(每小题4分,共16分) 13.0; 14.2±=a ;15.33; 16.②③④ 三、解答题(本大题共6小题,共74分) 17.(1)∵51=⋅b a ,∴1sin cos 5αα-= ① …………2分∴112sin cos 25αα-⋅=,∴24sin 2.25α=∴12sin cos ,(0,)252πααα=∈ ② …………2分 联立①、②,解得53cos ,54sin ==αα. …………2分(2)x x x x x x f 2cos sin 2sin 5cos 2cos 52cos )2cos(5)(++=+-=ααα将43sin ,cos 55αα==带入,得)42sin(242cos 42sin 4)(π+=+=x x x x f . ∴()f x 的最小正周期π=T . …………1分∴当max 22,(),428x k f x x k k πππππ+=+==+∈时此时Z .…………2分18.∵平面ABC D ⊥平面DCEF ,ABCD 为正方形,DCEF 为直角梯形,∴以DA 所在直线为x 轴、DC 所在直线为y 轴、DF 所在直线为z 轴建立空间直角坐标系xyz D -, 则)2,0,0(),1,1,0(),0,1,0(),0,1,1(),0,0,1(F E C B A …………2分(1),21,cos ),1,1,0(),0,1,1(-=>=<-==EF DB EF DB ……2分∴异面直线AC 与EF 所成的角为3π. …………1分(2),AC BD AC DF ⊥⊥,∴AC BDF ⊥平面。
2018-2019年四川省成都市二模:成都市2018届高三第二次模拟考试理科数学试题-附答案精品
四川省成都市2018届第二次模拟考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知单元素集合(){}2|210A x x a x =-++=,则a =( ) A . 0 B . -4 C . -4或1 D .-4或02. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )A .6种B . 12种C .18种D .24种3. 已知函数()sin f x x x =+,若()()()23,2,log 6a f b f c f ===,则,,a b c 的大小关系是( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<4.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设,AB a AD b == ,则向量BF = ( )A .1233a b + B .1233a b -- C. 1233a b -+ D .1233a b - 5.已知抛物线2:C y x =,过点(),0P a 的直线与C 相交于,A B 两点,O 为坐标原点,若0OA OB < ,则a 的取值范围是 ( )A .(),0-∞B .()0,1 C. ()1,+∞ D .{}16.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是 ( )。
四川省成都市2018届高考三诊模拟考试数学试题(理)含答案
成都七中2018届高三三诊模拟试题(理科)数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则为( ){}230A x x x =->{B x y ==A B A . B . C . D .[)0,3()1,3(]0,1∅2. 已知复数满足(为虚数单位),则的虚部为( )z 1+1zz i=-i z A . B .-1 C . 1 D .i i-3. 把内的均匀随机数分别转化为和内的均匀随机数,,需实施的变[]0,1x []0,4[]4,11y 2y 换分别为A .B . 124,54y x y x =-=-1244,43y x y x =-=+C .D . 124,54y x y x ==-124,43y x y x ==+4. 已知命题,,命题,则下列说法中正确的是(:p x R ∃∈20x ->:q x R ∀∈x <)A .命题是假命题B .命题是真命题 p q ∨p q ∧C. 命题真命题 D .命题是假命题()p q ∧⌝()p q ∨⌝5. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A . 4B ..26+6. 已知为内一点,且,,若,,三点共线,O ABC ∆1()2AO OB OC =+AD t AC = B O D 则的值为( )t A .B . C. D .141312237. 已知二项式的展开式中的系数为,则的值为( )91()2x ax +3x 212-()1e ax dx x+⎰A . B . C. D .212e +232e -232e +252e -8. 运行下列框图输出的结果为43,则判断框应填入的条件是( )A . B . C. D .42z ≤45z ≤50z ≤52z ≤9. 已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )A . 240种B .360种 C.480种 D .600种10.将函数图象上每一点的横坐标伸长为为原来()sin ()0,22f x x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的2倍(纵坐标不变),再向左平移个单位长度得到的图象,则函数的单56πcos y x =()f x 调递增区间为( )A .B . 52,21212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦52,266k k ππππ⎡⎤-+⎢⎥⎣⎦C. D .5,1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦5,66k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦11. 已知双曲线,抛物线222:41(0)x C y a a -=>的焦点与双曲线的右焦点重合,则抛物线上的动点到直线2:2E y px =C E M 和距离之和的最小值为( )1:4360l x y -+=2:1l x =-A .1 B . 2 C. 3 D .412.定义函数,则函数在区间348,12,2()1(222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩()()6g x xf x =-内的所有零点的和为( )1,2()n n N *⎡⎤∈⎣⎦A . B . C.D .n 2n 3(21)4n -3(21)2n -第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若随机变量,则,2(:)Z N μσ ()0.6826P z μσμσ-<≤+=.已知随机变量,则(22)0.9544P z μσμσ-<≤+=(6,4)X N (28)P X <≤.14. 在锐角中,角、、所对的边分别为,且、、成等差数列,ABC ∆A B C ,,a b c A B C,则面积的取值范围是 .b =ABC ∆15.已知的三个顶点,,,其外接圆为.对于线段ABC ∆(1,0)A -(1,0)B (3,2)C H 上的任意一点,BH P 若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,则的C ,M N M PN C 半径的取值范围 .r 16. 四棱锥中,底面是边长为2的正方形,侧面是以为斜边的S ABCD -ABCD SAD SD等腰直角三角形,若四棱锥的体积取值范围为,则该四棱锥外接球表S ABCD -83⎤⎥⎦面积的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知公差不为零的等差数列中,,且,,成等比数列.{}n a 37a =1a 4a 13a (1)求数列的通项公式;{}n a (2)记数列的前项和,求.{}2n n a ⋅n n S n S 18. 中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[)15,25[)25,35[)35,45[)45,55[)55,65支持“延迟退休”的人数155152817(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为22⨯以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.X X 参考数据:20()P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828,其中22()()()()()n ad bc K a b c d a c b d -=++++n a b c d=+++19. 在多面体中,底面是梯形,四边形是正方形,,ABCDEF ABCD ADEF //AB DC,,,1AB AD ==2CD =AC EC ==(1)求证:平面平面;EBC ⊥EBD (2)设为线段上一点,,求二面角的平面角的余弦值.M EC 3EM EC =M BD E --20.设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,1F 2F 222:14x y E b +=P 的最大值为1.12PF PF(1)求椭圆的方程;E (2)设直线与椭圆交于两点,点关于轴的对称点为(与不重1x ky =-E ,A B A x A 'A 'B 合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若A B 'x 不是,请说明理由.21.已知函数,其中;1()ln f x a x x=+a R ∈(Ⅰ)若函数在处取得极值,求实数的值,()f x 1x =a (Ⅱ)在(Ⅰ)的结论下,若关于的不等式,当x 22(2)2(1)()32x t x t f x t N x x *+++++>∈++时恒成立,求的值.1x ≥t22.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为 (为参数).在以坐标原点为xOy 1C ,2sin ,x y αα⎧=⎪⎨=⎪⎩α极点,轴正半轴为极轴的极坐标系中,曲线.x 22:4cos 2sin 40C ρρθρθ+-+=(Ⅰ)写出曲线,的普通方程;1C 2C (Ⅱ)过曲线的左焦点且倾斜角为的直线交曲线于两点,求.1C 4πl 2C ,A B AB 23.选修4-5:不等式选讲已知,使不等式成立.x R ∃∈12x x t ---≥(1)求满足条件的实数的集合;t T (2)若,,对,不等式恒成立,求的最小值.1m >1n >t T ∀∈33log log m n t ⋅≥22m n +成都七中2018届高三三诊模拟数学试题(理答案)一、选择题1-5: CCCCB 6-10: BBACC 11、12:BD 二、填空题13. 0.8185 14. 15.16.28,203ππ⎡⎤⎢⎥⎣⎦三、解答题17.(1)∴(2)21n a n =+12(12)2n n +--⨯18.解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充列联表如下:22⨯45岁以下45岁以上总计支持354580不支持15520总计5050100因为的观测值,2K 2100(3554515) 6.25 3.84150508020K ⨯⨯-⨯==>⨯⨯⨯所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①抽到1人是45岁以下的概率为,抽到1人是45岁以下且另一人是45岁以上63=84的概率为,故所求概率.11622837C C C =347374P ==②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.所以的可能取值为0,1,2.X ,,.262815(0)28C P X C ===116228123(1)287C C P X C ====22281(2)28C P X C ===故随机变量的分布列为:X X 012P152837128所以.311()127282E X =⨯+⨯=19. 解:(1)因为,,1AD =2CD =AC =222AD CD AC +=所以为直角三角形,且ADC ∆AD DC ⊥同理因为,,1,2ED CD ==EC =222ED CD EC +=所以为直角三角形,且,EDC ∆ED DC ⊥又四边形是正方形,所以ADEF AD DE ⊥又因为//AB DC 所以.DA AB ⊥在梯形中,过点作作于,ABCD B BH CD ⊥H故四边形是正方形,所以.ABHD 45ADB ∠=︒在中,,∴.BCH ∆1BH CH ==45BCH ∠=︒BC =∴,∴∴.45BDC ∠=︒90DBC ∠=︒BC BD ⊥∵,,.平面,平面.ED AD ⊥ED DC ⊥AD DC D = AD ⊂ABCD DC ⊂ABCD 所以平面,BD ⊥ABCD 又因为平面,所以BC ⊂ABCD ED BC⊥因为,平面,平面.BD ED D = BD ⊂EBD ED ⊂EBD ∴平面,平面,∴平面平面BC ⊥EBD BC ⊂EBC EBC ⊥EBD(2)以为原点,,,所在直线为轴建立空间直角坐标系(如图)则D DA DC DE ,,x y z .令,则,(0,0,0),(0,0,1),(1,1,0),(0,2,0)D E B C 00(0,,)M y z 00(0,,1)EM y z -(0,2,1)EC -因为,∴3EM EC =00(0,3,33)(0,2,1)y z a -=-∴.22(0,,)33M =因为平面,∴,取是平面的一个法向量.BC ⊥EBD (1,1,0)BC - (1,1,0)n -EBD设平面的法向量为.MBD (,,)m x y z =则,即即.00m DB m DM ⎧⋅=⎪⎨⋅=⎪⎩ 022033x y y z +=⎧⎪⎨+=⎪⎩x y z =-=-令,得,1y =-(1,1,1)m =-∴()cos ,m n m n m n ⋅=== 20.解:(1)易知,,2a =c =24b <所以,,设,则()1F)2F (),P x y ,()12,PF PF x y ⋅=-- )222222222,44(1444b x b x y x y b x b b x b b --=++-=+-+-=-+-+因为,故当,即点为椭圆长轴端点时,有最大值1,即[]2,2x ∈-2x =±P 12PF PF ⋅ ,解得221(1444b b b =-⨯+-+1b =故所求的椭圆方程为2214x y +=(2)设,,则,由得()11,A x y ()22,B x y 11(,)A x y '-22114x ky x y =-⎧⎪⎨+=⎪⎩,22(4)230k y ky +--=故,.12224k y y k +=+12234y y k -⋅=+经过点,的直线方和为11(,)A x y '-22(,)B x y 112121y y x x y y x x +-=+-令,则,0y =21211121211211121212()()x x x x y y y x x y x y x y x y y y y y y --+++=+==+++又因为,,∴当时,111x ky =-221x ky =-0y =,2221122112121212122262+(1)(1)2()4442244k k x y x y ky y ky y ky y y y k k x k k y y y y k k ---+--+++=====-++++这说明,直线与轴交于定点.A B 'x (4,0)-21.解:(Ⅰ)2211()a ax f x x x x-'=-+=当时,,解得1x =()0f x '=1a =经验证满足条件,1a =(Ⅱ)当时,1a =22(2)21(1)3221x t x t x t f x x x x x ++++++>=+++++整理得(2)ln(1)t x x x<++-令,()(2)ln(1)h x x x x =++-则,21()ln(1)1ln(1)011x h x x x x x +'=++-=++>++(1)x ≥所以,即min ()3ln 21h x =-3ln 21(0,2)t <-∈∴1t =(Ⅲ)[]3()(3)3ln (3)(3)g x g x a x x x x +-=----令,,构造函数(3)(0,2)t x x =-∈3()3ln F t a t t=--即方程在区间上只少有两个解3()3ln 0F t a t t=--=(0,2)又,所以方程在区间上有解(1)0F =3()3ln 0F t a t t =--=(0,1)(1,2)⋃2233()a at F t t t t-'=-=当时,,即函数在上是增函数,且,0a ≤()0F t '>()y F t =(0,2)(1)0F =所以此时方程在区间上无解(0,1)(1,2)⋃当时,,同上方程无解01a <≤()0F t '>当时,函数在上递增,在上递减,且13a <<()F t 3(0,a 3(,2)a 31a>要使方程在区间上有解,则,即()0F t =(0,1)(1,2)⋃(2)0F <33ln 202ln 4a a -<⇒>所以此时3(,3)ln 4a ∈当时,函数在上递增,在上递减,且,3a >()F t 3(0,)a 3(,2)a 31a <此时方程在内必有解,()0F t =3(0,)a当时,函数在上递增,在上递减,且3a =()F t (0,1)(1,2)(1)0F =所以方程在区间内无解()0F t =(0,1)(1,2)⋃综上,实数的范围是a 3(,3)(3,)ln 4⋃+∞22.解:(Ⅰ)2222()cos sin 122sin y x y αααα⎧=⎪⇒+=+=⎨=⎪⎩即曲线的普通方程为1C 221204x y +=∵,,222x y ρ=+cos x ρθ=sin y ρ=曲线的方程可化为2C 224240x y x y ++-+=即.222:(2)(1)1C x y ++-=(Ⅱ)曲线左焦点为直线的倾斜角为,1C (4,0)-l 4πα=sin cos αα==所以直线的参数方程为(参数)将其代入曲线整理可得l 4x y ⎧=-⎪⎪⎨⎪=⎪⎩t 2C ,所以.设对应的参数分别为则所以240t-+=2(4420∆=--⨯=>,A B 12,t t ,.12t t +=124t t =所以12AB t t =-===23.解:(1)令,则,1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩1()1f x -≤≤由于使不等式成立,有.x R ∃∈12x x t ---≥{}1t T t t ∈=≤(2)由(1)知,,根据基本不等式33log log 1m n⋅≥,33log log 2m n +≥≥从而,当且仅当时取等号,23mn ≥3m n ==再根据基本不等式,当且仅当时取等号.6m n +≥≥3m n ==所以的最小值为18.m n。
2021届成都市2018级高中毕业班摸底测试数学理科(解析版)(1)
成都市2018级高中毕业班摸底测试数学(理科)本试卷分选择题和非选择题两部分。
第Ⅰ卷(选择题,第Ⅱ卷(非选择题),满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.设集合{}02A x x =<<,{}1B x x =≥,则AB =( )A .{}01x x <≤B .{}01x x <<C .{}12x x ≤<D .{}02x x << 【命题意图】本题考查集合的运算,属于简单题. 【答案】C【解析】由题意知{}12A B x x =≤<,故选C 项.2.复数2i2iz =-(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【命题意图】本题考查复数的运算和复平面的概念,属于简单题. 【答案】B【解析】由题意知()()()2i 2i 24i2i 2i 5z +-+==-+,所以在复平面内对应的点位于第二象限,故选B 项. 3.已知函数1,0()ln ,0x x f x x x ⎧-≤=⎨>⎩,则1e f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( )A .0B .1C .e 1-D .2 【命题意图】本题考查分段函数的求值,属于简单题. 【答案】D【解析】由题意知11ln1e ef ⎛⎫==- ⎪⎝⎭,所以()112e f f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故选D 项.4.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右读,则抽取的第5名学生的学号是( )A .17B .23C .35D .37 【命题意图】本题考查简单随机抽样,属于简单题. 【答案】C【解析】根据随机数表从第6行第9列开始依次抽出号码分别是:39、49、54、43、54、共5个号码,由于49、54、43、54四个号码不在总体编号范围内,应排除在外.再补充四个号码:17、37、23、35,由此产生5个样本的学号为:39、17、37、23、35,所以第5名学生的学号为35,故选C 项.5.“k =2y kx =+与圆221x y +=相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【命题意图】本题考查充要条件和直线与圆的位置关系,属于简单题. 【答案】A【解析】当直线2y kx =+与圆221x y +=1=,所以k =所以“k =2y kx =+与圆221x y +=相切”的充分不必要条件,故选A 项.6.已知离心率为2的双曲线22221(0,0)x y a b a b -=>>与椭圆22+184x y =有公共焦点,则双曲线的方程为( )A .221412x y -= B .221124x y -= C .2213y x -= D .2213x y -= 【命题意图】本题考查双曲线方程和双曲线与椭圆的性质,属于简单题.【答案】C【解析】由题意知22213b e a =-=,椭圆22+184x y =的焦点为()2,0±,所以224a b +=,所以21a =,23b =,所以双曲线的方程为2213y x -=,故选C 项.7.执行如图所示的程序框图,则输出的结果S 为( )A .1-B .2 C .0 D .12-- 【命题意图】本题考查程序框图和数列求和,属于中档题.【答案】B【解析】由程序框图知10coscos cos cos4444S π2π3ππ=++++. 因为()()()()()81828388coscos cos cos4444k k k k k +π+π+π+π++++=∈Z ,所以10910coscos cos coscos cos cos cos 444444422S π2π3ππππππ=++++=+=+=,故选B 项. 8.设函数()f x 的导函数是()f x '.若()()2cos f x f x x '=π-,则6f π⎛⎫'=⎪⎝⎭( )A .12-B .12CD .【命题意图】本题考查导数的计算,属于中档题.【答案】B【解析】由题意得()()2sin f x f x x ''=π+,所以()()2sin f f ''π=ππ+π,所以()0f 'π=,所以()sin f x x '=,所以162f π⎛⎫'= ⎪⎝⎭,故选B 项.9.如图是某几何体的三视图.若三视图中的圆的半径均为2,则该几何体的表面积为( )A .14πB .16πC .18πD .20π【命题意图】本题考查简单几何体的三视图,属于中档题. 【答案】C【解析】由三视图知该几何体为球去掉后下左18球和前上右18球,所以该几何体的表面积为3316421844π⨯+π⨯⨯=π,故选C 项. 10.在平面直角坐标系xOy 中,已知直线l :()1y k x =+与曲线C :1sin 2,sin cos x y θθθ=+⎧⎨=+⎩(θ为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为( )A .()0,1B .10,2⎛⎫ ⎪⎝⎭C .,13⎫⎪⎪⎣⎭D .132⎫⎪⎪⎣⎭【命题意图】本题考查参数方程和直线曲线交点问题,本题容易忽略x 或y 的取值范围,从而得错误答案B ,属于中档题.【答案】D【解析】由题意知直线l 过定点()1,0-,曲线C 的普通方程为()202y x x =≤≤,所以曲线C 在第一象限的解析式为)02y x =≤≤,所以y '=易求直线l 与曲线C 在第一象限相切时的方程为()112y x =+,切点为()1,1.当直线l 与曲线C 在第一象限恰有两个不同的交点时,由图象可得132k ≤<,故选D 项. 11.已知函数()ln xf x x=.若()ln 2a f =,()ln 3b f =-,()e c f =,则a ,b ,c 的大小关系为( ) A .b c a >> B .b a c >> C .a b c >> D .a c b >>【命题意图】本题考查函数的性质和利用导数研究函数的单调性,此题容易忽略函数的定义域,属于中档题.【答案】A【解析】由题意知()f x 为偶函数,所以()ln 3b f =.当0x >时,()ln xf x x=,所以当01x <<时,()0f x <;当1x >时,()0f x >.易求()()2ln 1ln x f x x -'=,所以()f x 在()0,1上递减,在()1,e 上递减,在()e,+∞上递增.因为0ln 2l ln3e <<<<,所以()ln 20f <,()()ln 3e 0f f >>,所以b c a >>,故选A 项. 12.设,k b ∈R ,若关于x 的不等式()ln 1x x kx b -+≤+在()1,+∞上恒成立,则11b k --的最小值是( ) A .2e - B .1e 1-+ C .21e- D .e 1-- 【命题意图】本题主要考查利用导数求函数的最值解决不等式恒成立问题,属于难题.【答案】D【解析】设()()()()ln 111f x x k x b x =---->,则()0f x ≤恒成立.若1k ≤时,则当x →+∞时,()f x →+∞,所以()0f x ≤不恒成立,所以1k >. 因为()()()11=111k k x f x k x x --'--=--,所以()f x 在1,1k k ⎛⎫ ⎪-⎝⎭上递增,在,1k k ⎛⎫+∞ ⎪-⎝⎭上递减, 所以()max 1ln 011k f x f k b k k ⎛⎫==--≤⎪--⎝⎭,所以()ln 1b k k ≥---,所以()ln 11111k k b k k -++-≥---. 设()ln 2x x g x x ++=,则()2ln 1x g x x +'=-,所以()g x 在10,e ⎛⎫ ⎪⎝⎭上递增,在1,e ⎛⎫+∞ ⎪⎝⎭上递减,所以()max 1e 1e g x g ⎛⎫==+ ⎪⎝⎭.所以()ln 11e 11k k k -++≤+-,所以()ln 111e 111k k b k k -++-≥-≥----,所以11b k --的最小值为e 1--,故选D 项. 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在题后横线上. 13.已知呈线性相关的变量x ,y 之间的关系如下表:由表中数据得到的回归直线方程为ˆˆ1.6yx a =+.则当8x =时,ˆy 的值为 . 【命题意图】本题考查线性回归方程,属于简单题.【答案】12.3【解析】根据表格中的数据可得 2.5x =, 3.5y =,所以回归方程过ˆˆ1.6y x a =+过点()2.5,3.5,所以ˆ0.5a=-,所以回归直线方程为ˆ 1.60.5y x =-,所以当8x =时,ˆ12.3y =. 14.函数()22e3xf x -=-+的图象在0x =处的切线方程为 .【命题意图】本题考查导数几何意义,属于简单题. 【答案】410x y -+=【解析】由题意知()01f =,()24e xf x -'=,所以()04f '=,所以()f x 在()()0,0f 处的切线方程为410x y -+=.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是 . 【命题意图】本题考查逻辑推理问题,属于中档题. 【答案】乙【解析】若甲说的话为真的,则甲会中国象棋,则乙说的话也为真的,矛盾;若乙说的话为真的,则甲的话为假话,所以甲不会中国象棋,丙的话为假话,所以甲会会中国象棋,矛盾;故丙的话为真话,甲和乙的话为假话,所以会中国象棋是乙.16.已知点P 在椭圆2222+1(0)x y a b a b=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222x y a b+=-上.记直线1PF 的斜率为k ,若1k ≥,则椭圆离心率的最小值为 .【命题意图】本题考查椭圆的性质,借助平面几何与圆锥曲线的常用二级结论可以快速得处答案,属于难题.1【解析】设椭圆的右焦点为2F ,则12F F 为圆2222x y a b +=-的直径,所以线段1PF 的中垂线过2F ,所以122F F PF =.在焦三角形12PF F 中,设1212PF F F PF θ∠=∠=,由1k ≥得42θππ≤<.所以离心率()sin 11sin sin 212cos e θθθθ==≥=+π-+.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.+ 17.(本小题满分12分)2019年12月,《生活垃圾分类标志》新标准发布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年齡进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:(Ⅰ)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中m ,n 的值;(Ⅱ)现从年龄在[)30,40段中采用分层抽样的方法选取5名代表参加垃圾分类知识交流活动.应社区要求,从被选中的这5名代表中任意选2名作交流发言,求选取的2名发言者中恰有1名年龄在[)35,40段中的概率.【命题意图】本题考查频率分布直方图和古典概型,属于中档题. 【答案】(Ⅰ)图略,200m =,100n =;(Ⅱ)35. 【详解】(Ⅰ)因为第三组的频率为()10.040.060.030.020.0150.2-++++⨯=, 所以第三组直方图的高为0.20.045=.补全频率分布直方图如下图:由频率分布直方图知0.21000200m =⨯=,0.025*******n =⨯⨯=.(Ⅱ)由(Ⅰ)知年龄在[)30,35段中的人数与年龄在[)35,40段中的人数的比值为30032002=,所以采用分层抽样法抽取5名,年龄在[)30,35段中的有3名,年龄在[)35,40段中的有2名.不妨设年龄在[)30,35段中的3名为A 1,A 2,A 3,年龄在[)35,40段中的2名为B 1,B 2由于从5名代表中任选2名作交流发言的所有可能情况有:{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}共10种.其中选取的2名发言者中恰有1名年龄在[)35,40段情况有:{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2}共6种. 故所求概率为63105P ==. 18.(本小题满分12分)已知函数()3221f x x ax bx a =+++-在1x =-处取得极值0,其中a ,b ∈R . (Ⅰ)求a ,b 的值;(Ⅱ)当[]1,1x ∈-时,求()f x 的最大值.【命题意图】本题主要考查利用导数研究函数的极值和求函数的最值,属于中档题. 【答案】(Ⅰ)1a =,1b =;(Ⅱ)4. 【详解】(Ⅰ)因为()234f x x ax b '=++,且函数()f x 在1x =-处有极值0,所以()()1010f f '-=⎧⎪⎨-=⎪⎩,即3401210a b a b a -+=⎧⎨-+-+-=⎩,解得11a b =⎧⎨=⎩.又当1a =,1b =时,()()()2341131f x x x x x '=++=++.当(),1x ∈-∞-时,()0f x '>,此时()f x 单调递增;当11,3x ⎛⎫∈-- ⎪⎝⎭时,()0f x '<,此时()f x单调递减;当1,3x ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '>,此时()f x 单调递增.故()f x 在1x =-处取得极大值. 综上,1a =,1b =.(Ⅱ)由(Ⅰ)知()322f x x x x =++,()()()131f x x x '=++,()f x 在11,3⎡⎫-⎪⎢⎣⎭上递减,在1,13⎛⎤- ⎥⎝⎦上递增.又()10f -=,()14f =,所以当[]1,1x ∈-时,()f x 取得最大值4. 19.(本小题满分12分)如图①,在菱形ABCD 中,60A ∠=且2AB =,E 为AD 的中点.将ABE △沿BE 折起使AD =得到如图②所示的四棱锥A BCDE -.(Ⅰ)求证:平面ABE ⊥平面ABC ;(Ⅱ)若P 为AC 的中点,求二面角P BD C --的余弦值.【命题意图】本题主要考查垂直关系的证明和求二面角,属于中档题.【答案】(Ⅰ)略;(Ⅱ)7. 【详解】(Ⅰ)证明:在图①中,连接BD .∵ 四边形ABCD 为菱形,60A ∠=,∴ ABD △是等边三角形. ∵ E 为AD 的中点,∴ BE ⊥AE ,BE ⊥DE . 又2AD AB ==,∴1AE DE ==.在图②中,AD =222AE ED AD +=.∴ AE ⊥ED .∴ BC ∥DE ,∴ BC ⊥BE ,BC ⊥AE .又BE AE E =,AE ,BE ⊂平面ABE ,∴ BC ⊥平面ABE . ∵ BC ⊂平面ABC ,∴ 平面ABE ⊥平面ABC . (Ⅱ)解:由(Ⅰ)知AE ⊥DE ,AE ⊥BE . ∵ BE DE E =,BE ,DE ⊂平面BCDE . ∴ AE ⊥平面BCDE .以E 为坐标原点,EB ,ED ,EA 的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系Exyz .则()0,0,0E ,()0,0,1A,)B,)C,()0,1,0D .∵ P 为AC 的中点,∴1,1,22P ⎛⎫⎪ ⎪⎝⎭.∴ 311,22PB⎛⎫=--⎪ ⎪⎝⎭,1,0,22PD ⎛⎫=-- ⎪ ⎪⎝⎭. 设平面PBD 的一个法向量为(),,x y z =m .由00PB PD⎧⋅=⎪⎨⋅=⎪⎩m m ,得10,2210.2x y z x z--=⎪⎨⎪-=⎪⎩令z =,得(=-m .又平面BCD 的一个法向量为()0,0,1EA =.设二面角P BD C --的大小为θ,由题意知该二面角为锐角,则cos 7EA EA θ⋅===m m. ∴ 二面角P BD C --的余弦值为7. 20.(本小题满分12分)在同平面直角坐标系xOy 中,圆224x y +=经过伸缩变换ϕ:12x x y y '=⎧⎪⎨'=⎪⎩后,得到曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 相交于A ,B 两点,连接BO 并延长与曲线C 相交于点D ,且2AD =.求ABD △面积的最大值.【命题意图】本题主要考查伸缩变换和直线与椭圆的位置关系,属于中档题.【答案】(Ⅰ)2214x y +=;(Ⅱ)2. 【详解】(Ⅰ)设圆224x y +=上任意一点(),M x y 经过伸缩ϕ:12x x y y '=⎧⎪⎨'=⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=. 所以曲线C 的方程为2214x y +=. (Ⅱ)解法一:由题知当直线AD 的斜率不存在时,由2AD =,则A ,B 两点重合,不满足题意. 当直线AD 的斜率存在时,不妨设直线AD :y kx m =+,()11,A x y ,()22,D x y . 因为点B ,D 关于原点对称,所以2ABD AOD S S =△△.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,化简得()222148440k x kmx m +++-=. 所以()2216410k m ∆=-+>,即22410k m -+>.……(*)所以122814kmx x k +=-+,21224414m x x k -=+.由2AD =,得122AD x =-==,22231441k m k +=⋅+. 设点O 到直线AD 的距高为d,则d =又 12||222ABD AOD S D d S A d =⨯⋅==△△,所以ABDS ==△(1)t t =≥,则 ()22114k t =-.所以2ABD t S t==≤+△,当且仅t =. 此时212k =,232m =且满足(*)式. 所以ABD △面积的最大值为2.解法二:由题知直线l 的斜率不为零,设l :x my n =+,()11,A x y ,()22,B x y ,则()22,D x y --.由22,14x n y x my ⎧⎪⎨+==+⎪⎩消去x ,化简得()2224240m y mny n +++-=. 所以()221640m n ∆=+->,即2214n m <+. 所以12224mny y m +=-+,212244n y y m -=+.所以()12122824nx x m y y n m +=++=+.由2AD =,得()()2212124x x y y +++=,所以()()2222222644444nm nmm+=++,化简得()2222416m n m +=+,所以22222412141616n m m m m +==-+++. 又20m ≥,所以221144n m ≤<+. 因为点B ,D 关于原点对称,所以2ABD AOB S S =△△. 又1212||||22ABD AOB S S y y n n ⨯==-=△△2===≤. 故当22142n m =+时,ABD △的面积最大,最大值为2. 21.(本小题满分12分)已知函数()e xf x x ax =+,a ∈R .(Ⅰ)设()f x 的导函数为()f x ',试讨论()f x '的零点个数;(Ⅱ)设()ln ln (1)ag x ax x a x a x =++-.当()1,x ∈+∞时,若()()f x g x ≥恒成立,求a 的取值范围.【命题意图】本题主要考查利用导数研究函数的零点和处理含参不等式恒成立问题,属于难题. 【答案】(Ⅰ)见详解;(Ⅱ)(],e -∞. 【详解】(Ⅰ)解法一:因为()()1e xf x x a '=++,所以()f x '的零点个数等价于方程()1e xa x -=+的根的个数.设()(1)e xF x x =+,则考虑直线y a =-与曲线()y F x =的公共点个数. 因为()(2)e xF x x '=+,令()(2)e 0xF x x '=+=,解得2x =-.所以当(),2x ∈-∞-时,()0F x '<,此时()F x 在(),2-∞-上单调递减;当()2,x ∈-+∞时,()0F x '>,此时()F x 在()2,-+∞上单调递增. 所以()F x 的最小值为21(2)eF -=-. 又(1)0F -=,当1x <-时,()0F x <;当1x >-时,()0F x >. 当x →-∞时,()0F x →;当x →+∞时,()F x →+∞. 由其函数图象性质,可得:①当0a -≥或21e a -=-,即 0a ≤或21ea =时,直线y a =-与曲线()y F x =有 1 个公共点; ②当210e a -<-<,即210ea <<时,直线y a =-与曲线()y F x =有 2 个公共点;③当21e a -<-,即21ea >时,直线y a =-与曲线()y F x =无公共点.综上所述,当 0a ≤或21e a =时,()f x '有且只有 1 个零点;当210e a <<时,()f x '有2零点;当21ea >时,()f x '无零点. 解法二:因为()()1e xf x x a '=++,所以()()2e xf x x ''=+,所以当2x <-时,()0f x ''<;当2x >-时,()0f x ''>.所以()f x '在(),2-∞-上单调递减,在()2,-+∞上单递递增,所以()()2min 12e f x f a ''=-=-. (1)当21e a >时,则()2min10e f x a '=->,所以()f x '无零点. (2)当21e a =时,则()2min 10e f x a '=-=,所以()f x '有且只有 1 个零点.(3)当21e a <时,则()2min 10ef x a '=-=.又当x →-∞时,()f x a '→;当x →+∞时,()f x '→+∞,所以若201ea <<时,则()f x '有2零点;若0a ≤时,则()f x '有且只有 1 个零点. 综上所述,当 0a ≤或21e a =时,()f x '有且只有 1 个零点;当210e a <<时,()f x '有2零点;当21e a >时,()f x '无零点. (Ⅱ)解法一:当()1,x ∈+∞时,若()()f x g x ≥成立,即e ln ln (1)x ax ax ax x a x a x +≥++-对()1,x ∈+∞恒成立,亦即()ln e ln eln xa xx x a x a x +≥+对()1,x ∈+∞恒成立.设函数()e xh x x x =+,所以()()ln h x h a x ≥对()1,x ∈+∞恒成立.又()()1e 1xh x x '=++,设()()()1e 1xx h x x ϕ'==++,则()(2)e xx x ϕ'=+.所以当(),2x ∈-∞-时,()0x ϕ'<,此时()h x '在(),2-∞-上单调递减;当()2,x ∈-+∞时,()0x ϕ'>,此时()h x '在()2,-+∞上单调递增. 所以()()21210eh x h ''≥-=->,()h x 在R 上单调递增. 又()()ln h x h a x ≥,所以ln x a x ≥在()1,+∞上恒成立. 方法一:因为1x >,所以ln xa x≤在()1,+∞上恒成立. 设()()1ln xt x x x=>,则()min a t x ≤ 因为()()2ln 1ln x t x x -'=,所以当1e x <<时,()0t x '<;当e x >时,()0t x '>.所以()t x 在()1,e 上单调递减,在()e,+∞上单调递增. 所以()()min e e t x t ==,所以e a ≤. 故a 的取值范围是(],e -∞.方法二:令()ln m x x a x =-,则()1a x a m x x x-'=-=. ①当1a ≤时,()0m x '>在()1,+∞上恒成立,所以()(1)10m x m >=>,此时满足已知条件. ②当1a >时,由()0m x '=,解得x a =.当()1,x a ∈时,()0m x '<,此吋()m x 在()1,a 上单调递减;当(),x a ∈+∞时,()0m x '>,此吋()m x 在(),a +∞上单调递增.所以()m x 的最小值()ln 0m a a a a =-≥,解得1e a <≤.综上,a 的取值范围是(],e -∞. 解法二:由题意知()()()()e 11ln 0x af xg x x a x x ≥⇔+-+≥. 设()()()()e 11ln 1x a x a x h x x x =+-+>,则()0h x ≥恒成立.(1)当0a ≤时,则当1x >时,()e 10x x +>,ln 0x >,10ax +>,所以()0h x >,此时满足已知条件.(2)当0a >时,因为()0h x ≥恒成立,所以()()()e e e e 1e 10a h a =+-+≥.设()()()()e e e 1e 10a a a a ϕ=+-+>,则()()e e 10a a a a ϕ'=-++<,所以()a ϕ在()0,+∞上单调递减. 又()e 0ϕ=,()()()e e e e 1e 10a h a =+-+≥,所以0e a <≤.将函数()h x 看成关于a 的函数()a ω,则()()ln 11ln 0a a a x x x ω'⎡⎤=-++<⎣⎦,所以()a ω在()0,+∞上单调递减.所以当0e a <≤时,()()()()e e 1e 1e ln x x x x a ωω+-+≥=,所以()()()e e 1e 1ln x h x x x x +-+≥. 设()ln e x s x x =-,则()11ee e x s x x x-'=-=,所以当0e x <<时,()0s x '<;当e x >时,()0s x '>. 所以()s x 在()0,e 上单调递减,在()e,+∞上单调递增,所以()()min e 0s x s ==. 所以ln exx ≥,当e x =时等号成立. 所以()()()()()e ee e 1e 1ln e 1e 1e ex x x x x x x x xx x +-+≥+=⋅--+,当e x =时等号成立. 设()()e 1e x x r x x =>,则()()e 1e 1e e e e e x xx xx x r x ----'==,所以当1e x <<时,()0r x '>;当e x >时,()0r x '<.所以()r x 在()1,e 上单调递增,在()e,+∞上单调递减,所以()()max e 1r x r ==.所以ee x x ≥,当e x =时等号成立.所以()()()e e e 1e 1ln e 0x x x x x x x -++≥≥-,当e x =时等号成立.所以()()()e e 1e 1ln 0x h x x x x -+≥+≥,所以当0e a <≤时,()0h x ≥恒成立. 综上,a 的取值范围是(],e -∞.22.(本小题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1,22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为6cos ρθ=.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)已知点()1,0P .若直线l 与曲线C 相交于A ,B 两点,求2211PAPB+的值.【命题意图】本题主要考查参数方程、极坐标方程与直角坐标方程互化和直线标准参数方程t 的几何意义,属于中档题.【答案】(Ⅰ)10x y --=,()2239x y -+=;(Ⅱ)1825. 【详解】(Ⅰ)由直线l 的参数方程,消去参数t ,得直线l 的普通方程为10x y --=. 由22x y ρ=+,cos x ρθ=,sin y ρθ=得曲线C 的直角坐标方程为()2239x y -+=.(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程,并整理得250t --=.……(*)设点A ,B 所对应的参数分别为1t ,2t ,则1t ,2t 是方程(*)的两个实数根,则有12t t +=125t t =-.所以()()(()()2212122222221212252111118255t t t t t t t t PA PB -⨯-+-+=+===-.。
2018届四川省成都市高中毕业班第一次诊断性检测理科数学试题及答案
成都市2018届高中毕业班第一次诊断性检测数学(理工类)本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其它答案标号。
礼答非选择题时,必须使用。
.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第工卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合A={-2,3},B= {}x x x =,则A B= (A ){-2} (B){3} (C){-2,3} (D )∅ 2.若复数z 满足z(1-2i)=5(i 为虚数单位),则复数z 为 (A)1255i + (B)1+2i (C) 1-2i (D) 1255i -3.计算1og 124-所得的结果为(A)1 (B) 52 (C) 72(D) 4 4.在等差数列中,a 8=15,则(A) 15 (B)30 (C) 45 (D)605.已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是 (A)若m ∥α,n ∥α,则m ∥n (B)若m ⊥α,n ⊥α.则m ⊥n (C)若m ⊥α,n ∥α,则m ⊥n(D)若m 与α相交,n 与α相交,则m ,n 一定不相交6.如图,在平面直角坐标系xOy 中,角的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A,B 两点,若点A,B 的坐标为和,则的值为7、世界华商大会的某分会场有A,B,C,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲,乙两人被分配到同一展台的不同分法的种数(A)12种(B)10种(C)8种(D) 6种i8一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:cm),则该几何体的体积为(A) 120 cm2 (B)80 cm2 (C)100 cm2 (D)60 cm29.如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A'B'C',其中A'B'//y' 轴,B' C'//x’轴.若A'B'=B'C'=3,设△ABC的面积为S,△A'B'C的面积为S',记S=kS',执行如图②的框图,则输出T的值(A) 12(B)10(C) 9(D) 610.已知f(x)=-2|2|x|-1|+1和是定义在R上的两个函数,则下列命题正确的是(A)关于x的方程f (z)-k=0恰有四个不相等实数根的充要条件是(B)关于x的方程f (x)=g(x)恰有四个不相等实数根的充要条件是(C)当m=1时,对成立(D)若第II卷(非选择题,共 100分)二、填空题:本大题共5小题,每小学科网题5分,共25分.11.若是定义在R上的偶函数,则实数a=___12.已知13、设是函数的两个极值点,若,则实数a的取值范围是_____14.已知的概率为_____15.设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,;④若QA>QP,则P在△ABC内部的概率为的面积).其中不正确的命题有_____(写出所有不正确命题的序号).三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量,设函数.(I)求函数f(x)的最小正周期;(II)在△ABC中,角A,B,C所对边的长分别为a,b,c,且,求A的大小.17.(本小题满分12分)已知数列的前n项和为Sn,且(I)求数列的通项公式;(II)设数满足,求数列的前n项和Tn.18.(本小题满分12分)某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟陋夔因…详选择:其中p,q均为常数且q>1.(注:x表示上市时间,f(x)表示价格,记x=0表示4月1号,x=1表示5月1号,…,以此类推,)(I)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;(II)对(I)中所选的函数f(x),若f(2)=11, f(3)=10,记,经过多年的统计发现,当函数g(x)取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?19.(本小题满分12分)如图①,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=13DC,F为EC的中点,现将△DAE沿AE翻折到△PAE的位置,如图②,且平面PAE⊥平面ABCE.(I)求证:平面PAF⊥平面PBE;(II)求直线PF与平面PBC所成角的正弦值.20.(本小题满分13分)我国采用的PM2. 5的标准为:日均值在35微克/立方米以下的空气质量为一级;在35微克/立方米一75微克/立方米之间的空气质量为二级;75微克/立方米以上的空气质量为超标.某城市环保部门随机抽取该市m天的PM2. 5的日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图所示.请据此解答如下问题:(I)求m的值,并分别计算:频率分布直方图中的[75,95)和[95,115]这两个矩形的高;(II)通过频率分布直方图枯计这m天的PM2. 5日均值的中位数(结果保留分数形式);(皿)从这m天的PM2. 5日均值中随机抽取2天,记X表示抽到PM2. 5超标的天数,求X的分布列和数学期望.21.(本小题满分14分)已知函数(I)若a=-1,求曲线y=f(x)在x=3处的切线方程;(II)若对任意的,都有f(x)≥g(x)恒成立,求a的最小值;(III)设p(x)=f(x-1),a>0,若为曲线y=p (x)的两个不同点,满足,使得曲线y=f(x)在x0处的切线与直线AB平行,求证:。
推荐-四川省成都市2018届高中毕业班摸底测试数学(理)0
成都市2018届高中毕业班摸底测试数学(理工农医类)一、选择题(1)设集合M ={x|x <2},集合N ={x|0<x <1},则下列关系中正确的是( )()(){|01}()()A M N R B M N x x C N M D M N φ==<<∈=(2)在等比数列{}n a 中,若254,32a a ==,则公比应为( )A 、2B 、2±C 、-2D 、12±(3)若函数f(x)的定义域是[0,4],则函数(2)()f x g x x=的定义域是( )A 、[0,2]B 、(0,2)C 、(0,2]D 、[0,2)(4)如图,在正方体1111ABCD A BC D -中,若E 是AD 的中点,则异面直线11E A B C 与所成角的大小是( )()4B ππ(A)6(5)已知函数sin y =示,要得到函数y =的图象( )A 、向右平移12πB 、向左平移12πC 、向右平移6πD 、向左平移6π(6)已知条件甲:函数()(0,1)xf x a a a =>≠在其定义域内是减函数,条件乙:1log 02a>,则条件甲是条件乙的( )A 、充分而不必要条件B 、必要而不充分条件C 、充要条件D 、既不充分又不必要条件(7)已知圆的方程为22680,x y x y +--=设圆中过点(2,5)的最长弦与最短弦分别为AB 、CD ,则直线AB 与CD 的斜率之和为( )A 、-1B 、0C 、1D 、-2(8)已知两条不同的直线m 、n ,两个不同的平面,αβ,则下列命题中的真命题是( ) A 、,,,m n m n αβαβ⊥⊥⊥⊥若则 B 、,//,,m n m n αβαβ⊥⊥⊥若则 C 、//,//,//,//m n m n αβαβ若则 D 、//,,,//m n m n αβαβ⊥⊥若则(9)设x >0,y >0,x +y =1) A 、1 BCD(10)9名志愿者中,A 1,A 2,A 3为教师,B 1,B 2,B 3,B 4为医生,C 1,C 2为学生,为组建一个服务小组,需从这9名志愿者中 选出教师1名,医生2名,学生1名,则A 1被选中且B 1,B 2最多有1名被选中的概率为( ) A 、518 B 、13 C 、718 D 、29(11)设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是F 1,F 2,过点F 2的直线交双曲线右支于不同的两点M 、N 。
成都市2018高中毕业班摸底测试数学
成都市2018高中毕业班摸底测试数学摘要:一、引言1.成都市2018高中毕业班摸底测试数学的背景和目的2.数学在高考中的重要性二、考试内容与题型1.选择题2.填空题3.解答题4.考试知识点覆盖范围三、试题解析1.选择题解析2.填空题解析3.解答题解析四、备考建议1.针对性的复习计划2.提高解题技巧和方法3.增强应试能力和心理素质五、结论1.成都市2018高中毕业班摸底测试数学的总结和评价2.对未来高考数学备考的展望正文:一、引言成都市2018高中毕业班摸底测试数学是为了检测学生数学知识的掌握情况,及时发现和解决问题,为高考做好充分准备。
数学作为高考的重要科目之一,对于学生未来的学习和职业发展具有重要意义。
二、考试内容与题型成都市2018高中毕业班摸底测试数学试题分为选择题、填空题和解答题三种题型,全面覆盖了高中数学的主要知识点。
试题既注重基础知识的考查,又突出了能力的培养,有利于提高学生的综合素质。
三、试题解析1.选择题解析:选择题主要考查学生对基础知识的掌握,要求学生在理解概念、性质、公式等方面具备扎实的基本功。
2.填空题解析:填空题要求学生在掌握基础知识的基础上,能够灵活运用所学知识解决问题,具有一定的难度。
3.解答题解析:解答题考查学生的综合运用能力和解决问题的能力,要求学生在解答过程中思路清晰、步骤严谨。
四、备考建议1.针对性的复习计划:学生应根据自身实际情况,制定针对性的复习计划,确保每个知识点都得到充分的复习。
2.提高解题技巧和方法:学生应在平时的练习中,总结解题方法和技巧,提高解题速度和准确率。
3.增强应试能力和心理素质:学生应注重培养自己的应试能力和心理素质,以应对高考的紧张氛围。
五、结论成都市2018高中毕业班摸底测试数学试题充分体现了高考对数学学科的要求,为学生提供了一次重要的自我检测机会。
四川省成都2017-2018届高考模拟数学理科试题(一)含答案
2018届高考模拟考试试题(一)数学(理工类)(考试用时:120分全卷满分:150分)注意事项:1.答题时,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选做题的作答:先把所做题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交;第Ι卷(选择题部分,共60分)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|13}U x x =∈-≤≤Z ,0.5{1,2},{|log ,}A B y y x x A ===∈,则集合()U C A B =A.{3}B.{1,0,3}-C.{1,0,1,2}-D.{1,0,1,2,3}-2.已知复数ai i +1为纯虚数,那么实数a 的值为A.-1B.0C.1D.23.已知()=-∈*21n a n n N ,把数列{}n a 的各项排成如图所示的三角形数阵,记(),S m n 表示该数阵中第m 行中从左到右的第n 个数,则()=8,6S A.67B.69C.73D.754.函数()22sin sin 44f x x x ππ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭是A.周期为π的偶函数B.周期为2π的偶函数C.周期为π的奇函数D.周期为2π奇函数5.已知函数()f x 是定义在R 上的单调函数,且对任意的,x y R ∈都有()()()f x y f x f y +=+,若动点(,)P x y 满足等式22(22)(83)0f x x f y y +++++=,则x y +的最大值为A.5B.-5 C.265D.65-6.祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为A.①②B.①③C.②④D.①④7.下列说法正确的是A.“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B.在ABC ∆中,“A B >”是“22sin sin A B >”必要不充分条件C.“若tan 3α≠,则3πα≠”是真命题D.()0,0x ∃∈-∞使得0034x x <成立8.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,上面的程序框图的算法思路就是来源于“欧几里得算法”,执行该程序框图(图中“aMODb ”表示a 除以b 的余数),若输入的,a b 分别为675,125,则输出的a =A.0B.25C.50D.759.已知实数x ,y 满足不等式组220210320x y x y x y -+≥⎧⎪++≥⎨⎪+-≤⎩,若直线(1)y k x =+把不等式组表示的平面区域分成面积相等的两部分,则k =A.14B.13C.12D.3410.如图,在平面直角坐标系xOy 中,质点M ,N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为A.37.5分钟B.40.5分钟C.49.5分钟D.52.5分钟11.已知F 是双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 是y 轴正半轴上一点,以OP 为直径的圆在第一象限与双曲线的渐近线交于点M .若点P ,M ,F 三点共线,且MFO ∆的面积是PMO ∆面积的5倍,则双曲线C 的离心率为C.12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤b 成立,则实数b 的最小值为A.15B.45 C.25 D.1第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两部分。
成都市2018级高中毕业班摸底测试(数学理科)
其中选取的 2 名发言者中恰有 1 名年龄在[35,40)段的情况有:
A1, B1,A1, B2, A2, B1,A2, B2,A3, B1,A3, B2 .共 6 种
(I)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中 m,n 的 值; ( )现从年龄在[30,40)段中采用分层抽样的方法选取 5 名代表参加垃圾分类知 识交流活动.应社区要求,从被选中的这 5 名代表中任意选 2 名作交流发言,求选 取的 2 名发言者屮恰有 1 名年龄在[35,40)段中的概率.
又SABD
= 2SAOD
= 2 1 2
AD gd
= 2d,
SABD =
2m =
k2 +1
4k 2 +1 3g k2 +1
x∈(-1, − 1 )时, f '(x) <0,此时 f(x)单调递减; 3
当 x∈( − 1 ,+∞)时, f '(x) >0,此时 f(x)单调递增; 3
故 f(x)在 x=-1 处取得极大值 综上,a=1,b=1 (Ⅱ)当 a=1,b=1 时, f (x) = x3 + 2x2 + x .则 f ' (x) = 3x2 +4x +1 = 3(x +1)(x + 1).
6.已知离心率为
2
的双曲线
x2 a2
−
y2 b2
= 1(a
0,b
0)
与椭圆 x 2 + y2 = 1 84
四川省成都市2018年高考模拟试卷(一)理科数学(解析版)
2018年高考模拟卷(一)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=( )A. B. C. D.【答案】A【解析】分析:求出集合,即可得到.详解:,选A.点睛:本题考查集合的交集运算,属基础题.2.在等差数列中,若,则的值为()A. 75B. 50C. 40D. 30【答案】D【解析】分析:根据等差数列的性质可得,可求的值.详解:由差数列的性质可得,故,故.故选D.点睛:本题考查等差数列的性质,属基础题.3.设有下面四个命题:若满足,则;:若虚数是方程的根,则也是方程的根::已知复数则的充要条件是:;若复数,则.其中真命题的个数为( )A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据复数的基本概念和复数的几何特征,逐一分析,即可得到答案.详解:对于中若,设,则,所以是正确的;对于中,若虚数是方程的根,则也一定是方程的一个根,所以是正确的;对于中,例如则,此时,所以不正确;对于中,若,则必为实数,所以是正确的,综上正确命题的个数为三个,故选C.点睛:本题主要考查了复数的基本概念,其中熟记复数的基本概念和几何特征是解答的关键,着重考查了分析问题和解答问题的能力.4.已知偶函数在单调递增,若,则满足的的取值范围是()A. B.C. D.【答案】B【解析】分析:由题意结合函数的性质脱去符号,求解绝对值不等式即可求得最终结果.详解:由题偶函数在单调递增,若,则,即解得或.故选B.点睛:本题考查函数的奇偶性,函数的单调性等,重点考查学生对基础概念的理解和计算能力,属于中档题.5.展开式中的系数为( )A. 15B. 20C. 30D. 35【答案】A【解析】分析:由题意,二项式的展开式的通项为,得到展开式的的项,即可得到结果.详解:由题意,二项式的展开式的通项为,所以展开式的的项为,所以展开式的的系数为,故选A.点睛:本题主要考查了二项式定理的应用,其中熟记二项展开式的通项是解答的关键,着重考查了考生的推理与运算能力.6..一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A. B. C. D.【答案】B【解析】分析:由三视图可知还几何体是以ABCD为底面的四棱锥,由此可求其外接球的半径,进而得到它的外接球的表面积.详解:由三视图可知还几何体是以为底面的四棱锥,过作,垂足为,易证面,设其外接球半径为,底面ABCD是正方形外接圆,.设圆心与球心的距离为,则由此可得,故其外接球的表面积故选B.点睛:本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.7.执行程序框图,假如输入两个数是、,那么输出的=( )A. B. C. 4 D.【答案】C【解析】分析:模拟执行程序框图可知程序框图的功能是求,的值,用裂项法即可得解.详解:模拟执行程序框图,可得是、,,满足条件,满足条件满足条件不满足条件,退出循环,输出的值为4.故选C.点睛:本题主要考查了循环结构的程序框图,考查了数列的求和,属于基础题.8.已知变量满足,则目标函数的最值是( )A. B.C. ,无最小值D. 既无最大值,也无最小值【答案】C【解析】分析:由约束条件画出可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数可求最大值,没有最小值.详解:由约束条件,作可行域如图,联立解得:.可知当目标函数经过点A是取得最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市2016级高中毕业班摸底测试数学试题(理科)本试卷分为A 卷和B 卷两部分,A 卷1至4页,满分100分;B 卷5至6页,满分60分。
全卷满分160分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}2,1,0,1,2P =--,{}2|20Q x x x =+-> ,则PQ =( )A . {}1,0-B .{}0,1C .{1,0,1}-D .{0,1,2} 2. 复数31iz i+=+ (i 为虚数单位)在复平面内表示的点的坐标为( ) A .(2,1)- B .(1,1)- C .(1,2) D .()2,23. 若实数,x y 满足约束条件40400x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A . -4B .0C . 4D . 8 4. 已知等差数列{}n a 的前n 项和为n S ,且452a =,1015S =,则7a =( ) A .12 B .1 C. 32D .2 5. 已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).33x y +=C 相交于不同的两点,A B ,则AB 的值为( )A .12B .32 C.1 D 36. 平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,….则平面内五条两两相交且任意三条不共点的直线将平面分成的部分数为( )A . 15B . 16 C. 17 D .18 7. “4πϕ=-”是“函数()()cos 3f x x ϕ=-的图象关于直线4x π=对称”的( )A . 充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件8. 某汽车销售公司统计了某款汽车行驶里程x (万公里)与维修保养费用y (万元)的五组数据,并根据这五组数据求得y 与x 的线性回归方程为ˆ0.460.16yx =+.由于工作人员疏忽,行驶8万公里的数据被污损了,如下表所示. 行驶里程x (单位:万公里) 1 245 8 维修保养费用y (单位:万元) 0.500.90 2.32.7则被污损的数据为( )A . 3.20B . 3.6 C. 3.76 D .3.849. 若函数()()23x f x x ax e =++在(0,)+∞内有且仅有一个极值点,则实数a 的取值范围是 A . (,22]-∞- B .(),22-∞- C. (,3]-∞- D .(),3-∞- 10. 某三棱锥的三视图如图所示,其中正视图与侧视图均为直角三角形.则该三棱锥四个面的面积中,最大值为( )A . 2B . 5 C. 3 D .711. 某同学采用计算机随机模拟的方法来估计图(1)所示的阴影部分的面积,并设计了程序框图如图(2)所示,在该程序框图中,RAND 表示[]0,1内产生的随机数,则图(2)中①和②处依次填写的内容是( )A .x a =,1000i s =B . x a =,500i s = C. 2x a =,1000is = D .2x a =,500i s =12. 设函数()2ln ,0165,1x x f x x x x -<≤⎧=⎨-+->⎩.若曲线20kx y --=与函数()f x 的图象有4个不同的公共点,则实数k 的取值范围是( )A .(67,)e -B .(67,)e - C. 2(,2)3D .2(,)3e第Ⅱ卷(第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡上. 13. 已知顶点在坐标原点的抛物线的焦点坐标为()0,2-,则此抛物线的标准方程为 . 14. 若()21sin 1-1ax x dx +=⎰,则实数a 的值为 .15. 已知0a >,0b >,若直线()1210a x y -+-=与直线0x by +=互相垂直,则ab 的最大值是 .16. 如图,在ABC ∆中,已知120BAC ∠=︒,其内切圆与AC 边相切于点D ,延长BA 到E ,使BE BC =,连接CE 设以E ,C 为焦点且经过点A 的椭圆的离心率为1e ,以,E C 为焦点且经过点A 的双曲线的离心率为2e ,则当1221e e +取最大值时,AD DC的值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 已知函数()32122f x ax x x =+-,其导函数为()f x ',且(1)0f '-=. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程 (Ⅱ)求函数()f x 在[1,1]-上的最大值和最小值.18. 2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮.某大学社团调查了该校文学院300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内),并按时间(单位:分钟)将学生分成六个组:[)0,20,[)20,40,[)40,60,[)60,80,[)80,100,[]100,120,经统计得到了如图所示的频率分布直方图(Ⅰ)求频率分布直方图中a 的值,并估计该校文学院的学生每天诵读诗词的时间的平均数; (Ⅱ)若两个同学诵读诗词的时间,x y 满足60x y ->,则这两个同学组成一个“Team ”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team ”的概率.19. 如图,在多面体ABCDE 中,已知四边形BCDE 为平行四边形,平面 ABC ⊥平面ACD ,M 为AD 的中点,AC BM ⊥,1AC BC ==,4AD =,3CM =.(Ⅰ)求证:BC ⊥平面ACD ; (Ⅱ)求二面角D BM E --的余弦值20. 已知椭圆()2222:a b 0x y a bΓ+>>的右顶点为A ,上顶点为()0,1B ,右焦点为F .连接BF 并延长与椭圆Γ相交于点C ,且17CF BF =(Ⅰ)求椭圆Γ的方程;(Ⅱ)设经过点()1,0的直线l 与椭圆Γ相交于不同的两点,M N ,直线,AM AN 分别与直线3x =相交于点P ,点Q .若APQ ∆的面积是AMN ∆的面积的2倍,求直线l 的方程.21. 设函数()1ln 2f x ax x x =-+,0a ≠. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)当0a >时,函数()f x 恰有两个零点()1212,x x x x <,证明:121277x x ax x +> 22. 选修4-4;坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为112312x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为()2212cos 3ρθ+=(Ⅰ)写出直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)设点()1,1M .若直线l 与曲线C 相交于不同的两点,A B ,求AM BM +的值成都市2016级高中毕业班摸底测试 数学(理科)参考答案及评分意见一、选择题1-5: BADAC 6-10: BABCC 11、12:DA 二、填空题13.28x y =- 14.32 15. 18 16.16三、解答题17. 解:(Ⅰ)()232f x ax x '=+-∵(1)0f '-=,∴3120a --=.解得1a = ∴321()22f x x x x =+-,2()32f x x x '=+- ∴1f (1)2=-,(1)2f '=. ∴曲线()y f x =在点()()1,1f 处的切线方程为4250x y --= (Ⅱ)出(Ⅰ),当()0f x '=时,解得1x =-或23x = 当x 变化时,()f x ,()f x '的变化情况如下表:∴()f x 的极小值为()327f =- 又3(1)2f -=,1(1)2f =-∴()max 3(1)2f x f =-=,min 222()()327f x f ==- 18. 解:(Ⅰ)∵各组数据的频率之和为1,即所有小矩形面积和为1, ∵()683201a a a a a a +++++⨯=.解得0.0025a = ∴诵读诗词的时间的平均数为100.05300.05500.3700.4900.151100.0564⨯+⨯+⨯+⨯+⨯+⨯= (分钟)(Ⅱ)由频率分布直方图,知[)0,20,[)80,100,[]100,120内学生人数的频率之比为1:3:1 故5人中[)0,20,[80,100),[]100,120内学生人数分别为1,3,1.设[)0,20,[)80,100,[]100,120内的5人依次为,,,,.A B C D E 则抽取2人的所有基本事件有,,,,,,,,,AB AC AD AE BC BD BE CD CE DE 共10种情况.符合两同学能组成一个“ Team ”的情况有,,,AB AC AD AE 共4种, 故选取的两人能组成一个“Team ”的概率为42105P ==.19. 解:(Ⅰ)在MAC ∆中,∵1AC =,CM =,2AM =,∴22AC CM AM +=∴由勾股定理的逆定理,得MC AC ⊥ 又AC BM ⊥,BMCM M =,∴AC ⊥平面BCM∵BC ⊂平面BCM ,∴BC AC ⊥ ∵平面ABC ⊥平面ACD ,且平面ABC 平面ACD AC =,BC ⊂平面ABC∴BC ⊥平面ACD(Ⅱ)∵BC ⊥平面ACD ,∴BC CM ⊥. 又BC AC ⊥,MC AC ⊥,故以点C 为坐标原点,,,CA CB CM 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Cxyz∴()1,0,0A ,()0,1,0B ,M ,(1,0,D -,(1,1,E -∴(0,BM =-,(MD =-,(1,0,BE =- 设平面DBM 的法向量为()111,,m x y z =.由00m BM m MD ⎧⋅=⎪⎨⋅=⎪⎩,得11113030y z x z ⎧-+=⎪⎨-+=⎪⎩.取11z =,∴(3,3,1)m =. 设平面EBM 的法向量为222(,,)n x y z =.由00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,得222230230y z x z ⎧-+=⎪⎨-+=⎪⎩.取21z =,∴(23,3,1)n = ∴32333157cos ,1474m n m n m n ⋅⨯+⨯+<>===⨯ ∵二面角D BM E --为锐二面角,故其余弦值为571420. 解:(Ⅰ)∵椭圆Γ的上顶点为()0,1B ,∴1b = 设(),0F c .∵17CF BF ==,∴17CF BF =-.∴点81(,)77c C -. 将点C 的坐标代入222211x y a +=中,得2264114949c a +=.∴2234c a = 又由222a b c =+,得24a =.∴椭圆Γ的方程为2214x y += (Ⅱ)由题意,知直线MN 的斜率不为0.故设直线MN 的方程为1x my =+.联立22114x mx x y =+⎧⎪⎨+=⎪⎩,消去x ,得()224230m y my ++-= 216480m ∆=+>设11(,)M x y ,22(,)N x y .由根与系数的关系,得12224m y y m -+=+,12234y y m -=+. ∴121211122AMN S y y y y ∆=⨯⨯-=-. 直线AM 的方程为11(2)2y y x x =--,直线AN 的方程为22(2)2y y x x =-- 令3x =,得112p y y x =-.同理222Q y y x =-. ∴1212121211112222211APQ P Q y y y y S y y x x my my ∆=⨯⨯-=-=----- 1221121212(1)(1)112(1)(1)2(1)(1)y my y my y y my my my my ----==----. 故2121212(1)(1)()1AMNAPQS my my m y y m y y S ∆∆=--=-++ 22222222323244114442m m m m m m m m -+-+++=+===+++ ∴24m =,2m =±.∴直线l 的方程为210x y +-=或210x y --= 21.解:(Ⅰ)()ln 1f x a x a '=+-.∵0a ≠,∴由()0f x '=,得1ln ax a-=,即1aa x e -=.① 若0a >,当x 变化时,()f x ,()f x '的变化情况如下表② 若0a <,当x 变化时,()f x ,()f x '的变化情况如下表:综上,当0a >时,()f x 在1(0,)a ae -上单调递减,在1[,)a ae-+∞上单调递增;当0a <时,()f x 在1(0,)a ae-上单调递增,在1[,)a ae -+∞上单调递减.(Ⅱ)∵当0a >时,函数()f x 恰有两个零点1x ,2x 12(0)x x <<,则1112221ln 021ln 02ax x x ax x x ⎧-+=⎪⎪⎨⎪-+=⎪⎩,即11122212ln 12ln x a x x x a x x ⎧-⎪=⎪⎪⎨⎪-⎪=⎪⎩.两式相减,得12112212121122ln2x x x x x a x x x x x ---=-= ∵120x x <<,∴1201x x <<,∴12ln 0x x <,∴1212122ln x x ax x x x -=.∴要证121277x x ax x +>,即证1212127()72ln x x x x x x -+>,即证1122127()2ln 7x x x x x x -<+ 即证1121227(1)2ln 71x x x x x x -<⨯+令12x t x =()01t <<,则即证7(1)2ln 71t t t -<+. 设()7(1)2ln -71t g t t t -=+,即证()0g t <在(0,1)t ∈恒成立.22222256982822(71)()(71)(71)(71)t t t g t t t t t t t -+-'=-==+++. ∵()0g t '≥在()0,1t ∈恒成立.∴()g t 在()0,1t ∈单调递增.∵()g x 在(]0,1t ∈是连续函数,∴当(0,1)t ∈时,()(1)0g t g <=∴当0a >时,有121277x x ax x +>.22.解:(Ⅰ)由直线l 的参数方程消去参数t ,得1(1)3x y -=-化简,得直线l 10y -+= 又将曲线C 的极坐标方程化为2222cos 3ρρθ+=, ∴()22223x y x ++=, ∴曲线C 的直角坐标方程为2213y x +=.(Ⅱ)将直线l 的参数方程代入2213y x +=中,得221111123t ⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭化简,得222(1033t t +++=.此时803∆=+>. 此方程的两根为直线l 与曲线C 的交点,A B 对应的参数1t ,2t .由根与系数的关系,得12(2t t +=-,1223t t = ∴由直线参数的几何意义,知12122AM BM t t t t +=+=--=+。