等差数列和等比数列的总结与联系
高中数学知识点总结等差数列与等比数列的项数关系
高中数学知识点总结等差数列与等比数列的项数关系等差数列和等比数列是高中数学中重要的概念,它们在各种数学问题和实际应用中具有广泛的应用。
本文将对等差数列和等比数列的项数关系进行总结。
一、等差数列的项数关系等差数列是指数列中相邻两项之差保持恒定的数列。
常用的表示方法为an = a1 + (n - 1)d,其中an为第n项,a1为首项,d为公差。
1. 等差数列的前n项求和公式等差数列的前n项求和公式是非常重要的,它可以帮助我们快速计算等差数列的前n项之和。
前n项求和公式为Sn = (a1 + an) * n / 2。
2. 等差数列的项数关系对于等差数列,我们常常需要根据已知条件求出项数n。
项数n的计算方法如下:n = (an - a1) / d + 1其中,an为第n项,a1为首项,d为公差。
根据等差数列的性质,我们可以通过已知的首项、公差和某一项的值,求解出项数n。
二、等比数列的项数关系等比数列是指数列中相邻两项之比保持恒定的数列。
常用的表示方法为an = a1 * r^(n - 1),其中an为第n项,a1为首项,r为公比。
1. 等比数列的前n项求和公式等比数列的前n项求和公式也是非常重要的,它可以帮助我们快速计算等比数列的前n项之和。
前n项求和公式为Sn = (a1 * (1 - r^n)) / (1 - r)。
2. 等比数列的项数关系对于等比数列,我们需要根据已知条件求出项数n。
项数n的计算方法如下:n = log(an / a1) / log(r) + 1其中,an为第n项,a1为首项,r为公比。
根据等比数列的性质,我们可以通过已知的首项、公比和某一项的值,求解出项数n。
三、应用举例例如,已知等差数列的首项为3,公差为2,我们需要求出第10项的值。
根据等差数列的项数关系公式,我们可以得知:n = (an - a1) / d + 1n = (a1 + (n - 1)d - a1) / d + 1n = (3 + (10 - 1)2 - 3) / 2 + 1n = 10因此,等差数列的第10项的值为 3 + (10 - 1)2 = 21。
等差数列和等比数列的概念关系
等差数列和等比数列的概念关系等差数列和等比数列是初中数学中非常基础的概念,但是它们在高中数学和大学数学中也有着非常重要的地位。
这两种数列之间有着一定的联系和关系,本文将从定义、性质和应用等方面探讨等差数列和等比数列的概念关系。
一、等差数列的定义和性质等差数列是指一个数列中相邻两项之差相等的数列,这个公差常用字母d表示。
例如,1,3,5,7,9就是一个公差为2的等差数列。
等差数列的通项公式是an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等差数列有许多重要的性质。
首先,等差数列的前n项和Sn可以用下面的公式表示:Sn=n(a1+an)/2。
其次,对于等差数列中的任意一项ai,它的前后两项之和等于首项和末项之和,即ai+ai+1=a1+an。
最后,等差数列的任意三项构成的差分数列仍是等差数列。
二、等比数列的定义和性质等比数列是指一个数列中相邻两项之比相等的数列,这个公比常用字母q表示。
例如,1,2,4,8,16就是一个公比为2的等比数列。
等比数列的通项公式是an=a1q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
等比数列同样也有许多重要的性质。
首先,等比数列的前n项和Sn可以用下面的公式表示:Sn=a1(q^n-1)/(q-1)。
其次,对于等比数列中的任意一项ai,它的前后两项之比等于首项和末项之比,即ai/ai+1=a1/an。
最后,等比数列的任意三项构成的比分数列仍是等比数列。
三、等差数列和等比数列的关系等差数列和等比数列之间有着一定的联系和关系。
首先,等差数列和等比数列都是数列的特殊形式,它们是数列的两种常见形式。
其次,等差数列和等比数列都有着通项公式和前n项和公式,这些公式都可以用来计算数列中的任意一项或前n项和。
最后,等差数列和等比数列都有着一些重要的应用,例如在数学、物理、经济学等领域都有着广泛的应用。
另外,等差数列和等比数列之间还有一些有趣的关系。
等差数列与等比数列的知识点总结
等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。
以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。
2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。
4. 等差中项:任意两项的算术平均值等于第三项。
5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。
等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。
2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。
3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。
4. 等比中项:任意两项的几何平均值等于第三项。
5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。
以上是关于等差数列和等比数列的主要知识点总结。
在学习这些内容时,可以通过做练习题来加深理解和巩固知识。
等差数列与等比数列的应用知识点总结
等差数列与等比数列的应用知识点总结等差数列和等比数列是高中数学中常见的两种数列。
它们具有很多重要的应用,在不同的数学问题中发挥着重要的作用。
本文将对等差数列与等比数列的应用进行知识点总结,并探讨它们在实际生活和其他学科中的具体应用。
一、等差数列的应用等差数列是指一个数列中,从第二项起每一项与前一项之差都相等的数列。
其常用的应用有:1. 数列求和公式对于等差数列的前n项和Sn,有求和公式Sn = (n/2)(a1 + an),其中a1为首项,an为末项,n为项数。
这个公式的应用非常广泛,可以用于求解各种数学问题,比如求等差数列的和、计算时间、距离、速度等问题。
2. 平均数的应用对于等差数列,它的各项的平均数与首末两项的平均数是相等的。
这个特性可以用来解决一些平均数相关的问题,比如求取某一连续数列的平均值等。
3. 等差数列的推广等差数列可以推广到高阶等差数列,即每一项与前一项之差的差值也相等。
这种推广常用于解决一些复杂的数学问题,比如等差数列的前n项和Sm,可以通过差分公式Sm = (m/2)(2a1 + (m-1)d)来求解。
4. 几何问题等差数列在几何问题中也有重要应用,比如解决一些等边三角形、等腰梯形等形状相关的问题时,常常需要利用等差数列的性质进行计算。
二、等比数列的应用等比数列是指一个数列中,从第二项起每一项与前一项的比值都相等的数列。
其常用的应用有:1. 数列求和公式对于等比数列的前n项和Sn,有求和公式Sn = a1(1-q^n)/(1-q),其中a1为首项,q为公比,n为项数。
这个公式的应用也非常广泛,可以用于求解各种数学问题,比如计算财务中的复利问题、人口增长问题等。
2. 指数问题等比数列可以与指数问题进行关联。
比如在计算家庭用电量、金融中的复利计算、物理中的指数增长问题等方面,常常需要利用等比数列的特性进行计算。
3. 几何问题等比数列在几何问题中同样有重要应用,比如解决一些等比序列相关的问题,如等比数列构造的等边五角星等。
数列的等差数列与等比数列知识点总结
数列的等差数列与等比数列知识点总结数列是数学中经常出现的概念,它是按照一定规律排列的一组数的集合。
其中,等差数列和等比数列是两种常见的数列类型。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行总结。
一、等差数列等差数列是指数列中相邻两项之差均相等的数列。
用通项公式表示为:an = a1 + (n-1)d,其中an表示第n项,a1为首项,d为公差。
1. 等差数列的基本概念等差数列中,每一项与它的前一项的差值都相等,这个差值称为公差。
等差数列可以是正差、零差或负差的数列。
2. 等差数列的性质(1)首项和末项之和等于中间项之和的两倍:a1 + an = 2Sn,其中Sn表示前n项和。
(2)任意一项与首项之和等于任意一项与末项之和:ai + aj = a1 + an。
(3)等差数列的前n项和Sn等于首项与末项之和乘以项数的一半:Sn = (a1 + an) × n / 2。
3. 求等差数列的和求解等差数列的和可以利用求和公式Sn = (a1 + an) × n / 2,其中n 为项数。
4. 等差数列的应用等差数列在实际问题中有广泛的应用,如金融投资、房贷分期还款等均可以利用等差数列的性质进行计算。
二、等比数列等比数列是指数列中相邻两项之比均相等的数列。
用通项公式表示为:an = a1 × r^(n-1),其中an表示第n项,a1为首项,r为公比。
1. 等比数列的基本概念等比数列中,每一项与它的前一项的比值都相等,这个比值称为公比。
等比数列可以是正比、零比或负比的数列。
2. 等比数列的性质(1)相邻两项之商等于任意一项与首项之商等于任意一项与末项之商:ai/aj = a1/ai = ai/an。
(2)等比数列的前n项和Sn等于首项与末项之差除以公比减1:Sn = (a1 - an × r^n) / (1 - r)。
3. 求等比数列的和求解等比数列的和可以利用求和公式Sn = (a1 - an × r^n) / (1 - r),其中r不等于1。
等差数列和等比数列的特点知识点总结
等差数列和等比数列的特点知识点总结等差数列是指数列中的每一项与它的前一项之差都相等的数列,而等比数列则是指数列中的每一项与它的前一项之比都相等的数列。
在数学中,等差数列和等比数列是非常重要且常见的数列类型。
下面将分别介绍等差数列和等比数列的特点与相关知识点。
一、等差数列的特点与知识点等差数列的特点:1. 公差:等差数列中相邻两项之差称为公差,用d表示。
公差可以是正数、负数或零。
2. 通项公式:等差数列的通项公式是指通过已知的首项和公差,求出数列中任意一项的公式。
对于等差数列a1, a2, a3, ..., an,通项公式为an = a1 + (n-1)d。
3. 求和公式:等差数列的求和公式用于计算数列中前n项和的值。
对于等差数列a1, a2, a3, ..., an,求和公式为Sn = (n/2)(a1 + an) =(n/2)(2a1 + (n-1)d)。
等差数列的知识点:1. 判定一组数字是否为等差数列:通过计算任意相邻两项的差是否相等,若相等则为等差数列。
2. 求等差数列的第n项:已知首项和公差,利用通项公式即可计算出第n项的值。
3. 求等差数列的前n项和:已知首项、公差和项数,利用求和公式即可计算出前n项和的值。
4. 求等差数列中项的个数:已知首项、公差和末项,利用末项与首项之间的关系,即(末项-首项)/公差+1,即可计算出项的个数。
5. 应用:等差数列在日常生活中的应用很广泛,例如计算年龄、身高、价格等各类增量或减量的规律。
二、等比数列的特点与知识点等比数列的特点:1. 公比:等比数列中相邻两项之比称为公比,用r表示。
公比可以是正数、负数或零,但不能为1。
2. 通项公式:等比数列的通项公式是指通过已知的首项和公比,求出数列中任意一项的公式。
对于等比数列a1, a2, a3, ..., an,通项公式为an = a1 * r^(n-1)。
3. 求和公式:等比数列的求和公式用于计算数列中前n项和的值。
(完整版)等差数列及等比数列的性质总结
等差数列与等比数列总结一、等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示;等差中项,如果2ba A +=,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数;等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-;等差数列}{a n 的前n 项和公式:n S =2n)a a (n 1⨯+=d 2)1-n (n na 1⨯+= 中12na n )2d-a (n )2d (=⨯+⨯; 【等差数列的性质】 1、d )1-n (a a m n +=【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+3、md 成等差数列,公差为、a 、a 、a m 2k m k k ⋯⋯++ 【说明】md a -a a -a m k m 2k k m k =⋯⋯==+++4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ⋯⋯成等差数列,公差为d n 2【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+⋯⋯+++⋯⋯++=++,)a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+⋯⋯+++⋯⋯++=++++⋯⋯=,d n 25、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=⇔+【说明】)d -a (dn d )1-n (a a 1m n +=+=,n S =d 2)1-n (n na 1⨯+= n )2d -a (n )2d (12⨯+⨯ 6、若数列}{a n 是等差数列,则}{c n a为等比数列,c>0【说明】d a-a a ac c cc 1-n n 1-n n ==7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S += 当n 为偶数时,d 2nS -S 奇偶⨯=当n 为奇数时,n a S 中n ⨯=,中偶奇a S -S =,1-n 1n S S 偶奇+=【说明】当n 为偶数时,d 2n)a -a ()a -a ()a -a (S -S 123-n 2-n 1-n n 奇偶⨯=+⋯⋯++= 当n 为奇数时,中11-n n 231偶奇a d 21-n a )a -a ()a -a (a S -S =+=+⋯⋯++=,,1-n 1n 21-n )a a (2121n )a a (21S S 1-n 2n 1偶奇+=⨯++⨯+=n a S S -S S S 中n 偶奇偶奇==+8、设1-2n 1-n 2n n n n n n T Sb a 项和,则n 的前}{b 、}{a 分别表示等差数列T 和S = 【说明】nn 中中1-2n 1-n 2b ab )1-n 2(a )1-n 2(T S == 【例】等差数列1515n n n n n n b a,求1-n 31n 5T S ,若T 和S 项和分别为n 的前}{b 、}{a += 9、1-d ,0a ),则q p (p a ,q a q p q p ==≠==+q --p a ),则q p (p S ,q S q p q p =≠==+ 0a ),则q p (S S q p q p =≠=+【说明】0q -q qd a a ,1-d q -p d )q -p (a -a p q p q p ==+==⇒==+ 2-a a p -q 2)q -p )(a a ()a a (S S p 1q p 1q p 1q q p =+⇒=+=+⋯⋯+=-+++q --p 2)q p )(a a (2)q p )(a a (S p 1q q p 1q p =++=++=+++二、等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比常用小写字母q 表示;等比中项,如果ab G 2=,那么G 叫做a 与b 的等差中项;如果三个数成等比数列,那么等差中项的平方等于另两项的积;等比数列}{a n 的通项公式:)N n (q a a 1-n 1n *∈=;等比数列}{a n 的递推公式:)2n (q a a 1n n ≥=-;等比数列}{a n 的前n 项和公式:n S =⎪⎩⎪⎨⎧≠==1q ,q -1q a -a q -1)q -1(a 1q ,na n 1n 11 【等比数列的性质】 1、m -n m n q a a ⋅=【说明】n 1-n 1m -n 1-m 1m -n m a q a q q a q a =⋅=⋅⋅=⋅ 2、若m 、n 、k 、l *∈N ,且l k n m a a a a ,l k n m ⋅=⋅⋅=⋅【说明】l k 2-l k 212-n m 21n m a a q a q a a a ⋅===⋅++ 3、m m 2k m k k q ,成等比数列,公比为、a 、a 、a ⋯⋯++ 【说明】m mk m 2k k m k q a aa a ==+++ 4、k )1-n (nk k 23k k k 2k S -S S -S 、S -S 、S ⋯⋯成等比数列,公比为nq【说明】n n21n22n 1n n n n 2q a a a a a a S S -S =+⋯⋯+++⋯⋯++=++ 5、数列}{a n 成等比数列)1-q (A S ,q p a ,a a a nn n n 1n 1-n 2n =⋅=⋅=⇔+【说明】)1-q (1-q a q -1)q -1(a S ,q q a qa a n 1n1n n 11-n 1n ==⋅=⋅= 6、若数列}{a n 是等比数列,则0a 为等差数列,}a {log n n c > 【说明】q log a a log a log -a log c 1-n nc1-n c n c == 7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S +=;若n 为偶数时,q a a 奇偶=;当n 为奇数时,q S a -S 偶1奇=;【说明】当n 为偶数时,q a a a a a a a a 1-n 41n42奇偶=+⋯⋯+++⋯⋯++=; 当n 为奇数时,q a a a a a a S a -S 1-n 42n 53偶1奇=+⋯⋯+++⋯⋯++=; 8、设偶奇n 偶奇n T T T 表示偶数项的积,则T 表示奇数项的积,T 项积,n 是前T ⋅=当n 为偶数时,n中奇中偶奇2n奇偶a T ,a T T 为奇数时,n ;当q T T ===;【说明】当n 为偶数时,2n1-n 42n42奇偶q a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=;当n 为奇数时,中1-n 42n421偶奇a a a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=; n中1-n 2n 1n 21奇a a a a a a a a T =⋯⋯⋅⋅=⋅⋯⋯⋅⋅=。
什么是等差数列和等比数列
什么是等差数列和等比数列等差数列和等比数列是数列中常见的两种类型。
在数学中,数列是一组按照一定规律排列的数字。
等差数列和等比数列都能用于解决实际问题和数学推理,因此对它们的理解非常重要。
一、等差数列等差数列也被称为公差数列,是指数列中的每个数与它前面的数之差都相等。
这个相等的差值称为公差,通常用字母"d"来表示。
等差数列的一般形式可以表示为a、a+d、a+2d、a+3d、...,其中a是首项,d 是公差。
等差数列的求和公式如下:Sn = (n/2)(2a + (n-1)d)其中Sn表示等差数列的前n项和,n表示项数,a表示首项,d表示公差。
等差数列常见的应用包括:计算年龄、时间、距离等等。
例如,如果一个人每年增长3岁,在5年后他的年龄是多少?二、等比数列等比数列是指数列中的每个数与它前面的数之比都相等。
这个相等的比值称为公比,通常用字母"q"来表示。
等比数列的一般形式可以表示为a、aq、aq²、aq³、...,其中a是首项,q是公比。
等比数列的求和公式如下:Sn = a(1 - qⁿ)/(1 - q)其中Sn表示等比数列的前n项和,n表示项数,a表示首项,q表示公比。
等比数列常见的应用包括:求利息、计算数量、模型预测等等。
例如,一笔投资每年收益率为10%,如果投资10年后的总收益是多少?三、等差数列与等比数列的关系等差数列和等比数列之间存在一定的联系。
当公比q等于1时,等比数列就变成了等差数列。
因此,等差数列是等比数列的一种特殊情况。
另外,在某些情况下,我们可以通过观察数列的性质来确定它是等差数列还是等比数列。
例如,如果一个数列从第二项开始,每一项都是前一项的2倍,那么我们可以断定这个数列是等比数列。
四、总结等差数列和等比数列是数学中常见的两种数列类型。
它们都有各自的求和公式,并能在实际问题中发挥重要作用。
理解等差数列和等比数列的概念、特性和应用,对于数学学习和问题解决都是非常有帮助的。
等差和等比数列公式大总结
等差和等比数列公式大总结数列是数学中一个重要的概念,它是指按一定规律排列的一组数。
常见的数列有等差数列和等比数列。
在学习数列时,熟练掌握数列的公式是非常重要的。
本文将对等差数列和等比数列的公式进行总结。
一、等差数列的公式等差数列是指一个数列中后面的数与前面的数之差相等。
这个相等的差值就是等差数列的公差(d)。
等差数列的通项公式如下:an = a1 + (n-1)d其中,an为第n项,a1为第一项,d为公差。
等差数列的前n项和公式如下:Sn = n/2·[2a1 + (n-1)d]其中,Sn为前n项和。
二、等比数列的公式等比数列是指一个数列中后面的数与前面的数之比相等。
这个相等的比值就是等比数列的公比(q)。
等比数列的通项公式如下:an = a1·q^(n-1)其中,an为第n项,a1为第一项,q为公比。
等比数列的前n项和公式如下:Sn = (a1(1-q^n))/(1-q)其中,Sn为前n项和。
三、等差数列和等比数列的关系等差数列和等比数列都是常见的数列,它们有着一定的联系。
如果在等比数列中,取对数可以得到一个等差数列,相反地,在等差数列中,取指数可以得到一个等比数列。
具体如下:对于等比数列:取对数得到:log(an) = log(a1·q^(n-1))化简可得:log(an) = log(a1) + (n-1)log(q)令b = log(a1),d = log(q),则可得到:log(an) = b + (n-1)d这个式子和等差数列的通项公式an = a1 + (n-1)d一样,只不过d变成了log(q)。
所以,等比数列的通项公式也可以看做是等差数列的通项公式在取对数后的形式。
对于等差数列:取指数得到:an = a1·r^(n-1)化简可得:an = a1·e^(ln(r)·(n-1))令b = ln(a1),d = ln(r),则可得到:an = e^b·e^(d·(n-1))这个式子和等比数列的通项公式an = a1·q^(n-1)一样,只不过q变成了e^d。
等差数列与等比数列
等差数列与等比数列数列是数学中一种重要的概念,它基于一定的规律和规则顺序排列的一组数。
其中,等差数列和等比数列是最常见的两种数列形式。
它们在数学中有着广泛的应用和重要的作用。
本文将介绍等差数列和等比数列的定义、性质以及应用。
一、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
其一般形式可以表示为:a₁, a₁+d, a₁+2d, a₁+3d, ..., a₁+nd, ...其中,a₁为首项,d为公差,n为项数。
公差d表示数列中相邻两项之间的差值恒定。
等差数列的性质:1. 首项和第n项的关系:aₙ = a₁ + (n-1)d;2. 公差与项数的关系:d = (aₙ - a₁)/(n-1);3. 等差数列的和:Sn = (n/2)(a₁ + aₙ)。
等差数列可以通过首项和公差推导出后续的任意项,也可以根据已知的首项和末项来确定公差和项数。
它在数学和科学中有着广泛的应用,如物理学中的运动学问题、计算机科学中的算法分析等。
二、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
其一般形式可以表示为:a₁, a₁r, a₁r², a₁r³, ..., a₁rⁿ, ...其中,a₁为首项,r为公比,n为项数。
公比r表示数列中相邻两项之间的比值恒定。
等比数列的性质:1. 首项和第n项的关系:aₙ = a₁ * r^(n-1);2. 公比与项数的关系:r = (aₙ/a₁)^(1/(n-1));3. 等比数列的和(当|r|<1时):Sn = a₁ * (1 - rⁿ)/(1 - r)。
等比数列同样具有推导后续项和根据已知信息确定公比和项数的能力。
它在数学和科学中的应用很广泛,如经济学中的复利计算、生物学中的生长模型等。
三、等差数列与等比数列的联系与区别等差数列和等比数列都是常见的数列形式,它们之间存在一些联系与区别。
1. 联系:等比数列是等差数列的一种特殊情况,当公比r等于1时,等比数列退化成等差数列。
数列的等差数列与等比数列知识点总结
数列的等差数列与等比数列知识点总结在数学的广袤领域中,数列是一个重要的概念,而等差数列和等比数列则是其中最为基础且关键的两种类型。
理解和掌握它们的知识点,对于解决各种数学问题以及培养逻辑思维能力都具有至关重要的意义。
一、等差数列(一)定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,常用字母\(d\)表示。
例如:数列\(2, 4, 6, 8, 10\cdots\)就是一个公差为\(2\)的等差数列。
(二)通项公式等差数列的通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。
比如,在等差数列\(3, 5, 7, 9, 11\cdots\)中,首项\(a_1 = 3\),公差\(d = 2\),那么第\(5\)项\(a_5 = 3 +(5 1)×2 = 11\)。
(三)等差中项若\(a\),\(b\),\(c\)成等差数列,则\(b\)为\(a\),\(c\)的等差中项,且\(b =\frac{a + c}{2}\)。
例如:\(4\)是\(2\)和\(6\)的等差中项,因为\(\frac{2 +6}{2} = 4\)。
(四)前\(n\)项和公式等差数列的前\(n\)项和公式有两个:\(S_n =\frac{n(a_1 + a_n)}{2}\)\(S_n = na_1 +\frac{n(n 1)d}{2}\)假如有一个等差数列\(1, 3, 5, 7, 9\cdots\),要求前\(5\)项的和。
首项\(a_1 = 1\),第\(5\)项\(a_5 = 9\),项数\(n = 5\),那么\(S_5 =\frac{5×(1 + 9)}{2} = 25\)或者,利用另一个公式,公差\(d = 2\),\(S_5 = 5×1 +\frac{5×(5 1)×2}{2} = 25\)(五)性质1、若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。
等差等比数列知识点 归纳总结
等差等比数列知识点归纳总结数学中的数列是一系列按照一定规律排列的数的集合。
在数列中,等差数列和等比数列是两种常见的形式。
它们具有一些特定的性质和规律,对于理解数学的推理和应用领域都具有重要意义。
本文将对等差数列和等比数列的知识点进行归纳总结,以帮助读者更好地理解和运用这些概念。
一、等差数列的概念和性质等差数列是指数列中的相邻两项之差保持恒定的数列。
每一项与它的前一项之差称为等差d。
等差数列通常表示为{a,a + d,a + 2d,...},其中a是首项,d是公差。
等差数列具有以下性质:1. 公差:等差数列的公差是相邻两项之差,常用字母d表示。
2. 通项公式:等差数列的通项公式可以通过首项和公差来表示。
通项公式为an = a + (n - 1)d,其中an表示第n项,a表示首项,d表示公差。
3. 首项和末项:等差数列的首项为a,末项为an。
4. 求和公式:等差数列的前n项和可以使用求和公式来表示。
求和公式为Sn = (n/2)(a + an),其中Sn表示前n项和。
5. 通项之和:对于相等间隔的等差数列,任意两项之和都等于首项和末项的和。
二、等比数列的概念和性质等比数列是指数列中的相邻两项之商保持恒定的数列。
每一项与它的前一项之比称为公比r。
等比数列通常表示为{a,ar,ar^2,...},其中a是首项,r是公比。
等比数列具有以下性质:1. 公比:等比数列的公比是相邻两项之比,常用字母r表示。
2. 通项公式:等比数列的通项公式可以通过首项和公比来表示。
通项公式为an = a * r^(n-1),其中an表示第n项,a表示首项,r表示公比。
3. 首项和末项:等比数列的首项为a,末项为an。
4. 求和公式:等比数列的前n项和可以使用求和公式来表示。
求和公式为Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项和。
5. 通项之积:对于相等间隔的等比数列,任意两项之积都等于首项和公比的幂次方之积。
高中数学知识点总结等差数列与等比数列的求和性质
高中数学知识点总结等差数列与等比数列的求和性质等差数列(Arithmetic Progression)和等比数列(Geometric Progression)是高中数学中常见的数列类型,它们在数学和实际问题的解决中起到了重要的作用。
本文将对等差数列和等比数列的求和性质进行总结和讨论。
一、等差数列的求和性质等差数列是指一个数列中每个相邻的两个数之差都相等的数列。
设等差数列的首项为a₁,公差为d,第n项为aₙ,则该数列的通项公式为:aₙ = a₁ + (n-1)d等差数列的前n项和(即等差数列的求和)可以通过以下公式来计算:Sₙ = (a₁ + aₙ)n/2其中,Sₙ表示前n项和。
例如,若我们有等差数列:2,4,6,8,10,则首项a₁为2,公差d为2。
若我们要计算前5项的和,则利用公式可以得到:S₅ = (2 + 10) × 5/2 = 12 × 5/2 = 30所以,该等差数列的前5项和为30。
二、等比数列的求和性质等比数列是指一个数列中每个相邻的两个数之比都相等的数列。
设等比数列的首项为a₁,公比为r,第n项为aₙ,则该数列的通项公式为:aₙ = a₁ × r^(n-1)等比数列的前n项和可以通过以下公式来计算:Sₙ = a₁ × (1 - rⁿ)/(1 - r)其中,Sₙ表示前n项和。
例如,若我们有等比数列:3,6,12,24,48,则首项a₁为3,公比r为2。
若我们要计算前4项的和,则利用公式可以得到:S₄ = 3 × (1 - 2⁴)/(1 - 2) = 3 × (1 - 16)/(-1) = 3 × (-15) = -45所以,该等比数列的前4项和为-45。
以上就是等差数列和等比数列的求和性质的总结。
这些性质在解决数学问题时非常有用,可以帮助我们计算数列的和,从而更好地理解和应用这些数列。
通过掌握这些概念和公式,我们能够更加高效地解决与等差数列和等比数列相关的问题。
等比等差知识点总结
等比等差知识点总结一、等比数列1. 定义等比数列是指一个数列中,每一项与它的前一项的比都相等的数列。
例如,数列1,2,4,8,16,......就是一个等比数列,因为后一项与前一项的比都是2。
2. 通项公式设等比数列的首项为a,公比为r,则等比数列的第n项可以表示为an = ar^(n-1)。
3. 性质(1)等比数列的前n项和公式等比数列的前n项和公式为:Sn = a * (1 - r^n) / (1 - r),其中a为首项,r为公比。
(2)等比中项对于等比数列a,ar,ar^2,ar^3,...,设其中项为ax,则x = aq+k*r^(n-1),其中n为项数,q为前q项和,k为末项与中项的比值。
(3)等比均值不等式对于任意的正整数n,等比数列a1,a2,...,an的乘积大于或等于n个等比数列的n次方的乘积。
(4)和与积的关系等比数列的前n项和等于首项与尾项的乘积除以公比与1的差值。
4. 应用(1)经济学中的应用在经济学中,等比数列常常用来描述成长率、利息等的变化规律。
(2)几何学中的应用在几何学中,等比数列常常用来描述固定比例缩小或放大的图形。
(3)物理学中的应用在物理学中,等比数列也常用来描述指数增长、衰减等现象。
二、等差数列1. 定义等差数列是指一个数列中,每一项与它的前一项的差都相等的数列。
例如,数列1,3,5,7,9,......就是一个等差数列,因为后一项与前一项的差都是2。
2. 通项公式设等差数列的首项为a,公差为d,则等差数列的第n项可以表示为an = a + (n-1)d。
3. 性质(1)等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a + an) * n / 2,其中a为首项,an为末项。
(2)等差数列的性质等差数列的奇数项和偶数项分别是另外两个等差数列。
(3)和与积的关系等差数列的前n项和等于首项与尾项的乘积除以公差与1的和值。
4. 应用(1)物理学中的应用在物理学中,等差数列常常用来描述匀加速运动的位移、速度等变化规律。
数列的等差与等比关系
数列的等差与等比关系数列是数学中一种常见的数学对象,它是由一系列按照特定规律排列的数字组成。
在数列中,有两种常见的关系,即等差关系和等比关系。
这两种关系在数学中有着广泛的应用,不仅在数学本身,还在物理、经济等领域中起着重要的作用。
一、等差关系等差数列是指数列中相邻两项之间的差值保持不变。
也就是说,如果一个数列满足每个数与它的前一个数之差等于一个常数d,那么这个数列就是等差数列。
等差数列的通项公式可以表示为An = A1 + (n-1)d,其中An表示第n项,A1表示第一项,d表示公差。
等差数列的性质非常有趣。
首先,等差数列的前n项和可以通过求和公式Sn = (A1 + An) * n / 2来计算。
其次,等差数列的平均值等于它的中项,即平均值等于首项与末项的和除以2。
此外,等差数列还有一个重要的性质,即任意三项成等差数列的充要条件是它们的中项等于它们的平均值。
等差数列在实际生活中有着广泛的应用。
例如,在物理学中,等差数列可以用来描述物体匀速运动的位置随时间的变化。
在经济学中,等差数列可以用来描述人口增长、物价上涨等现象。
二、等比关系等比数列是指数列中相邻两项之比保持不变。
也就是说,如果一个数列满足每个数与它的前一个数之比等于一个常数r,那么这个数列就是等比数列。
等比数列的通项公式可以表示为An = A1 * r^(n-1),其中An表示第n项,A1表示第一项,r 表示公比。
等比数列也有一些有趣的性质。
首先,等比数列的前n项和可以通过求和公式Sn = A1 * (1 - r^n) / (1 - r)来计算。
其次,等比数列的平均值等于它的首项与末项的几何平均数。
此外,等比数列还有一个重要的性质,即任意三项成等比数列的充要条件是它们的中项等于它们的平均值的平方根。
等比数列在实际生活中也有着广泛的应用。
例如,在生物学中,等比数列可以用来描述细胞的分裂过程。
在金融学中,等比数列可以用来描述复利的计算过程。
等差数列与等比数列的知识点总结
等差数列与等比数列的知识点总结等差数列与等比数列是数学中常见的两种数列,它们在数学和实际生活中都有着重要的应用。
下面将从定义、性质、求和公式和应用等几个方面对等差数列和等比数列进行全面总结。
**一、等差数列的基本概念**等差数列是指一个数列中,从第二项起,每一项与它的前一项的差等于同一个常数的数列。
一般来说,等差数列的通项公式为:a_n=a_1+(n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。
**二、等差数列的性质**1. 等差数列的通项公式:a_n=a_1+(n-1)d2. 等差数列的前n项和公式:S_n=\frac{n}{2}(2a_1+(n-1)d)3. 等差数列的性质:任意三项成等差数列,等差中项相等。
4. 等差数列的性质:首项与末项的关系。
**三、等差数列的应用**等差数列在实际生活中有着广泛的应用,比如在金融领域中的等额还款、在物理学中的匀速运动等等。
**四、等比数列的基本概念**等比数列是指一个数列中,从第二项起,每一项与它的前一项的比等于同一个常数的数列。
一般来说,等比数列的通项公式为:a_n=a_1 \cdot q^{n-1},其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,q表示公比。
**五、等比数列的性质**1. 等比数列的通项公式:a_n=a_1 \cdot q^{n-1}2. 等比数列的前n项和公式:S_n=\frac{a_1(1-q^n)}{1-q},当|q|<1时成立3. 等比数列的性质:首项、末项、项数的关系。
4. 等比数列的性质:任意三项成等比数列,等比中项与等比积。
**六、等比数列的应用**等比数列同样在实际中有着广泛的应用,比如在利息计算中的等比增长、在生物学中的细胞分裂等等。
**结语**等差数列与等比数列是数学中基础而重要的概念,它们不仅在数学理论中有着重要的意义,而且在实际生活中也有着广泛的应用。
等差数列和等比数列的公式总结
等差数列和等比数列的公式总结1. 什么是等差数列?等差数列,顾名思义,就是每个数之间的差都是一样的。
想象一下,你在逛超市,发现有一款零食,价格每次涨一块钱。
第一天10块,第二天11块,第三天12块……你能想到这个规律吗?每天都在加一块,这就是等差数列的魅力!简单来说,如果我们把这个序列写出来,就可以看到:10, 11, 12, 13,依此类推。
这里面,1110=1,1211=1,这个“1”就是我们说的公差。
1.1 等差数列的通项公式好啦,讲到这里,肯定有人好奇,等差数列的通项公式是啥?其实,它特别简单。
我们用字母来表示,假设第一项是 ( a_1 ),公差是 ( d ),那么第 ( n ) 项可以用这个公式表示:。
a_n = a_1 + (n1) times d 。
举个例子,如果第一项是2,公差是3,那么想要知道第5项是多少呢?只要把公式代进去:。
a_5 = 2 + (51) times 3 = 2 + 12 = 14 。
哎呀,14块钱的零食又来了,想想都馋!1.2 等差数列的求和公式说到求和,等差数列也有它的独门秘籍。
假如你想要把前 ( n ) 项的和加起来,别着急,有个公式可以帮你轻松搞定:。
S_n = frac{n{2 times (a_1 + a_n) 。
或者,你也可以用这个公式:S_n = frac{n{2 times (2a_1 + (n1)d) 。
别看公式长得有点吓人,其实运用起来还真不难!想象一下,你在计算一堆零食的总价,第一天买了10块,第二天11块,第三天12块,……,总共买了5天的,怎么算呢?我们先算出第5项是14,然后带入公式:。
S_5 = frac{5{2 times (10 + 14) = frac{5{2 times 24 = 60 。
哎哟,60块钱的零食,真是爽到飞起!2. 什么是等比数列?再来聊聊等比数列。
这种数列可有意思了!它的特点是每个数之间的比是固定的。
想象你正在进行一个小投资,第一年投100块,第二年收益翻倍,结果是200块,第三年又翻倍成400块……这就是等比数列!用数字来表示就是:100, 200, 400,瞧,翻得飞起。
等比数列等差数列知识点归纳总结
等比数列等差数列知识点归纳总结等比数列和等差数列是数学中常见且重要的概念之一。
在解决各种数学问题和应用中,它们都有着广泛的应用。
本文将对等比数列和等差数列的知识点进行归纳总结,以帮助读者更好地理解和掌握这两个数列的特点和应用。
一、等差数列等差数列是一种特殊的数列,其中每一项与前一项之差保持恒定。
具体来说,对于一个等差数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ + (n-1)d其中,a₁表示首项,d表示公差,n表示项数。
等差数列的常用术语包括首项、公差、通项公式和项数等。
1. 首项(a₁):等差数列的第一项称为首项。
2. 公差(d):等差数列中相邻两项的差称为公差。
公差可以是正数、负数或零。
3. 通项公式:等差数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等差数列包含的项的个数称为项数。
等差数列的主要特点是任意两项之差相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、平均数问题、等差数列的图像和几何问题等。
二、等比数列等比数列是一种特殊的数列,其中每一项与前一项之比保持恒定。
具体来说,对于一个等比数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ * r^(n-1)其中,a₁表示首项,r表示公比,n表示项数。
等比数列的常用术语包括首项、公比、通项公式和项数等。
1. 首项(a₁):等比数列的第一项称为首项。
2. 公比(r):等比数列中相邻两项的比称为公比。
公比可以是正数、负数或零,但不能为1。
3. 通项公式:等比数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等比数列包含的项的个数称为项数。
等比数列的主要特点是任意两项之比相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、计算几何问题和金融领域的应用等。
高中数学数列中的等差数列与等比数列的联系
高中数学数列中的等差数列与等比数列的联系数列是高中数学中的重要概念,其中等差数列和等比数列是最基础也是最常见的两种数列形式。
在解题过程中,我们经常会遇到需要判断一个数列是等差数列还是等比数列,或者需要利用等差数列和等比数列的性质来解决问题。
本文将通过具体题目的举例,分析等差数列和等比数列的联系,突出解题技巧,帮助高中学生更好地理解和应用这两种数列。
一、等差数列和等比数列的定义与性质等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a1,公差为d,则第n项an可以表示为an = a1 + (n-1)d。
等差数列的求和公式为Sn = (n/2)(a1 + an)。
等比数列是指数列中相邻两项之比都相等的数列。
设等比数列的首项为a1,公比为q,则第n项an可以表示为an = a1 * q^(n-1)。
等比数列的求和公式为Sn = a1 * (1 - q^n) / (1 - q)。
二、等差数列和等比数列的联系等差数列和等比数列在一些性质上是相似的,这些性质使得我们可以通过等差数列的思想解决等比数列的问题,或者通过等比数列的思想解决等差数列的问题。
1. 等差数列和等比数列的通项公式等差数列的通项公式为an = a1 + (n-1)d,等比数列的通项公式为an = a1 * q^(n-1)。
通过这两个公式,我们可以根据已知条件求解数列中的任意一项。
例如,已知等差数列的首项为3,公差为2,求第10项的值。
根据等差数列的通项公式,我们可以得到a10 = 3 + (10-1) * 2 = 21。
因此,第10项的值为21。
2. 等差数列和等比数列的求和公式等差数列的求和公式为Sn = (n/2)(a1 + an),等比数列的求和公式为Sn = a1 * (1 - q^n) / (1 - q)。
通过这两个公式,我们可以根据已知条件求解数列的前n项和。
例如,已知等比数列的首项为2,公比为3,求前5项的和。
根据等比数列的求和公式,我们可以得到S5 = 2 * (1 - 3^5) / (1 - 3) = 242。
等差数列和等比数列公式总结
等差数列和等比数列公式总结在咱们的数学世界里,有两位“大咖”总是默默无闻却又不可或缺,那就是等差数列和等比数列。
今天就让我们轻松聊聊这两位“数列明星”,说不定还能学到些实用的公式呢!1. 等差数列1.1 什么是等差数列?首先,等差数列就像是一条直线,咱们每走一步,步幅都是一样的。
想象一下,你在马路上散步,走一步是1米,接着再走一步,还是1米,依次类推。
这种情况就是等差数列的典型特征!如果首项是a,公差是d,那么等差数列可以表示为:a, a+d, a+2d, a+3d……如此类推。
1.2 等差数列的求和公式要是你有一大堆等差数列的数字,想知道它们加起来是多少,那就得用到求和公式啦!这个公式可简单了。
假设你有n个数,求和公式是:S_n = n/2 × (a + l),其中l是最后一项。
你还可以把这个公式变形为:S_n = n/2 × (2a + (n1)d)。
简直就是大显身手的好工具呀!例如,1到10的和,数一数,没错就是55,这背后可是有等差数列的功劳呢。
2. 等比数列2.1 什么是等比数列?说到等比数列,它就像是一个蓬勃发展的植物,每一步都在乘以一个固定的数。
比如,你的第一年收入是1000元,第二年你要是涨了个30%,那第二年的收入就是1000× 1.3 = 1300元,接下来再以此类推。
简单来说,如果首项是a,公比是r,那么等比数列就可以表示为:a, ar, ar², ar³……就这样一层层往上叠加。
2.2 等比数列的求和公式等比数列的求和有点儿小复杂,但只要掌握了也没啥好怕的。
求和公式是:S_n =a × (1 r^n) / (1 r),这里n是项数。
假设你要算从1开始的等比数列,公比是2,想知道前5项的和,那你就可以直接代进去,最后得出结果,噼里啪啦就搞定了,太爽了!3. 生活中的应用3.1 等差数列的应用等差数列不仅仅存在于书本中,它们其实在生活中随处可见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列和等比数列的综合及其联系
课题设计背景:
数列是反映自然规律的基本数学模型之一。
而等差数列和等比数列是学生必须掌握的两种基本数学模型,研究等差数列的通项、性质以及求和公式,并用类比的方法对等比数列进行研究是课程标准的教学要求。
课题设计目标:
(1)掌握等差数列的通项公式及其前n项和公式;
(2)掌握等差数列的通项公式及其前n项和公式;体验用类比的思想方法对等差数列和等比数列进行研究的活动。
例题分析: 1、已知(),
f x =
利用课本推导等差数列前n 项和的公式的方法,求和:
(5)(4)(3)...(5)f f f f
f -+-+-+++的值
2、已知公差不为零的等差数列{n a }中,236,,a a a 组成等比数列的连续三项,求公比q
3、已知等差数列{}n a 的公差和等比数列{}n b 的公比都是11441010,1,,,;d d a b a b a b ≠=== (1)求1a 和d 的值;(2)16b 是不是数列{}n a 中的项,为什么?
(二)等差数列和等比数列之间的转化
结论:
(1){}n a 成等差数列,则{}(0,1)n
a c
c c >≠成等比数列;
(2)正项数列{}n a 成等比数列,则{}log (0,1)c n a c c >≠成等差数列。
类比可结合上述结论将等比数列转化为等差数列,再还原成等比数列写出有关结论。
例题分析:
1、 已知数列)}({*
N n a n ∈是一个以(0)q q >为公比,以11(0)a a >为首项的等比数列,求
12lg lg ...lg n a a a +++
2、 若数列)}({*
N n a n ∈是等差数列,则有数列*123......,()n
n a a a a b n N n
++++=
∈
也是等差数列;类比上述性质,相应地:若数列)}({*
N n c n ∈是等比数列,且0>n c ,则
有数列*_________________,()n d n N =∈也是等比数列。
3、 设)}({*
N n a n ∈是等差数列,12n
a n
b ⎛⎫
= ⎪
⎝⎭
,已知123123211
,,88
b b b b b b ++=
=求数列)}({*N n a n ∈的通项公式。
(三)学法总结:
(四)课后反思:
学案
(一) 例题分析:
等差数列与等比数列综合: 题组一:1、已知()
f x 利用课本推导等差数列前n 项和的公式的方法,求和:
(5)(4)(3)...(5)(6)f f f f f -+-+-+++的值
2、已知公差不为零的等差数列{n a }中,236,,a a a 组成等比数列的连续三项,求公比q
3、已知等差数列{}n a 的公差和等比数列{}n b 的公比都是11441010,1,,,;d d a b a b a b ≠=== (1)求1a 和d 的值;(2)16b 是不是数列{}n a 中的项,为什么?
(二)等差数列和等比数列之间的转化 结论:(1){}n a 成等差数列,则{}(0,1)n
a c
c c >≠成等比数列;
(2)正项数列{}n a 成等比数列,则{}log (0,1)c n a c c >≠成等差数列。
类比可结合上述结论将等比数列转化为等差数列,再还原成等比数列写出有关结论。
题组2:
4、 已知数列)}({*
N n a n ∈是一个以(0)q q >为公比,以11(0)a a >为首项的等比数列,求
12lg lg ...lg n a a a +++
5、 若数列)}({*
N n a n ∈是等差数列,则有数列*123......,()n
n a a a a b n N n
++++=
∈
也是等差数列;类比上述性质,相应地:若数列)}({*
N n c n ∈是等比数列,且0>n c ,则
有数列*_________________,()n d n N =∈也是等比数列。
6、 设)}({*
N n a n ∈是等差数列,12n
a n
b ⎛⎫
= ⎪
⎝⎭
,已知123123211
,,88
b b b b b b ++=
=求数列)}({*N n a n ∈的通项公式。
课后练习:
(一)选择和填空题:
1、在等比数列{a n }中,公比为q (q ≠±1),则数列a 2, a 4, a 6, …,a 2n ,……的前n 项和T n 为
( ) A 、2211)1(q q a n -- B 、2221)1(q q a n -- C 、2
11)1(q
q a n -- D 、221)1(q q a n -- 2、等比数列{a n }的首项为1,公比q ≠1,前n 项之和为S n ,则数列{n
a 1
}的前n 项之和为( )
A 、n S 1
B 、n n S q 1
C 、1-n n q S
D 、n
n S q
3、已知等差数列{}n a 满足1231010a a a a ++++= ,则有 ( )
A 、11010a a +>
B 、21000a a +< ;
C 、3990a a += ; D.5151a =
4、若数列{}n a 的前n 项和为S n=3n +a ,若数列{}n a 为等比数列,则实数a 的取值是( ) A 、3 B 、 1 C 、 0 D 、-1
5、等比数列}{n a 中,已知5,1087654321-=+++=+++a a a a a a a a ,则数列}{n a 的前16项和S 16为( )
A .-50
B .
4
25 C .
4
125
D .4
25-
6、已知数列{}n a 是非零等差数列,又1a 、3a 、9a 组成一个等比数列的前三项,则
139
2410
a a a a a a ++=++
7、若数列22331,2cos ,2cos ,2cos ,θθθ 前100项之和为0,则θ= 。
8、已知一个等比数列的首项为1,项数是偶数,其奇数项之和为85,偶数项和为170,则这个数列的公比等于 ,项数等于 。
9、若数列)}({*
N n a n ∈是等差数列,100a =, 则有121219
......(19,)n n a a a a a a n n N *-+++=+++<∈类比上述性质,相应地:若数列
*
{}()n b n N ∈是等比数列,且91b =,则有等式 成立。
(二)综合题
1、已知数列{}n a 、{}n b 满足:121,a a a ==(a 为常数),且1n n n b a a +=⋅,其中1,2,3n = (1)若{}n a 是等比数列,试求数列{}n b 的前n 项和n S 的公式;
(2)当{}n b 是等比数列时,甲同学说:{}n a 一定是等比数列;乙同学说:{}n a 一定不是等比数列,你认为他们的说法是否正确?为什么?
2、在等比数列{}n a 中,1633a a +=,3432a a ⋅=,1n n a a +<, (1)求n a ;
(2)若12lg lg lg n n T a a a =+++ ,求n T .。