【2012考研必备资料】考研数学一真题及标准标准答案
2012考研数学一真题及其解析
2012年全国硕士研究生入学统一考试数学一试题一、 选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xy x +=-渐近线的条数( )(A )0 (B )1 (C )2 (D )3 解析:C由lim 1,1x y y →∞==得为水平渐近线由1lim 1x y x →=∞=得为垂直渐近线 由11lim ,12x y x →-=≠∞=-得非垂直渐近线,选(C )(2)设函数2()(1)(2)x x nx f x e e e n =--…(-),其中n 为正整数,则(0)f '=( )(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 解析: A2221()(2)(2)(1)2()(1)(2)(0)1(1)(1)(1)(1)!x x nx x x nx x x nxn f x e e e e e e n e e ne f n n ''-=--+-⋅-+--∴=⨯-⨯⨯-=--选(A )(3)如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是( )(A )若极限00(,)lim x y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(B )若极限2200(,)limx x f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C )若(,)f x y 在(0,0)处可微,则极限00(,)lim x y f x y x y →→+存在(D )若(,)f x y 在(0,0)处可微,则极限2200(,)limx x f x y x y→→+存在解析:(B)2200(,)limx y f x y k x y→→=+ (0,0)0(,)(0,0)00()f z f x y f x y ορ=⎧⇒⎨∆=-=⋅+⋅+⎩ (,)f x y ⇒在(0,0)处可微.(4)设20k x k I eπ=⎰sin (1,2,3)xdx k =则有( )(A )123I I I << (B)321I I I << (C)231I I I << (D)213I I I <<解析: D22222111sin |sin |.x x I I e xdx I e x dx I ππππ=+=-<⎰⎰2223312|sin |sin .x x I I e x dx e xdx ππππ=-+⎰⎰而2232()2sin sin x t e xdxx t etdt ππππππ+=+-⎰⎰2222()|sin ||sin |.x x ex dx e x dx πππππ+=>⎰⎰31312..I I I I I ∴>∴>>(5)设1234123400110111c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A )α1, α2, α3 (B )α1, α2, α 4(C )α1, α3, α4 (D )α2, α3, α4解析:C343400c c αα⎛⎫⎪+= ⎪ ⎪+⎝⎭,34αα+ 与1α成比例. 1α∴与3α+4α线性相关,134ααα∴,,线性相关,选C或13413411,,0110c c c ααα-=-= 134,,ααα∴线性相关,选C(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(α1, α2, α3),1223(,,).Q αααα=+则Q -1AQ =( )(A)100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B)100010002⎛⎫ ⎪ ⎪⎪⎝⎭(C)200010002⎛⎫⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭解析:(B )1223100()110001Q P αααα⎛⎫⎪== ⎪⎪⎝⎭+,,111100100110110001001Q AQ P AP ---⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭100110011101110100120012⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪=-= ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则P {x <y }=( )(A)15 (B) 13 (C) 25 (D) 45解析:(A)~(1)X E ,,0~(4)()0,0x x e x Y E f x x -⎧>⇒=⎨≤⎩.4,40()0,0y Y e y f y y -⎧>=⎨≤⎩.,X Y ∴独立.44,0,0(,)0,x y e e x y f x y --⎧>>∴=⎨⎩其他 ()(,)x yP X Y f x y d δ<<=⎰⎰404x y x dx e e dy +∞+∞--=⎰⎰ 40(4)xy xe dx e d y +∞+∞--=⎰⎰ 40x x e e dx +∞--=⋅⎰ 50x e dx +∞-=⎰15=.(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为( )(A) 1 (B) 12 (C) 12(D) 1-解析:设一段长X ,另一段1Y X =-,由ρ=(1)DX D X DY =-=cov(,)(1)(1)X Y EX X EX E x =---2()[1]E X X EX EX =--- 22()EX EX EX EX =-+ 22()EX EX DX =-+=-1ρ∴=,选项D二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)若函数f (x )满足方程()()2()f x f x f x "'+-=及()()2x f x f x e '+=,则f (x )=_________.解析:212202,1λλλλ+-=⇒=-=212()()2()0(),x x f x f x f x f x C e C e -"+'-=⇒=+代入12()()20, 1.x f x f x e C C '+===得()x f x e ∴=(10)20________=⎰解析:2π[22(1)1(1)x x =-+-⎰⎰111(22x π--=+===⎰⎰⎰.(11)(2,1,1)_______z grad xy y ⎛⎫+= ⎪⎝⎭解析:{1,1,1}21,,z z grad xy y x y y y ⎛⎫⎧⎫+=-⎨⎬ ⎪⎝⎭⎩⎭ (2,1,1){1,1,1}z grad xy y ⎛⎫+= ⎪⎝⎭(12)设{(,,)|1,0,x y z x y z x y z =++=≥≥≥∑,则2y d s ∑=⎰⎰_____ .解析:12.1,:1(0,0) z x y D x y x y=--+≤≥≥11222002xDy ds y dx y dyδ-==⎰⎰⎰⎰⎰1134(1)(1)31212x dx x=-=--=⎰(13)设X为三维单位向量,E为三阶单位矩阵,则矩阵E T-XX的秩为_________.解析:2.设2,TA E XX A A=-=()() 3.r A r E A⇒+-=()()()1Tr E A r XX r X-===() 2.r A∴=(14)设A,B,C是随机事件,A,C互不相容,11(),(),23P AB P C==则CP AB()=_________.解析:34解:()()()(|)1()()P ABC P AB P ABC P AB C P C P C -==- AC =∅ ,ABC ∴=∅. 1()32(|)21()43P AB P AB C P C ∴===-.三、解答题:15~23小题,共94分,请将解答写在答题纸指定位置上.(15)(本题满分 分)证明x ln 11x x+-+cos x ≥1+22x (-1<x <1)证明:令21()ln cos 1.(0)0.12x x x x x x ϕϕ+=+--=- ϕ’212()ln sin 11x xx x x x x +=+---- 2211ln sin 11x x x x x x++=+--- 01x <<时. 1ln 01xx+>-,2211x x x x +≥-,又sin x x ≤. ()0x ϕ∴>’;10x -<<时,1ln 01xx+<-,2211x x x x +≤-,又sin x x ≥. ()0x ϕ∴<’.0x ⇒=为()x ϕ在(-1,1)内最小点,而ϕ(0)=0∴当-1<x<1时. ϕ()0x ≥,即 21ln cos 112x x x x x ++≥+-(16)(本题满分 分) 求函数222(,)x y f x y xe +-=的极值解析:由22'2222'2(1)0x y x x y y f x e f xye +-+-=-==-=⎧⎪⎨⎪⎩得10x y =-⎧⎨=⎩及10x y =⎧⎨=⎩ 222222''32''22''22(3)(1)(1)x y xx x y xy x y yy f x x ef y x e f x y e+-+-+-=-=--=-当1x y =-⎧⎨=⎩时,11222,0,.A e B C e --=== 20AC B -> 且0A >,10x y =-⎧∴⎨=⎩为极小点.极小值为12(1,0).f e --=-当1x y =⎧⎨=⎩时,11222,0,,A e B C e --=-==- 2100,0x AC B A y =⎧-><∴⎨=⎩ 且为极大点 极大值为12(1,0)f e -=(17)(本题满分 分) 求幂级数0n ∞=∑244321n n n +++x 2n的收敛域及和函数解:由1lim1n x na a +→∞=得R =1. 当1x =±时. 2443()21n n n n ++→∞→∞+1x ∴=±时级数发散.收敛域为(-1,1)令220443()21nn n n S x x n ∞=++=+∑202(21)21n n n x n ∞=⎡⎤=++⎢⎥+⎣⎦∑ =2200(21)221nn n n xn x n ∞∞==+++∑∑ 22100221n n n n x x n ∞∞+==⎛⎫=+ ⎪+⎝⎭∑∑’21122212()2()1(1)x x S x S x x x +⎛⎫=+=+ ⎪--⎝⎭’当x =0时,S (0)=3.当x ≠0时,xS 1(x )=21021n n x n +∞=+∑[]2121()1nn xS x x x ∞===-∑’ 111111()ln ,()ln .2121x xxS x S x x x x++=∴=--223,0()111ln ,110(1)1x S x x xx x x x x =⎧⎪∴=++⎨+-<<≠⎪--⎩且(18)(本题满分 分)已知曲线L :()cos x f t y t=⎧⎨=⎩(0≤t <2π),其中函数f (t )具有连续导数,且f (0)=0,()f t '>0(0<t <2π),若曲线L 的切线与x 轴的交点到切点距离值恒为1,求函数f (t )的表达式,并求此曲线L 与x 轴无边界的区域的面积. 解析: ①/sin ./()dy dy dt t k dx dx dt f t -==='切线为sin cos ()0ty t x f t y f t ==--=⇒'()(),令 ())cot x f t f t t =+'(⋅,切线与x 轴交点为f t f t t +'.由题意222()cot cos 1f t t t '+=⇒242sin ().cos tf t t'= 2sin ()0.()sec cos .cos tf t f t t t t'>∴'==-()ln |sec tan |sin f t t t t C =+-+(0)0,()ln |sec tan |sin f f t t t t =∴=+-②220cos ()A ydx t f t dt ππ==⋅'⎰⎰22201sin .224t I πππ===⋅=⎰(19)(本题满分 分)已知L 是第一象限中从点(0,0)沿圆周222x y x +=到点(2,0),再沿圆周224x y +=到点(0,2)的曲线段,计算曲线积分233(2)LI x ydx x x y dy =++-⎰解析: 补充012:0(2,0)L L L L x y y I +====-⎰⎰22(313)L L Dx x d +=+-σ=⎰⎰⎰2Dd dx σ=-⎰⎰⎰而0144ππ=⋅=⎰122ππ=⋅=⎰(依据定积分几何意义).22L L πππ+∴=-=⎰2(2) 4.L y dy ∴=-=⎰⎰4.2I π∴=-(20)(本题满分 分)已知A =10010101,00100010a a a a β⎡⎤⎛⎫⎪⎢⎥- ⎪⎢⎥= ⎪⎢⎥⎪⎢⎥⎣⎦⎝⎭(1)计算行列式|A|;(2)当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.解析:(I )534A 1(1)1a a a =+-⋅=-(II )当1a =及1a =-时,A x=β有无穷多个解. 当1a =时,A =11 0 01⎛⎫ ⎪0 1 1 0 -1⎪ ⎪0 0 1 1 0 ⎪1 0 0 1 0⎝⎭ →10012010110011000000⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭通解为12111010x k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭当1a =-时.A 1100110010011010101100110001101001000000--⎛⎫⎛⎫⎪ ⎪----⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭通解为10111010x k ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(21)(本题满分11分)已知110111001A a a ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x x T T =A A 的秩为2, (1) 求实数a 的值;(2) 求正交变换x=Qy 将f 化为标准型. 解析:A T A=1010010111a a -⎛⎫ ⎪⎪ ⎪-⎝⎭110111001a a ⎛⎫⎪ ⎪ ⎪-⎪-⎝⎭22201011113a a a a a a -⎛⎫ ⎪=+-⎪ ⎪--+⎝⎭T T (A A)x x 秩为2. ∴T T (A A)2((A A)(A)2)r r r ===也可以利用 ⇒T A A 01a =⇒=- ( T 22A A (3)(1)a a =++) (II)令T 202A A =B =022224⎛⎫⎪ ⎪ ⎪⎝⎭由E λ-20-2λ-B =0λ-2-2-2-2λ-4=λ(λ-2)(λ-6)=0 解0,2,6123λ=λ=λ=当λ=0时,由(0)0E A x -=即0Ax =得1111-⎛⎫ ⎪ξ=- ⎪ ⎪⎝⎭. 当2λ=时,由(2)0E A x -=⇒1102-⎛⎫ ⎪ξ= ⎪ ⎪⎝⎭. 当6λ=时,由(6)0E A x -=⇒1123⎛⎫ ⎪ξ= ⎪ ⎪⎝⎭. 取1r231111,1,1.102r r --⎛⎫⎛⎫⎛⎫⎪⎪⎪-==⎪⎪⎪⎪⎪⎪⎭⎭⎭令2223.026Q f x x x Qy y y T⎛ = ⎝=B = +(22)(本题满分11分)设二维离散型随机变量X 、Y 的概率分布为(Ⅰ)求{2}P X Y =;(Ⅱ)求cov(,).X Y Y - 解析:(1)11(2)(0,0)(1,2)044P X Y P X Y P X Y ====+===+= (2)cov(,)cov(,)cov(,)X Y Y X Y Y Y -=-EXY EXEY DY =-- 012012~,~.1111112312333X X Y ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭的边缘分布 12212,136333EX EY ∴=+==+=2221152()12113333DY EY EY =-=⨯+⨯-=-=1114211223123123EXY =⨯⨯+⨯⨯=+=2222cov(,)13333X Y Y -=-⨯-=-.(23)(本题满分 分)设随机变量X 与Y 相互独立且分别服从正态分布2(,)N μσ与2(,2)N μσ,其中σ是未知参数且σ>0。
2012考研数一真题及解析
数学一试题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答.题.纸.指定位置上. (1)
【答案】: C
【解析】:
lim
x1
x2 x2
x 1
,所以
x
1 为垂直的
lim
x
x2 x x2 1
故 f (x) ex
(10)
【答案】: 2
2
【解析】:令 t x 1得 x
2x x2 dx
1
(t 1)
1 t2 dt
1
1 t2 dt
0
1
1
2
(11)
【答案】:1,1,1
【解析】:
grad
xy
z y
( 2,1,1)
y,
x
z y2
,
1
y
( 2,1,1)
1,1,1
(12)【答案】: 3 12
【 解 析 】: 由 曲 面 积 分 的 计 算 公 式 可 知 y2ds y2 1 (1)2 (1)2 dxdy 3 y2dxdy , 其 中
D
D
D ( x, y) | x 0, y 0,x y1。故原式
3
1
dy
1 y y2dx
3
1 y2 (1 y)dy
3
0
0
0
12
(13)
2
4
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或
演算步骤.
(15)
【解析】:令 f x x ln 1 x cos x 1 x2 ,可得
2012年考研数学真题(完整版)
2012年全国硕士研究生入学统一考试数学一试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n - (3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限0(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)lim x y f x y x y→→+存在(4)设2sin (1,2,3)k xK exdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1QAQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15(B) 13(C)25(D)45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B)12(C) 12-(D)1-二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)20x =⎰(11)(2,1,1)()|z grad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p A B P C p A B C ===三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15) 证明21ln cos 1(11)12x xx x x x++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n xn ∞=+++∑的收敛域及和函数(18) 已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。
2012年考研(数学一)真题试卷(题后含答案及解析)
2012年考研(数学一)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.曲线渐近线的条数为( ).A.0B.1C.2D.3正确答案:C2.设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=( ).A.(-1)n-1(n-1)!B.(-1)n(n-1)!C.(-1)n-1n!D.(-1)nn!正确答案:A3.如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是( ).A. B. C. D. 正确答案:B4.设(k=1,2,3),则有( ).A.I1<I2<13B.I3<I2<I1C.I2<I3<I1D.I2<I1<I3正确答案:D5.设,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为( ).A.α1,α2,α3B.α1,α2,α4C.α1,α3,α4D.α2,α3,α4正确答案:C6.设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=( ).A. B. C. D. 正确答案:B7.设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=( ).A.1/5B.1/3C.2/5D.4/5正确答案:A8.将长度为1 m的木棒随机地截成两段,则两段长度的相关系数为( ).A.1B.1/2C.﹣1/2D.﹣1正确答案:D填空题9.若函数f(x)满足方程f〞(x)+fˊ(x)-2f(x)=0及fˊ(x)+f(x)=2ex,则f(x)=__________.正确答案:齐次方程f〞(x)+fˊ(x)-2f(x)=0的特征方程为r2+r-2=0,得特征根为r1=1,r2=-2,则有通解f(x)=c1ex+c2e-2x,代人方程fˊ(x)+f(x)=2ex得2c1ex-c2e-2x=2ex,则c1=1,c2=0.因此f(x)=ex.10.正确答案:根据题意,令t=x-1,则本题用到奇函数在对称区间上积为零的结论.11.正确答案:根据题意,令将点(2,1,1)代入,上式=(1,1,1).12.设∑={(x,y,z)|x+y+z=1,x≥0,y≥0,z≥0},则y2dx=________.正确答案:其中D为∑投影在xOy平面上的区域,D={(x,y)|x≥0,y ≥0,x+y≤1}13.设X为三维单位列向量,E为三阶单位矩阵,则矩阵E-XXT的秩为_________.正确答案:根据题意设X=(1,0,0)T,14.设A、B、C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,则P(AB|C ̄)=________.正确答案:解答题解答应写出文字说明、证明过程或演算步骤。
2012年考研数学真题及参考答案(数学一)
=
⎧ ⎨
y,
⎩
x
−
z y2
,
1⎫
y
⎬ ⎭
( 2,1,1)
= {1,1,1}
(12)设 ∑ = {(x, y, z) x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0}, 则 ∫∫ y2ds = ________。 ∑
【答案】: 3 12
∫∫ ∫∫ ∫∫ 【 解 析 】: 由 曲 面 积 分 的 计 算 公 式 可 知 y2ds = y2 1+ (−1)2 + (−1)2 dxdy = 3 y2dxdy , 其 中
所以 f ' (0) = (−1)n−1n!
(3)如果 f (x, y) 在 (0, 0) 处连续,那么下列命题正确的是( )
(A)若极限 lim f (x, y) 存在,则 f (x, y) 在 (0, 0) 处可微
x→0 y→0
x+ y
(B)若极限 lim x→0 y→0
f (x, y) x2 + y2
2
4
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或
演算步骤.
(15)(本题满分 10 分)
证明: x ln 1+ x + cos x ≥ 1+ x2 , −1 < x < 1
1− x
2
【解析】:令 f ( x) = x ln 1+ x + cos x −1− x2 ,可得
( ) 化的,故它的秩等于它非零特征值的个数,也即 r E − xxT = 2 。
(14)设
A,
2012年考研数一真题及答案解析(完整版)
2012年全国硕士研究生入学统一考试数学一试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()x xn x y x e e e n =--- ,其中n 为正整数,则(0)y '=( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D)(1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限0(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为( )(A) 1 (B)12 (C) 12- (D)1-二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x = (10)2202d x x x x =-⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵TE XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<- (16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数(18)已知曲线(),:(0),c o s2x ft L t y t π=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L 的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。
数学一2012年考研真题及答案解析
0
0
1
1
5、设 1
0 c1
,2
1 c2
,3
1 c3
,
4
1 c4
,其中 c1 , c2 , c3 , c4
为任意常数,则下列向量组线
性相关的是( )
(A)1 ,2 ,3 ; (B)1 ,2 ,4 ; (C)1 ,3 ,4 ; (D)2 ,3 ,4 。
3.如果函数 f ( x, y) 在 (0, 0) 处连续,那么下列例题正确的是( )
(A)若极限 lim | ( x , y )(0,0)
f (x, y) x|| y|
存在,则
f
( x,
y)
在 (0, 0)
处可微;
(B)若极限 lim ( x, y)(0,0)
f (x, y) x2 y2
lim
y )( 0,0 )
|
f x
(0, 0) || y
|
,显然极限不存在,
同理 lim ( x, y)(0,0)
f (x, y) x2 y2
lim ( x, y)(0,0)
f
(
x, y) x2
f (0, y2
0)
(
x
,
lim
y )( 0,0 )
f (0, 0) x2 y2
lim
x 0
f (x,0) x
f (0, 0)
lim
x 0
f (x,0) (x)2 0
lim
x 0
(
x)2 x
0
2012考研数学一真题及答案
2012年全国硕士研究生入学统一考试数学一试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()xxnx y x e ee n =---,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B) 12 (C) 12- (D)1-二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)2x =⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数 (18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L 的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。
2012考研数学一真题及答案
2012年全国硕士研究生入学统一考试数学一试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n - (3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B)12 (C) 12- (D)1- 给大家分享点个人的秘密经验,让大家考得更轻松。
2012考研数学一真题及答案解析
2012年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xy x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3(2)设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - (3)如果(,)f x y 在()0,0处连续,那么下列命题正确的是( ) (A )若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (B )若极限2200(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微 (C )若(,)f x y 在(0,0)处可微,则极限00(,)limx y f x y x y →→+存在 (D )若(,)f x y 在(0,0)处可微,则极限2200(,)limx y f x y x y →→+存在 (4)设2kx k eI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3.(C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα (C )134,,ααα (D )234,,ααα(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫⎪= ⎪⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( ) (A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫⎪ ⎪⎪⎝⎭(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫⎪ ⎪⎪⎝⎭(7)设随机变量x 与y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}=<y x p ()1124()()() ()5355A B C D(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为()1)(21)(21)(1)(--D C B A 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题..纸.指定位置上. (9)若函数)(x f 满足方程0)(2)()('''=-+x f x f x f 及x e x f x f 2)()('=+,则)(x f =________。
2012考研数学(一二三)真题(含答案)
f x
,
f y
,
f z
.
12、已知曲面 {(x, y, z) | x y z 1, x 0, y 0, z 0},则 y2dS
。
【答案】 3 12
【解析】由曲面可得 z 1 x y zx ' zy ' 1,
向 xOy 面投影 Dxy {( x, y) | x y 1, x 0, y 0},
P
为
3
阶可逆矩阵,且
P1
AP
1
,
P
1,
2
,3
,
2
Q 1 2,2,3 则 Q1AQ ( )
1
(A)
2
1
【答案】(B)
1
(B)
1
2
2
(C)
1
2
2
(D)
2
ex2
sin
xdx
0
I2
I1 ;
又 I3 I1
3 ex2 sin xdx
2 ex2 sin xdx
3 ex2 sin xdx ,
2
其中
3
ex2
sin
t x
xdx
2 e(t )2 sin(t )d (t ) 2 e(t )2 sin tdt 2 e(x )2 sin xdx
x y ( x, y)(0,0) 2
2012考研数学一真题及答案
2011考研数学一真题试卷一选择题1.曲线222)4()3()2)(1(----=x x x x y 拐点A (1,0)B (2,0)C (3,0)D (4,0) 2设数列{}n a 单调递减,∑=∞→⋯===nk kn n n n aS a 1,2,1(,0lim )无界,则幂级数∑=-nk nk x a 1)1(的收敛域A(-1,1] B[-1,1) C[0,2) D(0,2]3.设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件 A 0)0(,1)0(>''>f f B 0)0(,1)0(<''>f f C 0)0(,1)0(>''<f f D 0)0(,1)0(<''<f f 4.设⎰⎰⎰===444cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I的大小关系是、、则K J IA I<J<KB I<K<JC J<I<KD K<J<I5.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第一行得单位矩阵。
记,010100001,010********⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=P P 则A=A 21P PB 211P P- C 12P P D 112P P-6.设),,,(4321αααα=A 是4阶矩阵,*A 是A 的伴随矩阵,若T )0,1,0,1(是方程组0=Ax 的一个基础解系,则0*=x A 的基础解系可为 A 31,αα B 21,αα C 321,,ααα D 432,,ααα7.设)(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是A )()(21x f x fB )()(222x F x fC )()(21x F x fD )()()()(1221x F x f x F x f +8.设随机变量X 与Y 相互独立,且EX 与EY 存在,记U=max{x,y},V={x,y},则E(UV)= A EUEV B EXEY C EUEY D EXEV 二填空题 9.曲线)40(tan 0⎰≤≤=x x tdt y π的弧长s=____________10.微分方程x ey y xcos -=+'满足条件y(0)=0的解为y=____________11.设函数⎰+=xydttt y x F 021sin ),(,则__________22=∂∂=x xF12.设L 是柱面方程为122=+y x 与平面z=x+y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分⎰=++___________22dz yxdy xzdx13.若二次曲面的方程为42223222=+++++yz xz axy z y x ,经正交变换化为442121=+z y ,则=a _______________ 三解答题 15求极限110))1ln((lim -→+xex xx16设))(,(x yg xy f z =,其中函数f 具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求1,12==∂∂∂y x yx z17求方程0arctan=-x x k 不同实根的个数,其中k 为参数。
2012考研试题及评分标准
(D) (−1)n n!
(3) 如果函数 f (x, y) 在 (0, 0) 处连续,那么下列命题正确的是
(A) 若极限 lim f (x, y) 存在,则 f (x, y) 在 (0, 0) 处可微
x→0 y→0
x+
y
(B)
若极限 lim f (x, y)
x→0 y→0
x2
+
y2
存在,则 f (x, y) 在 (0, 0) 处可微
(1)
曲线 y
=
x2 + x x2 −1
的渐近线的条数为
(A) 0
(B) 1
(C) 2
(D) 3
(2) 设函数 f (x) = (ex −1)(e2x − 2)L(en x − n) ,其中 n 为正整数,则 f ′(0) =
(A) (−1)n−1(n −1)!
(B) (−1)n (n −1)!
(C) (−1)n−1n!
n=0 2n +1
(18)(本题满分
10
分)已知曲线
L
:
x y
= =
f (t cos
) t
(0 ≤ t
< π ) ,其中 2
f (t) 具有连续导数,且
f (0) = 0 , f ′(t) > 0 (0 < t < π ) ,若曲线 L 的切线与 x 轴的交点到切点的距离恒为 1, 2
求函数 f (t) 的表达式,并求以曲线 L 及 x 轴和 y 轴为边界的区域的面积.
2012 年全国硕士研究生入学统一考试 数学(一) 试 卷
考生注意:(1)本试卷共三大题,23 小题,满分 150 分. (2)本试卷考试时间为 180 分钟.
2012考研数一真题答案及详细解析
2012年(数一)真题答案解析一、选择题Cl) C解函数y=X +x x z —l 的间断点为x =土l 由lim y =lim x 2 +x 工]X 丑Cx +l)(x�, ==, 故X =l 是垂直渐近线.又lim y =lim X (x+ l ) 1 =—,故X =-l 不是渐近线.工-I 工-1(x + 1) (x -1) 2 考察x -=时函数的极限1 —+1X 由lim y = lim = 1 , 故y =l 是水平渐近线.x-=工-= 1 1-—X 2 y 2因为lim —=limx +x =O, 故无斜渐近线.工-00X x -00 X (x 2 -1) 故应选C,有2条渐近线.(2)A解J '(x)=矿(e 红-2)(e 3x —3)…(e"x -n ) + (e x -1) (2 e 2x ) (e 3x -3)…(e 杠-n )+……+ce—l)(e 2x -2)(e 3x -3)···(ne 杠)当X =O 时e 工—1=0故J '(0) = 1• (1—2) (1 -3)…0-n )=(—l)n -1 (n —1) ! 故应选A .(3)Bf (x,y) 解A项用枚举法:设f (x,y )=l x l +I Y I 则lim x -。
l x l +I Y I 存在,y 一o 但儿(0,0),儿(0,0)都不存在即f (x,y )在(0,0)处不可微.A错误B项.由lim f (x,y) 工-o x z + y z =AC存在),则lim f (x,y ) =0, x 一o y-0 y 一0又f (x ,y )在点(0,0)处连续,故f (O,O )=0; X -0 且时f(x,y )是x 2+ y z 的高阶无穷小y-o:. lim f (x,y )—f (O,O ) f (x ,y) =lim =O.B 正确芦心2+ y 2�=g 心:2 + y 2 C、D项用枚举法.f (x,y )=x 满足条件,但lim f (x ,y) f (x ,y) 与lim 2 芦gl x l +I Y I�二g X + y 2 错误.故应选B.(4)D均不存在故C、D 解I 2 =『:六矿sin x d x =『矿sin x d x +厂矿sinxdx=!1 +厂矿sinxd x O 兀又兀<x<加时e x 2sin x < 0故厂心血d x < o 故l2< l1Ia =厂矿sinx dx =厂矿sinxdx +厂矿sinx dx = 12 +厂产sinx dx 0 02又纭<x<玩时e "'2sinx > 0 故厂矿si nx dx > 0 故12< Ia, Ia =厂尸sinx dx = I: 矿sinx dx +厂矿sinx dx = 11 +厂产sinx dx 厂e x 2si n x d x =『六e 工2sinx d x + f "矿sinx dx =『lt穴矿sin .x d x +『穴"e"五)'sin (t +:)d(t +亢)=厂矿sinx dx --J : e <工妇)2 si n xdx = J: [e 工2_ e (x 五)2 ]sin x d x > 0:. 13 > I 1 综上I a>I 1 > 12. 故应选D .(5)C解0 1 -1 l a 1,a3,a4I = O -1 1 =C11 C1 c3 c4 1 -1 =O-1 1 故U1,U3,U4线性相关.故应选C.(6)B 1 O O 1 O 0 解Q =(a,+a,,a,心)=(a,,a,,a,+ I o ]=+ I o ] 0 0 1 0 0 1 Q 一'A Q = [i � �r P -'A P[三三子]=[—又��][1 I J [上三�]=[I I J 故应选B.(7)A e -x,X>0,解八(x)= { o,X¾O , 由X,Y相互独立,故fy (y )=t e 五,y>O ,o , y�o. f (x ,y ) =八(x )•八(y )= {4e 玉如,x>O ,y>O , 0 ' 其他P{X<Y}= JI f (x ,y )d xd y= II 4e 玉+4y )dx d y (8)D <y 1 5.故应选A.解设两段木棒的长度为x,y 则X +y =1⇒ y =-x + 1由定理:若y =a x +b 则I P x Y I = 1,若心a <O则p xy = -1,®a >O 则p xy = 1.故px y =—1. 故应选D.1 2 .. l +x(l —X)2 s m x -x l —xl+x + 2x =l n-s m x -x l —X Cl+工:)(1—x) l+x =l n +x 1—x 1 +x 1 1 =l n1 十—sm x —x -x l —x I+x XE (O,l) /} 1 } } f (x) = + + + -cosx —1l+x 1—.r (1—x)2 O +x )2 x E (0,1)1 广(x)=—+ 12 2 —+O+x)2 Cl-x)2 (1—x)3 Cl+x)3 + s inx x E (0 , 1)因为O< 1 1 1 X <}时,>o, 1 (l-x)2-(l+x )2 (1-x)3-(l+x )3 > O,sinx > 0,故J"(x)> 0.又因为J'(x)在[O'1)是连续的,故J'(x)在[0,1)上是单调增加的,f I (X ) > f I (0) = 2 > 0 同理,f(x )在[O,1)上也是单调增加的,f(x )>f(O)=O,故F(x)在[O,1)上是单调增加的,F(x)> F (O) =O; 又因为F(x )是偶函数,则F(x)> O ,x E (—1,1) ,x #-0. 又因为F(O)=O, 故F(x )�o,即原不等式成立,证毕.(16)解先求出驻点叮^迁王丑+Y 2,-2+_v 2 —=e 一一+x e ——亡• (—x)=Cl -x 2)e-—广0.2 、丿。