高分子化学与物理实验指导书总结

合集下载

高分子物理实验报告

高分子物理实验报告

高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。

本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。

实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。

结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。

结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。

实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。

结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。

结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。

实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。

结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。

结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。

实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。

结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。

结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。

结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。

高分子科学实验指导书

高分子科学实验指导书
升温速率为 10K/min 到 30K/min。 6.思考题
(1) 由 DSC 和 TG 曲线可知,基线并非是一条平行于横坐标的直线,试分
析其原因。 (2) 从 DSC 和 TG 曲线上可以得到哪些信息?
实验二 聚合物温度-形变曲线的测定
施加一定荷重于聚合物试样上,并在一定范围内改变温度,观察试样形变随 温度的变化,以形变或相对形变对温度作图,所得的曲线,通常称为温度-形变 曲线。
兰州理工大学材料科学与工程学院
高分子科学
实 验 指 导 书
(高分子专业)
实验一 同步热分析
1 实验目的 (1) 了解同步热分析仪的原理 (2) 学会用同步热分析仪测定聚合物的熔融温度 Tm、热分解温度 Td。
2.实验原理 同步热分析是研究在程序控温过3.实验仪器和试样
实验三 凝胶渗透色谱法测聚合物的分子量分布
1 实验目的 (3) 了解 GPC 仪的工作原理 (4) 掌握凝胶渗透法测定分子量及分子量分布的原理 (5) 学会用 GPC 仪测定聚合物分子量分布的方法
2 实验原理 凝胶渗透色谱是以多孔树脂为固定相,用溶剂推动分子量大小不同的样品流
过固定相产生大小分子顺序流出的分离,以流出级份的保留时间(洗脱体积)提 供其分子量(尺寸)的信息,用检测器得到各流出组分的强度和流出时间,用已 知分子量的标样标定出流出时间和分子量的关系,然后用标定好的时间和分子量 的关系对未知样各流出级份的时间(分子量)和强度进行统计计算得到分子量分 布的方法。 3 实验仪器和试样
在温度足够低时由于高分子链和链段的运动均被冻结外力的作用只能引起高分子链长和键角的改变因此聚合物的弹性模量大形变量小表现出硬而脆的物理机械性质这时聚合物处于玻璃态在相当宽的玻璃态温度区间内聚合物的这种力学性质变化不大因而温度形变曲线上玻璃区是接近横坐标的斜率很小的一段直线随着温度的升高分子热运动能量的逐渐增加到达一定值后链段运动首先解冻开始运动而参加到形变机制中去使聚合物的弹性模量骤降而形变量大增表现为柔软而富于弹性的高弹体聚合物进入高弹态温度形变曲线起先急剧向上弯曲随后基本维持在某一形变水平上出现一段平台

高分子化学实验指导

高分子化学实验指导

⾼分⼦化学实验指导前⾔通过⾼分⼦化学实验,可以获得许多感性认识,加深对⾼分⼦化学基础知识和基本原理的理解;通过⾼分⼦化学实验课程的学习,能够熟练和规范地进⾏⾼分⼦化学实验的基本操作,掌握实验技术和基本技能,了解⾼分⼦化学中采⽤的特殊实验技术,在实验的过程中训练科学研究的⽅法和思维,培养学⽣严谨求实的科研精神,为以后的科研⼯作打下坚实的实验基础。

实验规则1.实验前认真预习,明确⽬的和要求,弄清基本原理,了解操作步骤和⽅法,做到⼼中有数。

2.实验过程中要听从教师的指导,保持实验室的安静,正确操作,细致观察,认真做好操作记录。

3.特别要注意安全,同时还要爱护仪器、设备,并注意整洁和节约,养成良好的实验习惯。

4.实验完毕,⽴即把仪器洗刷⼲净,并整理好药品、实验台。

5.根据原始记录,整理出实验报告,按时交给教师。

实验1 聚⼄烯醇缩甲醛的制备⼀、实验⽬的1. 了解⼩分⼦的基本有机化学反应,在⾼分⼦链上有合适的反应性基团时,均可按有机⼩分⼦反应历程进⾏⾼分⼦化学反应。

2. 了解缩醛化反应的主要影响因素。

3. 了解聚⼄烯醇缩醛化反应的原理,并制备红旗牌胶⽔。

⼆、实验原理早在 1931年,⼈们就已经研制出聚⼄烯醇(PV A)的纤维,但由于 PV A 的⽔溶性⽽⽆法实际应⽤。

利⽤"缩醛化"减少其⽔溶性,就使得PV A 有了较⼤的实际应⽤价值,⽤甲醛进⾏缩醛化反应得到聚⼄烯醇缩甲醛(PVF)。

PVF 随缩醛化程度不同,性质和⽤途有所不同。

控制缩醛在35%左右,就得到了⼈们称为"维纶'的纤维(vinylon)。

维纶的强度是棉花的1.5~2.0倍,吸湿性5%,接近天然纤维,⼜称为"合成棉花"。

在PVF 分⼦中,如果控制其缩醛度在较低⽔平,由于PVF 分⼦中含有羟基,⼄酸基和醛基,因此有较强的粘接性能,可作胶⽔使⽤,⽤来粘结⾦属、⽊材、⽪⾰、玻璃、陶瓷、橡胶等。

聚⼄烯醇缩甲醛是利⽤聚⼄烯醇缩与甲醛在盐酸催化的作⽤下⽽制得的,其反应如下:CH 2O+H+C +H 2OH CH 2CH CH 2CHCH 2OH C +H 2OH +CH 2CH CH 2CHCH 2OH C H 2+~~~~~~~~~~~~+H 2OCH 2CH CH 2CHCH 2O OH C H 2+~~~~~~CH 2CH CH 2CHCH 2O ~~~~~~CH 2+H +由于⼏率效应,聚⼄烯醇中邻近羟基成环后,中间往往会夹着⼀些⽆法成环的孤⽴的羟基,因此缩醛化反应不能完全。

高分子材料物理化学实验复习资料整理

高分子材料物理化学实验复习资料整理
C
Huggins式: sp K H C C
2

ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11

{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。

高分子物理实验总结

高分子物理实验总结

实验一熔体流动速率的测定塑料熔体流动速率(MFR):是指在一定温度和负荷下,塑料熔体每10min通过标准口模的质量。

实验原理:一定结构的塑料熔体,若所测得MFR愈大,表示该塑料熔体的平均分子量愈低,成型时流动性愈好。

但此种仪器测得的流动性能指标是在低剪切速率下获得的,不存在广泛的应力-应变速率关系。

因而不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。

(1)为什么要分段取样?答:分段取样取平均值能使实验结果更精确,且利于去除坏点,减小试验误差。

(2)哪些因素影响实验结果?举例说明。

答:①标准口模内径的选择不同的塑料应选择不同的口模内径,否则实验误差较大。

②实验温度物料的形态与温度有关,不同的温度下,物料的熔体流动速率不同。

③负荷不同负荷下,压力不同则影响样条质量。

实验二扫描电子显微镜观察物质表面微观结构背散射电子背散射电子是被固体样品中的原子核反弹回来的一部分入射电子,其中包括弹性背散射电子和非弹性背散射电子。

背散射电子来自样品表层几百纳米的深度范围,被散射电子系数可用л=KE m表示,式中,K,m均为与原子序数有关的常数。

因此,它的产额能随样品原予序数增大而增多.所以不仅能用作形貌分折,而且可以用来显示原子序数衬度,定性地用作成分分析。

二次电子在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫做二次电子。

二次电子的能量较低,一般都不超过8×10-19J(50ev),大多数二次电子只带有几个电子伏能量,因此二次电子逃逸深度一般只在表层5-10nm深度范围内。

二次电子发射系数与入射电子和样品表面法线夹角а的关系可用σа=σ/cosа表示,可见样品的棱角、尖峰等处会产生较多的二次电子,因此,二次电子对样品的表面形貌十分敏感,能非常有效的显示样品的表面形貌。

二次电子的产额和原子序数之间役有明显的依赖关系。

所以不能用它来进行成分分折。

高分子物理实验指导书详解

高分子物理实验指导书详解

高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。

二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。

球晶可以长得比较大,直径甚至可以达到厘米数量级。

球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。

因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。

偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。

球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。

光是电磁波,也就是横波,它的传播方向与振动方向垂直。

但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。

但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。

a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。

高分子物理实验指导

高分子物理实验指导

动态力学分析法研究两相聚合物的相容性当样品受到变化着的外力作用时,产生相应的应变。

在这种外力作用下,对样品的应力-应变关系随温度等条件的变化进行分析,即为动态力学分析。

动态力学分析是研究聚合物结构和性能的重要手段,它能得到聚合物的储能模量(E '),损耗模量(E '')和力学损耗(tan δ),这些物理量是决定聚合物使用特性的重要参数。

同时动态力学分析对聚合物分子运动状态的反映十分灵敏,考察模量和力学损耗随温度、频率以及其它条件的变化的特性可得聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等等。

本实验采用DMTA-IV 型动态粘弹谱仪分析制备条件对两相聚合物相容性的影响。

1.实验目的要求1.1 掌握使用DMTA-IV 型动态粘弹谱仪测定聚合物的复合模量、储能模量、损耗模量和阻尼模量的原理及方法;1.2通过数据分析,了解共聚、共混聚合物的结构特性。

2. 基本原理如果在试样上加一个正弦伸长应力σ,频率为ω,振幅为0σ,则应变ε也可以以正弦方式改变,应力与应变之间有一相位差δ,可分别表示为:0sin t εεω=0sin()t σσωδ=+式中0σ和0ε分别为应力和应变的幅值,将应力表达式展开:00cos sin()sin cos t t σσδωδσδω=++应力波可分解为两部分,一部分与应力同相位,峰值为0cos σδ,与储存的弹性能有关,另一部分与应变有90°的相位差,峰值为0sin σδ,与能量的损耗有关。

定义储能模量(E '),损耗模量(E '')和力学损耗(tan δ):00(/)cos E σεδ'= 00(/)sin E σεδ''=sin tan cos E E δδδ''=='复数模量可表示为:*E E iE '''=+其绝对值为:E =在交变应力作用下,样品在每一周期内所损耗的机械能可通过下式计算:320()()W t d t E φεσπε''∆==∆与E''成正比,因此,样品WE''或损耗机械能的能力高低可以用tanδ值的大小来衡量。

高分子化学实验指导书

高分子化学实验指导书

高分子化学实验指导书福州大学材料科学与工程学院高分子材料工程系2006.7目录实验一膨胀计法测定甲基丙烯酸甲酯本体聚合反应速率实验二苯乙烯的悬浮聚合实验三溶液聚合法制备聚醋酸乙烯酯实验四聚乙烯醇缩醛(维尼纶)的制备实验五醋酸乙烯酯的乳液聚合实验一 膨胀计法测定甲基丙烯酸甲酯本体聚合反应速率一、实验目的1、掌握膨胀计的使用方法。

2、掌握膨胀计法测定聚合反应速率的原理。

3、测定甲基丙烯酸甲酯本体聚合反应平均聚合速率,并验证聚合速率与单体浓度间的动力学关系。

二、基本原理1、聚合机理甲基丙烯酸甲酯的本体聚合是按自由基聚合反应历程进行的,其活性中心为自由基。

自由基聚合是合成高分子化学中极为重要的反应,其合成产物约占总聚合物的60%、热塑性树脂的80%以上,是许多大品种通用塑料、合成橡胶和某些纤维的合成方法。

甲基丙烯酸甲酯的自由基聚合反应包括链的引发、链增长和链终止,当体系中含有链转移剂时,还可发生链转移反应。

其聚合历程如下:CO OCO 2CO OCO OCH 2C CH 3COOCH 3CO OCH 2C CH 3COOCH 3CO OCH 2CH 3COOCH 3CH 2C CH 33CO OCH 2CH 3COOCH 3CH 2C CH 33CH 2C CH 3COOCH 3CH 2C CH 332CH 2CCH 3COOCH 3CH 2CH 33CH 2C CH 332CH 2C CH 33CHCH 33H自由基聚合反应通常可采用本体、溶液、悬浮、乳液聚合四种方式实施。

其中,本体聚合是不加其它介质,只有单体本身在引发剂或催化剂、热、光作用下进行的聚合,又称块状聚合。

本体聚合纯度高、工序简单,但随聚合的进行,转化率提高,体系黏度增大,聚合热难以散出,同时长链自由基末端被包裹,扩散困难,自由基双基终止速率大大降低,致使聚合速率急剧增大而出现自动加速现象,短时间内产生更多的热量,从而引起分子量分布不均,影响产品性能,更为严重的则引起爆聚。

高化实验指导书整理

高化实验指导书整理

高分子化学实验苯乙烯的悬浮聚合一、目的要求1、了解苯乙烯自由基聚合的基本原理。

2、掌握悬浮聚合的实施方法,了解配方中各组分的作用。

3、了解分散剂、升温速度、搅拌速度对悬浮聚合的影响。

二、基本原理苯乙烯在水和分散剂作用下分散成液滴状,在油溶性引发剂过氧化二苯甲酰引发下进行自由基聚合,其反应历程如下: C O O C O 2C O O C O O CH 2CH O O CH 2CH C O O C O O CH 2CH CH 2CH CH 2CH CH 2CH CH 2CH 2CH 2CH 2CH CH CH 2悬浮聚合是由烯类单体制备高聚物的重要方法,由于水为分散介质,聚合热可以迅速排除,因而反应温度容易控制,生产工艺简单,制成的成品呈均匀的颗粒状,故又称珠状聚合,产品不经造粒可直接加工成型。

苯乙烯是一种比较活泼的单体,容易进行聚合反应。

苯乙烯在水中的溶解度很小,将其倒入水中,体系分成两层,进行搅拌时,在剪切力作用下单体层分散成液滴,界面张力使液滴保持球形,而且界面张力越大形成的液滴越大,因此在作用方向相反的搅拌剪切力和界面张力作用下液滴达到一定的大小和分布。

而这种液滴在热力学上是不稳定的,当搅拌停止后,液滴将凝聚变大,最后与水分层,同时聚合到一定程度以后的液滴中溶有的发粘聚合物亦可使液滴相粘结。

因此,悬浮聚合体系还需加入分散剂。

悬浮聚合实质上是借助于较强烈的搅拌和悬浮剂的作用,将单体分散在单体不溶的介质(通常为水)中,单体以小液滴的形式进行本体聚合,在每一个小液滴内,单体的聚合过程与本体聚合相似,遵循自由基聚合一般机理,具有与本体聚合相同的动力学过程。

由于单体在体系中被搅拌和悬浮剂作用,被分散成细小液滴,因此悬浮聚合又有其独到之处,即散热面积大,防止了在本体聚合中出现的不易散热的问题。

由于分散剂的采用,最后的产物经分离纯化后可得到纯度较高的颗粒状聚合物。

三、主要试剂和仪器1、主要试剂名称 试剂 规格 用量 单体 苯乙烯 除去阻聚剂 15g 油溶性引发剂 过氧化二苯甲酰 C.P.,重结晶精制 0.3g 分散剂 聚乙烯醇 1799水溶液 1.5 % 20ml 分散介质 水 去离子水 130 ml2、主要仪器聚合装置一套(包括:250 ml 三口烧瓶一只,电动搅拌器一套,冷凝管一只,0~100℃温度计一只,加热套一套。

(完整版)高分子物理详细重点总结

(完整版)高分子物理详细重点总结

名词解释:1. 时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2. 松弛时间τ :橡皮由ΔX(t)恢复到ΔX(0)的 1/e 时所需的时间3. 松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。

4. 时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。

5. 模量:材料受力时,应力与应变的比值6. 玻璃化温度:为模量下降最大处的温度。

7. 自由体积:任何分子的转变都需要有一个自由活动的空间 ,高分子链活动的空间8. 自由体积分数(f):自由体积与总体积之比。

9. 自由体积理论:当自由体积分数为 2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。

10. 物理老化:聚合物的某些性质随时间而变化的现象11. 化学老化:聚合物由于光、热等作用下发生的老化12. 外增塑:添加某些低分子组分使聚合物 T g 下降的现象13. 次级转变或多重转变: Tg 以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14. 结晶速率:物品结晶过程进行到一半所需要时间的倒数15. 结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16. 熔融:物质从结晶态转变为液态的过程17. 熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18. 熔融熵S m :熔融前后分子混乱程度的变化19. 橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20. 应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时 ,它的几何形状和尺寸将发生变化21. 附加应力:可以抵抗外力的力22. 泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23. 热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24. 力学松弛:聚合物的各种性能表现出对时间的依赖性25. 蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26. 应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27. 滞后:聚合物在交变应力作用下形变落后于应力变化的现象28. 力学损耗或者内耗:单位体积橡胶经过一个拉伸 ~ 回缩循环后所消耗的功29. 储存模量 E’:同相位的应力与应变的比值30. 损耗模量 E”:相差 90 度相位的应力振幅与应变振幅的比值31. Boltzmann 叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32. 应变软化:随应变增大,应力不再增加反而有所下降33. 银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长 100 、宽 10 、厚为 1 微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。

高分子化学与物理实验指导书样本

高分子化学与物理实验指导书样本

实验一引发剂的精制一、实验目的重结晶是纯化精制固体有机化合物的重要手段, 经过实验熟悉重结晶提纯法及相关的各项单元操作。

二、实验原理固体有机物在溶剂中的溶解度与温度有密切关系, 一般是温度升高, 溶解度增大。

利用溶剂对被提纯物质及杂质的溶解度不同, 能够使被提纯物质从过饱和溶液中析出, 而让杂质全部或大部分仍留在溶液中, 或者相反, 从而达到分离、提纯之目的。

三、操作要点及说明重结晶提纯法的一般过程为:1、选择适宜的溶剂某一有机化合物进行重结晶的溶剂应该具有如下性质: ( 1) 与被提纯的有机化合物不起化学反应。

( 2) 对被提纯的有机物应具有热溶, 冷不溶性质。

( 3) 杂质化合物的溶解性对温度变化不敏感。

( 4) 对要提纯的有机物能在溶剂中形成较整齐的晶体。

( 5) 溶剂的沸点, 不宜太低( 易损) , 也不宜太高( 难除) 。

( 6) 价廉易得无毒。

选择溶剂时常根据”相似相溶”原理, 溶质往往易溶于结构与其相似的溶剂中。

可查阅有关的文献和手册, 了解某化合物在各种溶剂中不同温度的溶解度; 也可经过实验来确定化合物的溶解度, 即取少量的重结晶物质在试管中, 加入不同种类的溶剂进行预试, 筛选出适宜溶剂。

2、将待重结晶物质制成热的饱和溶液制饱和溶液时, 溶剂可分批加入, 边加热边搅拌, 至固体完全溶解后, 再多加2O%左右( 这样可避免热过滤时, 晶体在漏斗上或漏斗颈中析出造成损失) 。

也不可加过多溶剂, 否则冷后析不出晶体。

溶剂量的多少还要考虑结晶析出的难易程度, 结晶容易析出的则需适当多加一些溶剂, 以抵消热过滤时结晶在滤纸上析出而造成的损失; 如果结晶不易析出, 可适当少加一些溶剂, 以提高重结晶的回收率。

3、脱色待溶液稍冷后, 加入活性炭( 用量为固体1-5%) , 煮沸5-10min( 切不可在沸腾的溶液中加入活性炭, 那样会有暴沸的危险。

)4、乘热过滤除去不溶性杂质乘热过滤时, 先熟悉热水漏斗的构造, 放入菊花滤纸( 要使菊花滤纸向外突出的棱角, 紧贴于漏斗壁上) , 先用少量热的溶剂润湿滤纸( 以免干滤纸吸收溶液中的溶剂, 使结晶析出而堵塞滤纸孔) , 将溶液沿玻棒倒入, 过滤时, 漏斗上可盖上表面皿( 凹面向下) 减少溶剂的挥发, 盛溶液的器皿一般用锥形瓶( 只有水溶液才可收集在烧杯中) 。

《高分子化学与物理》实验教学大纲

《高分子化学与物理》实验教学大纲

《高分子化学与物理》实验教学大纲
实验部分:
实验一聚丙烯酸钠的合成(8学时)综合性实验
基本要求:
了解高聚物聚合过程,学会高聚物合成产物的处理
难点:
影响聚合反应的因素
重点:
学会聚合反应的基本操作
实验二聚丙烯酸粘均分子量的测定(6学时)综合性实验
基本要求:
掌握聚丙烯酸粘均分子量的测定方法
难点:
聚丙烯酸粘均分子量的操作步骤
重点:
聚丙烯酸粘均分子量测定的原理和方法
参考教材:
高分子化学与物理教程魏无际2005 化学工业出版社
北京化工大学高分子物理2000 北京化工大学出版社
东华大学染整教研室染整工艺学实验2000
北京大学高分子教研室高分子实验与专论1990 北京大学出版社。

高分子化学与物理总结

高分子化学与物理总结

一、名词说明3.单体单元:(与单体具有相同的化学组成,只是电子结构不同的原子组合。

)4.结构单元:(构成高分子主链,并确定主链结构的最小的原子组合。

)5.重复结构单元:(主链上化学组成相同的最小原子组合,有时简称为重复单元或链节。

)7.聚合度:(结构单元数n定义位高分子的聚合度X。

)1.体型缩聚:多官能单体参与反应,能形成非线性的多支链产物,支化的大分子有可能进一步交联成体型结构的产物,这种凡能形成体型结构缩聚物的缩聚反应,称为体型缩聚。

2.凝胶现象:体型缩聚反应在聚合过程中一般表现为反应体系的黏度在聚合初期渐渐增大,当反应进行肯定程度后,黏度突然急剧增大,体系转变为具有弹性的凝胶状物质,这一现象称为凝胶化或凝胶现象。

3.凝胶点:出现凝胶现象时的反应程度(临界反应程度)称为凝胶点。

17. 转化率:已转化为聚合物的单体量占起始单体量的百分数18. 反应程度:参与反应的官能团数目与起始官能团数目的比值偶合终止:两个大分子自由基相互结合生成一个大分子的终止方式,称为偶合终止。

歧化终止:歧化终止两个大分子自由基相互间反应,生成两个大分子的终止方式,称为歧化终止。

链转移反应:链转移反应是指在聚合过程中,链自由基可能从单体、引发剂、溶剂或大分子上夺取一个原子(大多数为氢原子)而终止,而失去一个原子的分子则成为新的自由基,并能接着进行反应形成新的活性自由基链,使聚合反应接着进行。

引发剂效率:用于引发聚合的引发剂量占引发剂分解总量的百分率。

诱导分解:自由基(包括初级自由基、单体自由基、链自由基)向引发剂分子的链转移反应。

笼蔽效应:引发剂分解产生的初级自由基在与单体反应生成单体自由基之前,发生了副反应而失活这种效应称为笼蔽效应。

诱导效应:有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变更,从而使化学键发生极化的现象,称为诱导效应6.异构化聚合:阳离子聚合中由于碳正离子的不稳定,异构成更稳定的结构,发生所谓的异构化反应。

高分子物理实验指导书

高分子物理实验指导书

高分子物理实验指导书一、实验目的本实验旨在通过实践,加深对高分子物理性质的理解和掌握,培养实验操作和数据分析的能力。

二、实验原理1. 高分子材料的基本性质2. 高分子结构与性能的关系3. 高分子物理性质的测量方法4. 高分子材料的结晶与玻璃化过程三、实验仪器与材料的准备1. 热分析仪(例如差示扫描量热仪)2. 动态力学分析仪(DMA)3. 红外光谱仪4. 多用途实验台5. 高聚物样品(例如聚丙烯、聚苯乙烯等)四、实验步骤1. 热分析法测定热稳定性a) 将高聚物样品制备成适当形状的试件b) 将试件放入差示扫描量热仪中,设置合适的温度范围和升温速率c) 记录热分析曲线,分析高聚物的热稳定性2. 动态力学分析法测定力学性能a) 制备高聚物样品的拉伸试件或剪切试件b) 将试件放入DMA中,设置合适的测试条件(如频率、应变等)c) 测量高聚物的模量、损耗因子等力学性能参数3. 红外光谱法表征结构a) 制备高聚物样品的薄膜b) 将样品放入红外光谱仪中,记录红外光谱图c) 分析红外光谱图,了解高聚物的官能团及结构特征4. 结晶与玻璃化过程的研究a) 选取合适的高聚物样品b) 制备样品的不同状态(如非晶态、部分结晶态)c) 运用热分析仪和DMA,研究高聚物的结晶和玻璃化过程五、实验数据处理和分析根据实验结果,进行数据分析和统计,并撰写实验报告。

报告中应包括实验目的、原理、实验步骤、数据分析和结论等。

六、实验安全注意事项1. 实验过程中需佩戴安全眼镜和实验服,注意防护措施。

2. 高温仪器需要注意烫伤风险,操作时要小心轻放。

3. 在红外光谱仪操作时,注意避免样品因氧化或污染造成误差。

七、实验结果示例1. 热分析曲线示意图2. DMA测量的力学性能曲线示意图3. 红外光谱图示例以上,为了更好地展示实验指导书的排版要求和格式美观,请以实际文字替代示例图片。

八、实验总结通过本实验,我们深入了解了高分子物理性质的测量方法和性能特征。

高分子实验小结

高分子实验小结

高分子实验小结高分子是一种由许多分子单元组成的大分子化合物,其具有非常重要的应用价值。

在高分子实验方面,涉及到许多不同的实验内容。

本文将结合自身在实验过程中的体验,按照实验类别进行概述和总结。

1. 高分子合成实验高分子的合成实验是高分子实验中的重头戏,也是最主要的实验内容。

在合成实验中,要注意反应温度、反应物比例、催化剂种类等等因素的控制。

在实验中,发现选择合适的催化剂对于反应速度和高分子的产量都有显著的影响。

同时,本实验还需要注意保持反应环境整洁、干净,以避免杂质的干扰。

2. 高分子物性测试实验在合成出高分子材料后,需要对其物性进行测试。

有些实验需要测试均匀性、韧性、强度等性质;而有些实验则需要测试其导电性或导热性等物理性质。

不同的实验需要注意注重不同的细节,对于测试结果的不确定性需要合理掌握。

同时,本实验还需要注意实验仪器的使用,以获得较为精确的测试数据。

3. 高分子加工实验高分子加工实验通常是在高分子材料合成之后进行的,目的是将高分子材料加工成实际可用的制品。

这类实验需要加工制成的制品具有一定的功能或使用价值,比如在医学领域中开发出用于人工心脏瓣膜的高分子材料等。

在实验中,需要注意控制加工的温度、时间等因素,以获得最佳的加工效果。

同时,本实验还需要注重材料的质量控制,以确保加工出来的制品有较高的品质。

综上所述,在高分子实验中,不同的实验内容都需要注重细节和专业知识的掌握,以获得较为精确的实验结果。

高分子实验还需要耐心和耐心,以及对实验所涉及到的技术知识的逐步积累。

通过努力和积累,我们相信可以取得更好的实验效果,为高分子应用领域的发展做出更大的贡献。

高分子化学与物理实验指导书总结

高分子化学与物理实验指导书总结

高分子化学与物理实验指导书总结高分子化学与物理实验指导书1. 实验课时间安排高分子化学实验是在学生主修《高分子化学与物理》课程基础上开设的。

其中学时安排如下:2. 预习情况检查方式要求学生在实验前必须做好实验预习,否则不予参加实验。

实验预习主要包括以下两个方面的内容:1、检查实验预习报告(预习报告要求包括实验目的、实验原理、实验所需仪器及药品、实验步骤等)2、老师在实验前要检查学生的实验预习情况,可采取口头提问的方式了解学是对实验的预习情况。

3. 相关知识的讲解针对高分子化学开设的不同实验,指导教师要做好相关的讲解工作。

主要包括:实验一甲基丙烯酸甲酯的本体聚合实验二酚醛树脂的缩聚实验三PP球晶观察实验四PS粘均分子量测定实验一甲基丙烯酸甲酯的本体聚合一、实验目的1. 掌握自由基本体聚合的原理及合成方法;2. 了解有机玻璃的生产工艺。

二、实验原理聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃。

有机玻璃广泛用在工业、农业、军事、生活等的各个领域,如飞机、汽车的透明窗玻璃、罩盖等。

在建筑、电气、医疗卫生、机电等行业也广泛使用,如制造光学仪器、电器、医疗器械、透明模型、装饰品、广告铭牌等。

每年全世界要消耗数以百万吨的有机玻璃及其制品。

工业上制备有机玻璃主要采用本体、悬浮聚合法,其次是溶液和乳液法。

而有机玻璃的板、棒、管材制品通常都用本体浇铸聚合的方法来制备。

如果直接做甲基丙烯酸甲酯的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。

如果选用其它聚合方法(如悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。

因此,工业上或实验室目前多采用浇注方法。

即:将本体聚合迅速进行到某种程度(转化率 10% 左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到93 ~95% 左右,最后在100 ℃下聚合至反应完全。

其反应方程式如下:本实验采用本体聚合法制备有机玻璃。

高分子化学实验总结

高分子化学实验总结

高分子化学实验报告一、实验目的:1、了解本体聚合的原理,熟悉有机玻璃的制备方法;2、掌握减压蒸馏的原理及操作过程。

二、实验原理:甲基丙烯酸甲酯在过氧化苯甲酰引发剂存在下进行自由基聚合反应。

自由基加聚的工艺方法主要有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合,本体聚合由于反应组成少,只是单体或单体加引发剂,所以产物较纯,但散热难控制;溶液聚合过程易控制,散热较快,不过产物中含溶剂(有些污染环境),后处理比较困难;悬浮聚合以水作溶剂,水无污染,散热好,易除去,但要求单体不溶于水,故在应用上受限制;乳液聚合反应机理不同,可以同时提高聚合速度和聚合度,散热好,易操作。

甲基丙烯酸甲酯在BPO引发下自由基聚合:自由基聚合属连锁反应,一般有三个基元反应:链引发,链增长,链终止(有时还会出现链转移)反应。

链引发: R·+M→RM·链增长: RM·+M→RMM·+M→RMMM· +M→…→﹋M·链终止:﹋M·+﹋M·→‘死’聚合物本实验采用本体聚合,当反应到一定程度时粘度增大,大分子链自由基活度降低,阻碍了链自由基的相互结合,使链终止的速率减慢,而小分子单体却依然可以自由与链结合,链增长速率不会受到影响,从而导致自动加速效应,内部温度急剧上升,又继续加剧反应,如此循环,而粘度又屏蔽热量,使局部温度过高,严重影响聚合物的性质,这是我们不想看到的。

图1、为聚合反应的变化规律,图中曲线表明:聚合反应开始前有一段诱导期,聚合速率为零,体系无粘度变化。

在转化率超过20%以后,聚合速率显著增加,出现自动加速效应。

而转化率达到80%以后,聚合速率显著减小.最后几乎停止聚合,需要升高温度才能使聚合反应完全。

为避免出现自动加速效应,可通过冷却降温与控制粘度的方法,在预聚时控制粘度,并控制温度在80~90℃时(引发剂的半衰期适当),以适应在较低温度下聚合。

高分子物理与化学的小结

高分子物理与化学的小结

⏹橡胶拉伸时会发热,回缩时会吸热,这主要有两个方面的原因:一是因为拉伸时熵减小,而内能几乎不变,故焓也减小,即放热;二是许多橡胶拉伸时因分子规整排列而结晶,结晶过程是放热的。

回缩时这两个因素正好反过来,即熵增加导致焓增加,晶区熔融吸热。

⏹当外力使蜷曲的分子链拉直时,由于分子热运动,力图恢复到原来的蜷曲状态,形成对抗外力的回缩力,正是这种力促使橡胶形变的可逆性,但这种回缩力毕竟不大,所以橡胶在外力不大时就可以发生较大的形变,因而弹性模量小,一般在0.1~1MPa,而PE为200MPa,钢为200GPa。

⏹另外,温度升高时,分子热运动比较激烈,回缩力增大,所以橡胶的弹性模量随温度的上升而增加,这与金属材料正好相反。

极性大的溶质溶于极性大的溶剂对于小分子极性小的溶质溶于极性小的溶剂溶质和溶剂极性越近,二者越易互溶对于高分子:在一定程度上也适用均缩聚只有一种单体进行的缩聚反应,即2 -体系(如羟基酸或氨基酸缩聚),也称自缩聚;共缩聚在一般缩聚体系中加入第三或第四种单体进行的缩聚反应。

如乙二醇与对苯二甲酸缩聚成涤纶聚酯,加入第三单体丁二醇共缩聚,降低涤纶的结晶度与熔点,增加柔性。

在均缩聚中加入第二种单体进行的缩聚反应自动加速的后果及采取的措施后果:在自加速过程中若大量反应热不及时散发,有爆聚危险采取措施:降低体系粘度:如溶液聚合强化传热:如MMA本体聚合制造有机玻璃,高温预聚、薄层聚合、高温熟化。

烯丙基单体的自阻聚作用在自由基聚合中,烯丙基单体的聚合速率很低,并且往往只能得到低聚物,这是因为自由基与烯丙基单体反应时,存在加成和转移两个竞争反应一方面,单体活性不高且加成反应生成的链自由基是二级碳自由基,不稳定,不利于加成反应的进行;另一方面,由于烯丙基氢很活泼,且链转移后生成的烯丙基自由基由于有双键的共振作用非常稳定,因此对链转移反应非常有利。

这样,由于链转移反应极易发生,ktr>>kp,烯丙基单体聚合只能得到低聚物;并且由于链转移生成的烯丙基自由基很稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子化学与物理实验指导书1. 实验课时间安排高分子化学实验是在学生主修《高分子化学与物理》课程基础上开设的。

其中学时安排如下:2. 预习情况检查方式要求学生在实验前必须做好实验预习,否则不予参加实验。

实验预习主要包括以下两个方面的内容:1、检查实验预习报告(预习报告要求包括实验目的、实验原理、实验所需仪器及药品、实验步骤等)2、老师在实验前要检查学生的实验预习情况,可采取口头提问的方式了解学是对实验的预习情况。

3. 相关知识的讲解针对高分子化学开设的不同实验,指导教师要做好相关的讲解工作。

主要包括:实验一甲基丙烯酸甲酯的本体聚合实验二酚醛树脂的缩聚实验三PP球晶观察实验四PS粘均分子量测定实验一甲基丙烯酸甲酯的本体聚合一、实验目的1. 掌握自由基本体聚合的原理及合成方法;2. 了解有机玻璃的生产工艺。

二、实验原理聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃。

有机玻璃广泛用在工业、农业、军事、生活等的各个领域,如飞机、汽车的透明窗玻璃、罩盖等。

在建筑、电气、医疗卫生、机电等行业也广泛使用,如制造光学仪器、电器、医疗器械、透明模型、装饰品、广告铭牌等。

每年全世界要消耗数以百万吨的有机玻璃及其制品。

工业上制备有机玻璃主要采用本体、悬浮聚合法,其次是溶液和乳液法。

而有机玻璃的板、棒、管材制品通常都用本体浇铸聚合的方法来制备。

如果直接做甲基丙烯酸甲酯的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。

如果选用其它聚合方法(如悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。

因此,工业上或实验室目前多采用浇注方法。

即:将本体聚合迅速进行到某种程度(转化率 10% 左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到 93 ~ 95% 左右,最后在 100 ℃下聚合至反应完全。

其反应方程式如下:本实验采用本体聚合法制备有机玻璃。

本体聚合是在没有介质存在的情况下进行的聚合反应,体系中可以加引发剂,也可以不加引发剂。

按照聚合物在单体中的溶解情况,可以分为均相聚合和多相聚合两种:聚合物溶于单体,为均相聚合,如甲基丙烯酸甲酯,苯乙烯等的聚合;聚合物不溶于单体,则为多相聚合,如氯乙烯,丙烯腈的聚合。

本体聚合中因为体系中无介质存在,反应是粘度不断增大,反应热不容易排出,局部容易过热,导致单体气化或聚合物裂解,结果产品内有气泡或空心。

在甲基丙烯酸甲酯聚合过程中甚至会使反应进入爆炸聚合阶段(爆聚),所以反应必须严格控制温度。

三、实验仪器及设备1. 调压电炉(加热装置)每组1个2. 大烧杯(水浴)每组1个3. 各种试管(反应器及模具)每人1个4. 与试管配套的橡皮塞及试管夹每人1个5. 温度计每组1个6. 铁架台每组1套四、实验药品1. 甲基丙烯酸甲酯(MMA) 5 g2. 过氧化二苯甲酰(BPO)0.01 g3. 邻苯二甲酸二丁酯(增塑剂)0.3 ml五、实验步骤1、配料及准备首先在大烧杯中加入适量的水(约3/4烧杯体积),置于调压电炉上加热。

然后在试管中加入0.01g的BPO、5g的MMA,0.3ml邻苯二甲酸二丁酯。

(注:由于各试剂加入量较小,实验员老师已按上述比例配好大样,学生实验时只需从配好的试剂瓶中取适量的反应体系即可)。

为了防止反应体系受热后,MMA挥发及气体膨胀而冲开塞子,最好在塞子边缘用锉刀锉一条小缝。

2、预聚合反应用试管夹夹好试管放入水浴中进行预聚(注意水浴液面必须高于反应体系液面),当温度达到90℃时,保温30-45分钟,观察粘度,当物料呈粘稠状(蜜糖状)时,停止加热,用冷水浴骤然降温至40℃以下终止反应。

注意:预聚过程中,必须不时取出试管振摇,以代替是搅拌,排出体系的反应热,避免局部过热引发爆聚。

3、低温聚合反应将水浴再缓慢升温至60℃,并维持在此温度下进行低温聚合,并不时取出振摇,直至体系不能流动为止,(转化率达到80~90%,此时用铁针刺探有机玻璃,应有弹性出现),低温聚合结束。

4、高温聚合反应缓慢升温到100℃,保温20~30分钟后,停止加热,完成全部聚合过程,得到光滑无色透明的有机玻璃。

取出试管,并迅速放于冷水中,倒出产品。

六、实验注意事项1.整个反应过程中,注意控制好温度;2.控制电炉调压器不要超过220V,到了指定温度后,可通过适当调低电压保持改指定温度;3.预聚合反应时,应不时取出试管摇动,及时排出反应热;4.振摇试管时,注意不要将试管从试管夹中甩脱;七、实验有关问题1.本实验也可以在大烧瓶中,在搅拌的条件下完成预聚合,制成具有一定粘度的预聚物,然后再转入各种模具中成型;2.为了提高对本实验的兴趣,同学们可事先准备一些色彩鲜艳、造型精美的小饰物,在低温聚合阶段(有一定粘度时,呈蜜糖状之后)放入到反应体系中,最后制成具有纪念意义的工艺品(类似琥珀)。

注意:小饰物必须干燥,不影响聚合反应的进行,在受热时稳定,不会产生气体。

八、结果与讨论1.自动加速现象在本实验中的体现。

2.如何控制反应速率,杜绝爆聚现象。

3.本体聚合的优缺点。

4.为什么本实验聚合反应分为预聚合、低温聚合和高温聚合几个阶段。

5.PMMA聚合反应的反应热为多少。

6.本实验采用的是什么类型的引发剂,引发剂的选用原则。

实验二酚醛树脂的合成一、实验目的1.学习逐步聚合的原理、实验方法;2.熟悉不同催化条件制备酚醛树脂的方法。

二、实验原理以酚类和醛类化合物缩合聚合得到的树脂。

一般统称为酚醛树脂。

是世界上最早实现工业化的树脂。

由于工艺简单,加工方便,性能优异。

因此,迄今为止仍为工业生产中不可缺少的材料在塑料中仍占有相当重要的地位。

由于树脂的形成反应比较复杂,到现在它的化学过程仍未完全搞清楚,它的结构因而是十分复杂的,但目前已可确认影响树脂形成及性能的因素是:所用原料的化学结构,酚与醛的相对用量(摩尔比),介质的PH值等。

(具体的介绍参考课本逐步聚合一章)。

酸催化时,酚过量,生成线型酚醛树脂;碱催化时,醛过量,生成体型酚醛树脂。

三、实验仪器及设备1. 大试管1个2. 带长玻璃导管(约30cm,回流)的橡皮塞1个3. 温度计(100℃)1个4. 大烧杯(水浴用)1个6. 电炉(加热装置,带调压器)1个7. 量筒1个8. 铁架台1套四、实验药品1. 苯酚(纯度94%)2. 甲醛(36~40%)3. 浓盐酸4. 浓氨水五、实验步骤1.安装仪器;2.在大试管里加入苯酚2.5g和40%的甲醛溶液2.5ml,然后加入1ml浓HCl,用带玻璃导管的塞子塞好;3.在另一支大试管中加入苯酚2.5g和40%的甲醛溶液3-4ml,然后加入用1ml的浓氨水,用带玻璃导管的塞子塞好;4.将两只大试管置于水浴中加热,记录下反应现象。

一会后就可以看到混合物开始剧烈沸腾;5.等反应不再剧烈进行时,继续加热,直到混合物变为混浊,生成不溶于水的树脂;6.从水浴中取出试管,冷却,将试管中的混合物倒入蒸发皿中,使混合物静置分层,倒去上层的水,得到下层的酚醛树脂,观察生成物的形态、颜色。

六、实验注意事项1.由于反应剧烈,反应物可能会从玻璃导管中喷出,所以,反应剧烈时,适当取出试管,减缓反应速度,避免喷液;2.水浴水面要高于体系的液面;七、结果与讨论1.酸催化和碱催化的差别。

2.反应过程中可能会形成的中间产物。

3.人造木芯板中采用的酚醛树脂大致配方。

4. 操作指导分析1、甲基丙烯酸甲酯的本体聚合正常现象实验过程中试管中的溶液粘度随反应时间的增加而逐渐增大,使物料呈蜜糖状,最后变硬。

非正常现象实验过程中,易发生暴聚而使产物结块,造成出料困难,最终使实验仪器报废。

非正常现象产生的原因由于升温过快或搅拌速度太慢,易发生暴聚而使产物结块。

2、酚醛树脂的合成正常现象1.实验过程中反应物颜色逐渐发生变化,溶液逐渐分层。

2.不同催化剂条件下,反应速度不同,剧烈层都不同。

非正常现象1.反应过于剧烈,反应液从导管喷出。

非正常现象产生的原因1.由于温度过高,反应过快。

5. 实验数据处理高分子化学实验主要是要求学生掌握由单体到聚合物的几种工艺实施方法,通过实验现象的观察可以看到实验的最终结果。

因此高分子化学的数据处理相对比较简单。

一般只是简单地计算产物的收率。

实验三球晶的制备与观察一、目的及要求1.了解偏光显微镜的结构和使用方法。

2.了解球晶形态与结晶温度的关系3.计算球晶的平均直径。

二、偏光显微镜观察球晶的原理。

用偏光显微镜来观察球晶结构尺寸是根据聚合物晶体具有双折射的原理。

当一束光线进入各向同性的均匀介质中时,光速不随传播方向面改变。

因此,在各方面都具有相同的折射率。

换言之。

均匀介质只有一个折射率。

而对晶体来说,其光学性质是随方向而异的。

当光线通过晶体时就会分解为平面互相垂直的两束光,它们的传播速度除光轴方向外,一般是不相等的。

于是,产生了两条折射率不同的光线,这种现象称为双折射。

晶体的一切光学性质都与双折射有关。

偏光显微镜是研究晶体形态的有效工具之一。

许多重要的晶体光学研究都是在偏光镜的正交场下进行的。

起偏镜和检偏镜相互垂直。

在正交偏光镜间可以观察到球晶的形状、大小、数目等。

高聚物从熔体冷却后,成为光学各向异体,当结晶体的振动方向与起偏镜的检偏镜振动方向不一致时,视野明亮,就可以观察到晶。

其原因可简述如下:P-P代表起偏镜振动方向:A-A代表检偏镜振动方向:N、M是晶体内某一切面内的两个振动方向。

由图可知,晶体切面内的振动方向与偏光镜的振动方向不一致。

设N振动方向与偏光镜振动方向P-P间的夹角为a,光先进入起偏镜。

自起偏镜透出的平面光的振幅为OB,光继续射至晶片上,由于切面内两振动方向不与P-P一致,因此,要分解到晶体的两振动画中,分至N方向上光的振幅为OD。

分至N方向上光的振幅为OD,分至M 方向的光的振幅为OE ,自晶片透出的两平面偏光继续至检偏镜上,由于检偏镜的振动方向与晶体切面内的两振动方向不一致,故每一平面偏光都要一分为二,OD 振幅的光分解为OF 与DF 振幅的光。

OE 分解为OG 和GE ,振幅为DF 和EG 的光由于垂直于检偏镜的振动方向,故不能透过,而OG 和OF 的光,它们在检偏镜的振动(方面)面内,因而可以透过。

两个光波在同一平面内振动,必然要发出干涉,它们的合成波为: y=OF-OG=ODSina-OECosa ………………(1) OD=OBCosa OB=ASinwt又因晶片内N 和M 方向振动的两光波的速度不相等,折射率也不一样,设其相位差为δ,则OD=OBCosa=AsinwtCosa...........(2) OE=OBSina=Asin(wt-δ)Sina. (3)将(2)、(3)式代入(1)得:)2(22δα-=wt Cos b Sin ASin y (4)因各束光的强度与各束光振幅的平方成正比,故由(4)式得出: I=A 2sin 22aSin 2δ/2式中A 为入射光的振幅,a 是晶片内振动方向与起偏镜方向的夹角。

相关文档
最新文档