氢原子能级图
对氢原子能级图的理解与应用
对氢原子能级图的理解与应用作者:沈燕来源:《中学生数理化·学习研究》2016年第05期一、能级图及相关量意义的说明如图1所示的氢原子能级图,大家应充分理解能级图中的参量及其意义。
图1(1)能级图中的横线,表示氢原子可能的能量状态——定态;(2)横线左端的数字“1,2,3,…”,表示量子数;(3)横线右端的数字“-13.6,-3.4,…”,表示氢原子的能量;(4)相邻横线间的距离表示相邻的能量差,量子数越大相邻的能量差越小,距离越小;(5)带箭头的竖线表示原子由较高能级向较低能级跃迁。
原子跃迁条件为hν=Em-En;(6)利用能级图可以采用“穷举法”求解一群氢原子发生跃迁时谱线的条数:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加。
公式:N=C2n=n(n-1)2。
二、氢原子能级图的应用例1(多选)(2014·山东高考)氢原子能级如图2,图2当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656nm。
以下判断正确的是()。
A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656nmB.用波长为325nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长为633nm的光照射,不能使氢原子从n=2跃迁到n=3的能级解析:根据氢原子的能级图和能级跃迁规律,当氢原子从n=2能级跃迁到n=1的能级时,辐射光的波长一定小于656nm,A项错误;根据发生跃迁只能吸收和辐射一定频率的光子,可知B项错误,D项正确;一群处于n=3能级上的氢原子向低能级跃迁时可以产生3种频率的光子,C项正确。
本题选CD。
例2(2015·浙江自选模块)玻尔氢原子模型成功解释了氢原子光谱的实验规律,氢原子能级图如图3所示。
当氢原子从n=4的能级跃迁到n=2的能级时,辐射出频率为Hz的光子,用该频率的光照射逸出功为2.25eV的钾表面,产生的光电子的最大初动能为eV。
高二下学期物理人教版选择性必修第三册课件:4.4玻尔理论对氢光谱的解释 氢原子能级跃迁(第2课时)
3.一个氢原子跃迁和一群氢原子跃迁的区别
(1)一个氢原子跃迁的情况分析
①确定氢原子所处的能级,画出能级图.
②根据跃迁原理,画出氢原子向低能级跃迁的可能情况示意图.
例如:一个氢原子最初处于n=4激发态,它向低能
级跃迁时,有4种可能情况,如图6,情形Ⅰ中只有
一种频率的光子,其他情形为:情形Ⅱ中两种,情
解析 从高能级向n=3能级跃迁时发出的光的频率最大为1. 解析 氢原子由高能级向低能级跃迁时,能级差越大,对应的光子的能量越高,频率越大,波长越短.
氢原子能级图(如图3所示)
①确定4氢.原光子所子处的的能级,吸画出收能级:图. 原子只能吸收一些特定频率的光子,原子吸收光子后会从
较低能级向较高能级跃迁,吸收光子的能量仍满足hν=Em-En(m>n).
例2 (多选)氢原子的能级图如图7所示,欲使处于基态的氢原子跃迁,
下列措施可行的是
√A.用10.2 eV的光子照射
B.用11 eV的光子照射
√C.用12.09 eV的光子照射 √D.用12.75 eV的光子照射
图7
解析 由玻尔理论的跃迁假设可知,氢原子在各能级 间跃迁,只能吸收能量值刚好等于两能级能量差的光 子.由氢原子能级关系不难算出,10.2 eV刚好为氢原 子n=1和n=2的两能级能量差,而11 eV则不是氢原 子基态和任一激发态的能量差,因而氢原子能吸收前 者被激发,而不能吸收后者,故A正确,B错误; 同理可知C、D正确.
迁时可辐射C24 =6种不同频率的光子,故B正确;
E4跃迁到E2时产生的光子a的能量为2.55 eV,E5跃迁到E3时产生的光子b 的能量为0.97 eV,光子a与光子b的能量之比为255∶97,故D错误.
针对训练 (多选)(2020·宁夏市长庆高中高二期中)如图5所示,一群处于
高考物理专题复习:氢原子光谱和波尔的原子模型
高考物理专题复习:氢原子光谱和波尔的原子模型一、单选题1.氢原子的能级图如图所示。
如果大量氢原子处于n=3能级的激发态,则下列说法正确的是()A.这群氢原子只可能辐射1种频率的光子B.氢原子从n=3能级跃迁到n=1能级,辐射光子的波长最长C.这群氢原子辐射光子的最小能量为1.89eVD.处于n=3能级的氢原子至少需吸收13.6eV能量的光子才能电离n 激发态的氢原子跃迁到n=1基态过程中,下面说法正确的是()。
2.大量处于3A.可能放出能量为13.6eV的光子B.可能检测到4种频率不同的光子C.核外电子的电势能一定减少D.核外电子的动能一定减少3.处于激发状态的原子,在入射光的电磁场的影响下,从高能态向低能态跃迁,两个状态之间的能量差以辐射光子的形式发射出去,这种辐射叫做受激辐射。
原子发生受激辐射时,发出的光子频率、发射方向等都跟入射光子完全一样,这样使光得到加强,这就是激光产生的机理。
那么,发生受激辐射时,产生激光的原子的总能量E、电势能E p、电子动能E k的变化情况是()A.E p增大、E k减小,E减小B.E p减小、E k增大,E减小C.E p增大、E k增大,E增大D.E p减小、E k增大,E不变ν的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为4.用频率为1ν、2ν和3ν的三条谱线,且321ννν>>,则( )A . 01νν<B . 321ννν=+C . 0123νννν=++D .123111ννν=+5.图中画出了氢原子的4个能级,并注明了相应的能量E 。
处在n =3能级的一群氢原子向低能级跃迁时,能够发出几种不同频率的光波。
( )A .两种B .三种C .四种D .五种6.如图,大量处于4n =能级的氢原子向低能级跃迁辐射出光子,已知可见光光子能量在1.64eV ~3.19eV 范围内,则氢原子在向低能级跃迁的过程中,放出几种频率的可见光( )A .2B .3C .6D .157.如图所示为氢原子能级结构示意图,下列说法正确的是( )A .一群处于5n =能级的氢原子在向低能量状态跃迁时最多可以发出10种不同频率的光B .氢原子光谱是连续谱C .处于1n =能级的氢原子可以吸收能量为12eV 的光子跃迁到高能级D .氢原子的电离能为13.6eV -8.如图所示为氢原子能级图,A 、B 、C 分别表示电子处于三种不同能级跃迁时放出的光子,其中( )A .频率最高的是B B .波长最短的是C C .频率最高的是AD .波长最长的是B 二、多选题9.如图为氢原子的能级示意图,一群氢原子处于3n =的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49eV 的金属钠,下列说法正确的是( )A .这群氢原子能发出3种频率不同的光,其中从3n =跃迁到2n =所发出的光波长最长B .这样氢原子能发出3种频率不同的光,其中从3n =跃迁到1n =所发出的光频率最小C .金属钠表面所发出的光电子的最大初动能为11.1leVD .金属钠表面所发出的光电子的最大初动能为9.60eV10.氢原子的能级图如图甲所示,一群处于第4能级的氢原子,向低能级跃迁过程中能发出6种不同频率的光,其中只有频率为a ν、b ν的两种光可让图乙所示的光电管阴极K 发生光电效应.分别用频率为a ν、b ν的两种光照射光电管阴极K ,测得电流随电压变化的图像如图丙所示.下列说法中正确的是()A.图丙中的图线b所表示的光的光子能量为12.09eVB.图乙研究阴极K的遏止电压与照射光频率关系时,电源左侧为负极C.处于第4能级的氢原子可以吸收一个能量为0.95eV的光子并电离D.用图丙中的图线a所表示的光照射阴极K时,光电子的最大初动能比用图线b所表示的光照射时小11.如图所示是根据玻尔原子模型求得的氢原子能级图,下列说法正确的是()A.氢原子从高能级向低能级跃迁时,可能辐射出γ射线n=能级的氢原子发生电离B.能量为5eV的光子可使处于2n=能级的氢原子向低能级跃迁时,最多可辐射出3种频率的光子C.一个处于3n=能级跃迁到基态时释放的光子,可使逸出功为4.54eV的金属钨发生光电D.氢原子从3效应,产生的光电子最大初动能为7.55eV12.如图所示,一群处于基态的氢原子吸收某种光子后,向外辐射ν1、ν2、ν3三种频率的光子,且ν1>ν2>ν3,则()A .被氢原子吸收的光子的能量为hν1B .被氢原子吸收的光子的能量为hν2C .ν2=ν1+ν3D .hν1=hν2+hν3 三、填空题13.氢原子光谱的实验规律(1)许多情况下光是由原子内部电子的运动产生的,因此光谱是探索_______的一条重要途径。
氢原子的能级解析及经典例题
氢原子的能级:1、氢原子的能级图2ﻫﻫ、光子的发射和吸收①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。
ﻫ②原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的频率为ν,:hυ=E m-E n。
ﻫ③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。
④原子处于第n能级时,可能观测到的不同波长种类N为:。
ﻫ⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量En=E Kn+E Pn。
轨道越低,电子的动能越大,但势能更小,原子的能量变小。
电子的动能:,r越小,E K越大。
⑥电离:就是从外部给电子以能量,使其从基态或激发态脱离原子核的束缚而成为自由电子。
例1.对于基态氢原子,下列说法正确的是( )ﻫ A.它能吸收12.09ev的光子ﻫB.它能吸收11ev的光子C.它能吸收13.6ev的光子ﻫD.它能吸收具有11ev动能的电子部分能量A、基态的氢原子吸收12.09eV光子,能量为-13.6+12.09eV=-1.51eV,可以从基态氢原子发生跃迁到n=3能级,故A正确;ﻫB、基态的氢原子吸收11eV光子,能量为-13.6+11e V=-2.6eV,不能发生跃迁,所以该光子不能被吸收.故B错误;C、基态的氢原子吸收13.6eV光子,能量为-13.6+13.6eV=0,发生电离,故C正确;D、与11eV电子碰撞,基态的氢原子吸收的能量可能为10.2eV,所以能从n=1能级跃迁到n=2能级,故D正确;ﻫ故选:ACD例2.氢原子的能级图如图所示.欲使一处于基态的氢原子释放出一个电子而变成氢离子,该氢原子需要吸收的能量至少是( )A.13.60eVB.10.20eVC.0.54eV D.27.20eV例3.氢原子的部分能级如图所示,下列说法正确的是()ﻫﻫA.大量处于n=5能级氢原子向低能级跃迁时,可能发出10种不同频率的光ﻫB.大量处于n=4能级的氢原子向低能级跃迁时,可能发出的最长波长的光是由n=4直接跃到n=1的结果ﻫC.大量处于n=3能级的氢原子向低能级跃迁时,可能发出的不同频率的光中最多有3种能使逸出功为2.23ev的钾发射光电子ﻫ D.处于基态的氢原子可以吸收能量为10.5ev的光子而被激发A、根据C52==10知,这些氢原子可能辐射出10种不同频率的光子.故A正确;B、氢原子由n=4向n=1能级跃迁时辐射的光子能量最大,频率最大,波长最短,故B错误;C、氢原子由n=3能级的氢原子向低能级跃迁时,n=3→n=1辐射的光子能量为13.6-1.51eV=12.09eV,n=3→n=2辐射的光子能量为3.40-1.51=1.89eV,n=2→n=1辐射的光子能量为13.6-3.40=10.20eV,1.89<2.23不能发生光电效应,故有两种光能使逸出功为2.23ev的钾发射光电子,故C错误;D、只能吸收光子能量等于两能级间的能级差的光子,n=1→n=2吸收的光子能量为13.6-3.40=10.20eV,n=1→n=3吸收的光子能量为13.6-1.51eV=12.09eV,故能量为10.5ev的光子不能被吸收,故D错误.故选:A.例4.如图为氢原子能级示意图的一部分,已知普朗克常量h=6.63×10-34J·s,则氢原子( )A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长B.从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度大C.一束光子能量为12.09eV的单色光照射到大量处于基态的氢原子上,受激的氢原子能自发地发出3种不同频率的光,且发光频率的最大值约为2.9×1015HzD.一束光子能量为15eV的单色光照射到大量处于基态的氢原子上,能够使氢原子核外电子电离试题分析:从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的能量要小,因此根据可知,因此A说法正确;从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度一样都是光速,B错。
13-06氢原子能级及能级跃迁
相邻横线间 的距离
带箭头的竖线
返回目录
结束放映
数字媒体资源库
2.定态间的跃迁——满足能级差. n小→n大吸收能量 hν=En大-En小. n大→n小放出能量 hν=En大-En小.
吸收一 定频率 的光子
释放 一定 频率 光子
3.电离 电离态与电离能 (1)电离态:n=∞,E=0 基态→电离态:E吸=0-(-13.6 eV)=13.6 eV电离能. n=2→电离态:E吸=0-E2=3.4 eV (2)如吸收能量足够大,克服电离能后,获得自由的电子还携带 动能.
第12页
返回目录
结束放映
数字媒体资源库
【典例2】 [2013· 江苏单科,12C(2)]根据
玻尔原子结构理论,氦离子(He+)的能级图
如图所示.电子处在n=3轨道上比处在n= 近 选填“近” 5轨道上离氦核的距离_____( 或“远”).当大量He+处在n=4的激发态 6 条. 时,由于跃迁所发射的谱线有_____
1 1 1 =R22-n2 ,(n=3,4,5,…), λ
R是里德伯常量,R=1.10×107 m-1,n为量子数.
第4页
返回目录
结束放映
数字媒体资源库
2.玻尔理论 (1)定态:原子只能处于一系列________ 不连续 的能量状态中,在这些 能量状态中原子是______ 稳定 的,电子虽然绕核运动,但并不向外 辐射能量. (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收 一定频率的光子,光子的能量由这两个定态的能量差决定,即 Em-En h是普朗克常量,h=6.63×10-34 J· hν=________.( s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运 动相对应.原子的定态是_________ 不连续 的, 不连续 的. 因此电子的可能轨道也是________
玻尔的氢原子理论
玻尔的氢原子理论
为此,J.汤姆孙在1904年提出了原子结构的枣糕式模型.该模型认 为,原子可以看作一个球体,原子的正电荷和质量均匀分布在球内, 电子则一颗一颗地镶嵌其中.1909年,J.汤姆孙的学生卢瑟福为了验证 原子结构的枣糕式模型,完成了著名的α粒子散射实验.实验发现α粒 子在轰击金箔时,绝大多数α粒子都穿透金箔,方向也几乎不变,但 是大约有1/8 000的α粒子会发生大角度偏转,即被反弹回来.这样的 实验结果是枣糕式模型根本无法解释的,因为如果说金箔中的金原子 都是枣糕式的结构,那么整个金箔上各点的性质应该近乎均匀,α粒 子轰击上去,要么全部透射过去,要么全部反弹回来,而不可能是一 些穿透过去,一些反弹回来.
玻尔的氢原子理论
二、 原子结构模型
1897年,J.汤姆孙发现了电子.在此之前,原 子被认为是物质结构的最小单元,是不可分的,可 是电子的发现却表明原子中包含带负电的电子.那 么,原子中必然还有带正电的部分,这就说明原子 是可分的,是有内部结构的.执着的科学家就会继 续追问:原子的内部结构是什么样的?简洁的里德 伯光谱公式是不是氢原子内部结构的外在表现?
玻尔的氢原子理论
三、 玻尔的三点基本假设
为了解决原子结构有核模型的稳定性和氢原子光谱的分 立性问题,玻尔提出以下三个假设:
(1)定态假设.原子中的电子绕着原子核做圆周运动, 但是只能沿着一系列特定的轨道运动,而不能够任意转动, 当电子在这些轨道运动时,不向外辐射电磁波,原子系统处 于稳定状态,具有一定的能量.不同的轨道,具有不同的能 量,按照从小到大的顺序记为E1、E2、E3等.
玻尔的氢原子理论
可是这个模型却遭到很多物理学家的质疑.因为按照当时的物 理理论(包括经典力学、经典电磁理论及热力学统计物理),这 样一个模型是根本不可能的,原因有以下两个:
氢原子光谱ppt课件
03
氢原子光谱实验观测与分析
氢原子光谱实验装置介绍
光源
氢原子灯或放电管,产生氢原子 光谱。
单色仪
将复合光分解为单色光,并可选 择特定波长的光通过。
光探测器
如光电倍增管或CCD,将光信号 转换为电信号进行记录和分析。
数据采集与处理系统
对实验数据进行采集、处理和分 析,得出实验结果。
氢原子光谱观测方法
氢原子光谱研究挑战与机遇
实验技术挑战
01
尽管精密测量技术取得了显著进展,但进一步提高测量精度仍
面临诸多挑战,如如何消除系统误差、提高信噪比等。
理论模型挑战
02
现有理论模型在描述某些复杂现象时仍存在一定局限性,需要
进一步完善和发展。
交叉学科机遇
03
氢原子光谱研究与粒子物理、宇宙学等领域密切相关,这些领
04
氢原子光谱理论解释与应用
薛定谔方程与波函数概念
薛定谔方程
描述了微观粒子状态随时间变化 的规律,是量子力学的基本方程
之一。
波函数
量子力学中用来描述粒子状态的函 数,其模平方表示粒子在特定位置 被发现的概率。
量子数
描述原子或分子中电子运动状态的 参数,如主量子数、角量子数等。
氢原子光谱理论解释
玻尔模型
玻尔提出的氢原子模型,假设电子在 特定轨道上运动,且能量是量子化的。
能量级与光谱线
选择定则
解释了为何只有特定能级间的跃迁才 会产生光谱线,如偶极跃迁选择定则 等。
氢原子光谱由一系列分立的谱线组成, 对应着电子在不同能级间的跃迁。
氢原子光谱在物理、化学等领域应用
01
02
03
04
原子钟
利用氢原子光谱的稳定性和精 确性,制成高精度原子钟,用
氢原子光谱
在光谱上表现为谱线的分裂和位移,可通过高分辨率光谱仪 进行观测。
氢原子光谱超精细结构探讨
超精细结构成因
在精细结构的基础上,由于原子核自旋与电子总角动量的耦合,导致能级进一步分裂。
超精细结构特点
在光谱上表现为谱线的更细微分裂和位移,需要更高精度的观测手段进行探测。
总结
氢原子光谱是量子力学和原子物理领域的重要研究对象,其性质和特点包括多个线系、精 细结构和超精细结构等。通过对氢原子光谱的深入研究,可以揭示原子内部结构和能级分 布的奥秘,为现代物理学的发展提供重要支撑。
02
氢原子光谱实验方法
氢原子光谱实验装置
光源
提供足够能量的光源,如钨丝 灯或激光器,以激发氢原子。
分光仪
将光源发出的光分成不同波长 的光谱。
探测器
用于检测分光后各波长光的强 度,如光电倍增管或CCD。
数据采集与处理系统
记录并处理实验数据,如计算 机和专用软件。
氢原子光谱实验步骤
1. 准备实验装置
量子力学对氢原子光谱解释
波函数与概率密度
量子力学用波函数描述电子状态,波函数的模平方表示电子在空间 中出现的概率密度。
能级与跃迁
量子力学中的能级概念与玻尔理论相似,但更为精确。电子在不同 能级间跃迁时,同样会发射或吸收光子。
选择定则
量子力学中的选择定则规定了哪些能级间的跃迁是允许的,从而解释 了氢原子光谱的特定结构。
氢原子光谱研究前景展望
• 高精度测量技术的发展:随着实验技术的不断进步,未来有望实现更高精度的氢原子光谱测量,从而更深入地 揭示原子结构和相互作用的奥秘。
• 新理论模型的探索:尽管现有的理论模型能够很好地解释氢原子光谱,但仍存在一些尚未解决的问题,如高阶 效应的处理、相对论和量子电动力学的结合等。未来有望通过发展新的理论模型,更准确地描述氢原子光谱。
氢原子能级的精细结构氢原子精细结构能级
En
3 2
1
3d 3p 3s
3d 3p 3s
0.036
0.018 cm-1
0.108 cm-1
cm-132D 32P5/2,
3/2
32D 3/2
32S1/2,
32P 1/2
2p
2p 2s
0.091 cm-1 0.365 cm-1
2222PS13//22,
§3.3 氢原子能级的精细结构—Lamb移位
反常磁矩
1948年,库什(P. Kusch)和弗利(H.M. Foley)发现 了电子的反常磁矩。
利用拉比(I.I Rabi)发展起来的原子束磁共振实验 技术,精密测量了电子的自旋磁矩。
Dirac理论: µsz = −gsms µB = µB Kusch实验: µsz ≈ 1.00119 ± 0.00005µB
§3.3 氢原子能级的精细结构—Lamb移位
从2S1/2跃迁到2P3/2的频率理论值是10950MHz 实验的值小了1000MHz
直接实验测得原子从2S1/2跃迁到2P1/2的频率是 1058MHz,即0.0353cm-1 ,与S. Pasternak的建议 一致.
1057.77 ± 0.10 MHZ
n=3
32S1/2
(a)
0.091 cm-1
0.365 cm-1
22P3/2 22S1/2 , 22P1/2
(f)
n=2
(e) (d)
22S1/2
∆ν
32P 32P31//22
(c) (b) (g)
22P 3/2 22P1/2
3322DD5/2 3/2
n=1
1.46 cm-1
原子的能级结构
C.从n=4能级跃迁到n=1能级放出的光子频率 最大
D.从n=4能级跃迁到n=3能级放出的光子波长 等于从n=2能级跃迁到n=1能级放出的光子波长
7.如图所示为氢原子的能级图,现让一束单色 光照射到大量处于基态(量子数n=1)的氢原 子上,受激的氢原子能自发地发出3种不同频 率的光,则照射氢原子的单色光的光子能量
C.氢原子光谱说明氢原子能级是分立的
D.氢原子光谱的频率与氢原子能级的能量 差无关
4.用光子能量为E的单色光照射容器中处于
基态的氢原子。停止照射后,发现该容器内
的氢能够释放出三种不同频率的光子,它们
的频率由低到高依次为ν1、ν2、ν3,由此 可知,开始用来照射容器的单色光的光子能
量可以表示为
A. hν1;
在解决核外电子的运动时 成功引入了量子化的观念
同时又应用了“粒子、 轨道”等经典概念和 有关牛顿力学规律
除了氢原子光谱外,在解决其他 问题上遇到了很大的困难.
氦原子光谱
牛顿力学只适用于低速运动(相对于光速) 的宏观物体,对于微观粒子的运动,牛顿
力学不适用了。
二.氢原子的能级:
1.氢原子可能的轨道:
B. hν3;
C. h(ν1+ν2); D. h(ν1+ν2+ν3)
答案:BC
5.在氢原子光谱中,电子从较高能级跃迁到n =2能级发出的谱线属于巴耳末线系.若一群 氢原子自发跃过时发出的谱线中只有2条属于 巴耳末线系,则这群氢原子自发跃迁时最多 可发生 6 条不同频率的谱线.
6.大量氢原子处于n=4的激发态,当它们向各较 低能级跃迁时,对于多种可能的跃迁,下面说法 中正确的是 ( C) A.最多只能放出4种不同频率的光子
高三物理原子能级试题答案及解析
高三物理原子能级试题答案及解析1.已知金属钙的逸出功为2.7eV,氢原子的能级图如图所示.一群氢原子处于量子数n = 4的能级状态,下列说法中正确的是A.氢原子最多可能辐射4种频率的光子B.有3种频率的辐射光子能使钙发生光电效应C.辐射光子中都不能使钙发生光电效应D.处于基态的氢原子能够吸收能量为11 eV的光子向高能级跃迁【答案】B【解析】根据知,这群氢原子可能辐射6种频率的光子,A错误;n=4跃迁到n=3辐射的光子能量为0.66eV,n=3跃迁到n=2辐射的光子能量为1.89eV,n=4跃迁到n=2辐射的光子能量为2.55eV,均小于逸出功,不能发生光电效应,其余3种光子能量均大于2.7eV,所以这群氢原子辐射的光中有3种频率的光子能使钙发生光电效应,B正确,C错误;基态的氢原子吸收11ev光子,能量为-13.61+11eV=-2.61eV,不能发生跃迁,D错误【考点】考查了原子跃迁2.(6分)已知氢原子基态电子轨道半径为r0=0.528×10-10 m,量子数为n的激发态的能量En=eV.求:(1)电子在基态轨道上运动的动能;(2)计算这几条光谱线中波长最短的一条光谱线的波长.(k=9.0×109 N·m2/C2,e=1.60×10-19C,h=6.63×10-34 J)【答案】(1) 3.6 eV(2) 1.03×10-7 m【解析】(1)库仑力提供向心力,则有=,则=,代入数据得电子在基态轨道上运动的动能为13.6 eV.(2)波长最短的光频率最高、能量最大,对应处于n=3的激发态的氢原子向n=1能级跃迁所发出光的光谱线.将能量单位“eV”换算成国际单位“J”后得:λ= =1.03×10-7 m.本题考查电子的跃迁,由库仑力提供向心力可求得电子运动的速度大小,从而求得电子动能大小,波长最短的光频率最高、能量最大,对应处于n=3的激发态的氢原子向n=1能级跃迁所发出光的光谱线,释放光电子的能量等于两能极差,由此可求得光的波长3.(8分)如图所示,相距为d的两平行金属板A、B足够大,板间电压恒为U,有一波长为的细激光束照射到B板上,使B板发生光电效应,已知普朗克常量为h,金属板B的逸出功为W,电子质量为m,电荷量e,求:(1)从B板逸出电子的最大初动能。
原子物理学第二章 氢原子的光谱与能级
与RH(理论值)=109737.31cm-1相比,理论值偏
大?
(后来发现与原子核质量有关.)
♣先前假定M>>m,(M~∞)→所以认为原子核不动,电 子绕核旋转;实际M并非无限大,故核与电子是作双 体运动.而解双体运动的方法是将其分解为质心运动 与相对运动两部分:
★两体问题:
M&r&2 F12 F21 (1’)
4 0r 3
♣由上式可知,随着电子轨道r逐渐减小 时,电子运动园频率ω将逐渐增大,导致 光发射频率连续增大,故氢原子光谱应 为连续谱.
三、波尔氢原子模型:
1、波尔假设:
(a) 定态假设:电子处于某些能量状态 时是稳定的,不发生辐射,这些状态称原子的 定态.
(b) 跃迁假设:原子从一种定态跃迁到 另一种定态时,将发射电磁波,其频率为:
109737.31cm1
♣同时可知光谱项为:
T (m)
RH
1 m2
Em hc
,
T (n)
RH
(1 n2
)
En hc
♣由上式又可得:
Em hcRH m2 , En hcRH n2
♣结果: RH的理论值: RH的实验值:
RH=109737.31Cm-1 RH=109677.58cm-1
hvm,n En Em
·由上式可知:
v%
1
m ,n
vm ,n c
1 hc
(En
Em )
♣将能量公式(★★)代入上式,即得:
2 2me4 1 1
v% (40 )2 h3c n2 m2
♣与经验公式(a)相比较,可知:
原子物理能级练习
1、如图4所示为氢原子的能级图,若氢原子处于n=2的激发态,则当它发光时,放出的光子能量应当时()A 、13.6eVB 、12.75eVC 、10.20eVD 、1.89eV2:根据玻尔理论,在氢原子中,量子数n 越大,则()A 、电子轨道半径越小B 、核外电子运动速度越大C 、原子能量越大D 、电势能越小3:一个处于量子数n=3的激发态氢原子向低能级跃迁时,可能发出的光谱线条数最多为__________。
4:已知氢原子基态能量为-13.6eV ,第二能级E 2=-3.4eV ,如果氢原子吸收_________eV 能量,可由基态跃迁到第二能级。
如果再吸收1.89eV 能量,还可由第二能级跃迁到第三能级,则氢原子的第三能级E 3=_________eV 。
5A :一群处于基态的氢原子在单色光的照射下只发出频率为123、、γγγ的三种光,且123γγγ<<,则照射光的光子能量为()A 、1h γB 、2h γC 、3h γD 、123()h γγγ++5B:一群处于激发态2的氢原子在单色光的照射下只发出6种频率光,且1υ<2υ<3υ<4υ<5υ<6υ,则照射光的光子的频率为()A:5υB:2υC:4υD:3υ6:处于激发态A 的氢原子辐射频率为γ1的光后跃迁到激发态B ,处于激发态B的氢原子吸收频率为γ2的光后跃迁到激发态C ,γ1>γ2,求:处于激发态A 的氢原子跃迁到激发态C 时(填:“吸收”“辐射”)光子,该光的频率为。
7:处于激发态A 的氢原子吸收波长为λ1的光后跃迁到激发态B ,处于激发态B的氢原子辐射波长为λ2的光后跃迁到激发态C ,λ1>λ2,求:处于激发态A 的氢原子跃迁到激发态C 时(填:“吸收”“辐射”)光子,该光的波长为。
8、下列措施可使处于基态的氢原子激发的方法是()A 、用10.2eV 的光子照射B 、用12eV 的光子照射C 、用14eV 的光子照射D 、用15eV 的电子碰撞E:用10.2eV 的电子照射23:图示为氢原子的能级图,用光子能量为13.06eV的光照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长的光有多少种?[]A.15B.10C.4D.19、氢原子辐射一个光子后,根据玻尔理论,下列的说法中正确的是()A 、电子运动半径增大B 、氢原子的能级增大C 、氢原子的电势能增大D 、电子的动能增大10、依据玻尔氢原子模型,下列说法中正确的是()A 、电子绕核运动的轨道半径是任意的B 、原子只能处于一系列不连续的能量状态中C 、电子运行的轨道半径越小,对应的定态能量就越小D 、电子在各个轨道上可以随意变轨移动11、如图所示为氢原子的能图,⑴:当氢原子从3n =跃迁到2n =时要(填“吸收或放出”)光子,光子波长为Hz ;⑵:有一群处于4n =的氢原子,它可能释放出种频率的光子;⑶用Hz 的光子照射时才能使处于基态的氢原子电离。
物理一轮复习 专题51 原子与原子核(讲)(含解析)
专题51 原子与原子核1.知道两种原子结构模型,会用玻尔理论解释氢原子光谱.2。
掌握氢原子的能级公式并能结合能级图求解原子的跃迁问题.3.掌握原子核的衰变、半衰期等知识。
4.会书写核反应方程,并能根据质能方程求解核能问题.一、氢原子光谱、氢原子的能级、能级公式1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:19091911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞"了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.2.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式错误!=R错误!,(n=3,4,5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.63×10-34J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式(1)氢原子的能级能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=错误!E1 (n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m。
氢原子光谱与能级结构
3 光谱分析
二、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。
气体放电管:玻璃管中的稀薄气体的分子在强 电场的作用下会电离,成为自由移动的正负电 荷,于是气体变成导体,导电时会发光。这样 的装置叫做气体放电管。
1885年,巴耳末对当时已知的,在可见光 区的14条谱线作了分析,发现这些谱线的 波长可以用一个公式表示:
除了巴耳末系,后来发现的氢光谱在红外 和紫个光区的其它谱线也都满足与巴耳末 公式类似的关系式。
其他谱系
巴尔末公式有正整数n出现,这里我们也用正整数n来标志
氢原子的能级。它们之间是否有某种关系?
1 1 1 巴尔末公式: R λ 22 n 2
氢 原 子 能 级 跃 迁 与 光 谱 图
轨道及转动频率不断变化,辐射电 磁波频率也是连续的, 原子光谱应 是连续的光谱。而实际上看到的是 分立的线状谱。
这些矛盾说明尽管经典物理学理论可 以很好地应用宏观物休,但它不能解 释原子世界的现象,引入新观念是必 要的。
光子
谢
谢
② 明线光谱
A 只含有一些不连续的亮线的光谱叫做明线光 谱。 明线光谱中的亮线叫谱线,各条谱线对应不同波 长的光。 B 稀薄气体或金属的蒸气的发射光谱是明线光谱。 C 各种原子的发射光谱都是线状谱,说明原子只 能发出几种特定频率的光。不同原子的亮线位置 不同,说明不同原子的发光频率是不一样的,因 此这些亮线称为原子的特征谱线。
(1)定义:物体发光直接产生的光谱叫做发射光谱。
(2)分类:发射光谱可分类:连续光谱和明线光谱。
①连续光谱 A 由波长连续分布的光组成的连在一起的光带叫连 续光谱。 特点:光谱看起来不是一条条分立的谱线,而是 连在一起的光带。 即连续分布的包含有从红光 到紫光各种色光的光谱。 B 炽热的固体、液体和高压气体的发射光谱是连续 光谱。 例如白炽灯丝发出的光、烛焰、炽热的钢水发出 的光都形成连续光谱。
氢原子能级
一、选择题1.〔09·全国卷Ⅰ·16〕 氦氖激光器能产生三种波长的激光,其中两种波长分别为1λµm ,2λµm ,已知波长为1λ的激光是氖原子在能级间隔为1E ∆=1.96eV 的两个能级之间跃迁产生的。
用2E ∆表示产生波长为2λ的激光所对应的跃迁的能级间隔,则2E ∆的近似值为 〔 〕解析λυυch E ==∆,,可知当,6328.0,196m ev E μλ==∆当m μλ39.3=时,连立可知ev E 36.02=∆。
2.〔09·全国卷Ⅱ·18〕氢原子的部分能级如下图。
已知可见光的光子能量在1.62eV 到3.11eV 之间。
由此可推知, 氢原子 〔 〕 A. 从高能级向n=1能级跃迁时了出的光的波长比可见光的短 B. 从高能级向n=2能级跃迁时发出的光均为可见光 C. 从高能级向n=3能级跃迁时发出的光的频率比可见光的高 D. 从n=3能级向n=2能级跃迁时发出的光为可见光解析:此题考查玻尔的原理理论. 从高能级向n=1的能级跃迁的过程中辐射出的最小光子能量为9.20ev,不在1.62eV 到3.11eV 之间,A 正确.已知可见光子能量在1.62eV 到3.11eV 之间从高能级向n=2能级跃迁时发出的光的能量≤3.40ev ,B 错. 从高能级向n=3能级跃迁时发出的光的频率只有能量大于3.11ev 的光的频率才比可见光高,C 错.从n=3到n=2的过程中释放的光的能量等于1.89ev 介于1.62到3.11之间,所以是可见光D 对。
3.〔09·四川·18〕氢原子能级的示意图如下图,大量氢原子从n =4的能级向n =2的能级跃迁时辐射出可见光a ,从n =3的能级向n =2的能级跃迁时辐射出可见光b ,则 〔 〕γ射线B.氢原子从n =4的能级向n =3的能级跃迁时会辐射出紫外线C.在水中传播时,a 光较b 光的速度小D.氢原子在n =2的能级时可吸收任意频率的光而发生电离4.〔2008·广东物理·6)有关氢原子光谱的说法正确的选项是 〔 〕A .氢原子的发射光谱是连续谱B .氢原子光谱说明氢原子只发出特点频率的光C .氢原子光谱说明氢原子能级是分立的D .氢原子光谱线的频率与氢原子能级的能量差无关5.〔2008·山东理综·1)在氢原子光谱中,电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系。
2021年高中物理选修三第四章《原子结构和波粒二象性》基础卷(答案解析)(1)
一、选择题1.如图所示为氢原子能级图,大量处于基态的氢原子吸收某种频率的光子后,跃迁到3n =能级,再从3n =回到1n =能级,则下列说法正确的是( )A .基态氢原子吸收的光子能量为1.51eVB .大量氢原子从3n =跃迁到1n =能级,可释放两种不同频率的光子C .释放的光子能量最小为1.89eVD .氢原子从3n =跃迁到1n =能级,氢原子的能量减小,电势能增大2.大量处于4n =能级的氢原子辐射出多条谱线,其中最长和最短波长分别为1λ和2λ。
已知普朗克常量为h ,光速为c 。
则4n =能级与3n =能级的能量差为( ) A .1hc λ B .2hc λ C .1212()hc λλλλ+ D .1212()hc λλλλ-3.如图,是氢原子的能级图,各能级能量关系为12n E E n =,其中E 1为基态能量,n 为量子数。
当原子从5n =能级跃迁到3n =能级时,释放出的一个光子能量为E ,下列说法正确的是( )A .一个处于5n =的氢原子向低能级跃迁时,最多能辐射出10种不同频率的光子B .从5n =能级向低能级跃迁,跃迁到4n =能级辐射的光波长最短C .处于3n =的氢原子跃迁到基态吸收光子能量为12.5ED .某金属的逸出功为E ,用4n =跃迁到2n =辐射的光子照射该金属,逸出光电子的最大初动能为419256E 4.如图,当电键K 断开时,用光子能量为2.5eV 的一束光照射阴极P ,发现电流表读数不为零。
合上电键,调节滑线变阻器,发现当电压表读数小于0.60V 时,电流表读数仍不为零;当电压表读数大于或等于0.60V 时,电流表读数为零。
由此可知阴极材料的逸出功为( )A .1.9eVB .0.6eVC .2.5eVD .3.1eV5.如图所示为氢原子的能级示意图,对于处于n =4激发态的一群氢原子来说,则( )A .由n =2跃迁到n =1时发出光子的能量最大B .由较高能级跃迁到较低能级,电子轨道半径减小,动能增大C .当氢原子自发向低能级跃迁时,可发出3种光谱线D .由n =4跃迁到n =1发出光子频率是n =4跃迁到n =2发出的光子频率的6倍6.分别用波长为λ和34λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:2,以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为( ) A .12hc λ B .23hc λ C .34hc λ D .45h cλ 7.氦原子被电离一个核外电子,形成类氢结构的氦离子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氢原子能级图
色光光子红橙黄绿蓝—靛紫
光子能量范围(eV) 1.61~
2.00
2.00~
2.07
2.07~
2.14
2.14~
2.53
2.53~
2.76
2.76~
3.10
处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为() A.红、蓝—靛
B.黄、绿
C.红、紫
D.蓝—靛、紫
2.氦原子被电离出一个核外电子,形成类氢结构的氦离子,
已知基态的氦离子能量为E1=-54.4 eV,氦离子的能级示意图
如图所示,在具有下列能量的光子或者电子中,不能被基态氦
离子吸收而发生跃迁的是()
A.42.8 eV(光子)B.43.2 eV(电子)
C.41.0 eV(电子) D.54.4 eV(光子)
3.(2014·高考山东卷)氢原子能级如图,当氢原子从n=3跃迁到n=
2的能级时,辐射光的波长为656 nm.以下判断正确的是()
A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nm
B.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2
的能级
C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱
线
D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级
答案:
1、解析:选A.根据跃迁假设,发射光子的能量hν=E m-E n.如果激发态的氢原子处于第二能级,能够发出-3.4 eV-(-13.6 eV)=10.2 eV的光子,由表格数据判断出它不属于可见光;如果激发态的氢原子处于第三能级,能够发出12.09 eV、10.2 eV、1.89 eV的三种光子,只有1.89 eV的光属于可见光;如果激发态的氢原子处于第四能级,能够发出12.75 eV、12.09 eV、10.2 eV、2.55 eV、1.89 eV、0.66 eV的六种光子,1.89 eV和2.55 eV的光属于可见光,1.89 eV的光为红光,2.55 eV的光为蓝—靛光,选项A正确.
2、[解析]由于光子能量不可分,因此只有能量恰好等于两能级差的光子才能被氦离子吸收,故选项A中光子不能被吸收,选项D中光子能被吸收;而实物粒子(如电子)只要能量不小于两能级差,均可能被吸收.故选项B、C中的电子均能被吸收.[答案] A
3、[解析]根据氢原子的能级图和能级跃迁规律,当氢原子从n=2能级跃迁到n=1的能级时,辐射光的波长一定小于656 nm,因此A选项错误;根据发生跃迁只能吸收和辐
射一定频率的光子,可知B选项错误,D选项正确;一群处于n=3能级上的氢原子向低能级跃迁时可以产生3种频率的光子,所以C选项正确.
[答案]CD。