电磁学PPT
合集下载
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
《电磁学Maxwell》课件
学的重要性。
5
安培定律
了解安培定律和它在Maxwell方程组中的 作用。
电磁波
1 什么是电磁波
学习电磁波的基本定义、特性,以及电磁波 的传播方式。
2 电磁波的传播规律
探索电磁波如何在空间中传播,以及传播速 度的特点。
3 电磁波的性质
研究电磁波的频率、波长和能量等性质。
4 电磁波的应用
了解电磁波在通信、医学和科学研究等领域 的广泛应用。
《电磁学Maxwell》PPT课 件
让我们一起探索电磁学!本课程将介绍电学基础、磁学基础、Maxwell方程组、 电磁波以及电磁学的实际应用。
电学基础
什么是电学
学习电的基本原理,电荷与 电场的关系,以及静电场的 特性。
电荷与电场
了解电荷的性质,并学习电 荷如何产生电场以及电场的 作用。
电场叠加原理
展望电磁学在未来的科学、技术和社会发展中的潜 力。
探索不同电荷在空间中产生 的电场如何相互叠加。
磁学基础
1 什么是磁学
揭示磁学的基本概念,包括磁场的定义、性 质和作用。
2 磁场
了解磁场是如何由磁物体产生并对其他物体 产生作用的。
3 静磁场
探索静止磁场的特性和行为,以及磁场与电 荷的相互作用。
4 磁场叠加原理
了解多个磁场如何叠加,并研究叠加后磁场 的性质。
应用实例
电动机的工作原理
研究电磁学在电动机中的应用, 以及电动机的工作原理和效率。
带电粒子在磁场中的 运动
探索带电粒子在磁场中的受力 情况和运动轨迹。
电磁辐射的防护技术
了解电磁辐射对人体健康的影 响及相关防护技术。
结束语
总结
总结本课的重点内容,并强调电磁学的重要性和应 用前景。
大学物理《电磁学》PPT课件
2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
↑载流螺线管的磁感应线 ←载流直导线的磁感应线 比较
1 e E dS
S
0
Q
dV
静电场中高斯定理反映静电场是有源场;
m B dS 0
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F F
I
电流与电流之间的相互作用
I F
F
I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束
S N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
磁感应线的疏密反映磁场的强弱。
B
③性质: •磁感应线是无头无尾的闭合曲线,磁场中任 意两条磁感应线不相交。 •磁感应线与电流线铰链 通过无限小面元dS 的磁感应线数目dm与dS 的 比值称为磁感应线密度。我们规定磁场中某点的磁
2
电磁学--第三版--课件
dEx
•
P
a
r
1
2
O x dx
x
由此得
d
Ex
4 π 0a
cos
d
d
Ey
4 π 0a
sin
d
将以上两式对整个带电细棒积分
第一章 静电学的基本规律
电磁学
1-3 电场和电场强度
y
dE dE y
dEx
•
P
ar
1
2
O x dx
x
Ex
4 π0a
2 cos d
1
4
π
0a
(sin
2
sin
1 )
Ey
4 π0a
12
电磁学
1-3 电场和电场强度
电偶极子是一个重要的物理模型,在研究电介质的极化、 电磁波的发射和吸收等问题时,都要用到这个模型。
在均匀外电场中,电偶极子所受 的合力为零,电偶极子在电场中 所受的力矩
M flsin qElsin
PEsin
M PE
+f
f
l
P
E
第一章 静电学的基本规律
F
i 1
i
Fi
E
F
qi 对 q0 的作用
q0
F1 F2 Fn
q0
q1
e1
q2
P
r1
e2 r2
e3
r3
q0
q3
E1 E2 En
第一章 静电学的基本规律
F3 F2 F1
8
电磁学
1-3 电场和电场强度
q1 q2
e1
r1
e2 r2
P
e3
电磁学 全套课件
2、计算
S
均匀电场中,平面 S 的电通量
S与电场强度垂直 e E S
S的法向与电场强度成 角
e E S E S cos E S
S
n
S
非均匀电场中,任意曲面 S 的电通量
在S上任取一小面元dS
de
E
dS
e
S de
当 qi 0 ,e>0,多数电场线从正电荷发出并穿出高斯面,
反之则多数电场线穿入高斯面并终止于负电荷
电场线是不闭合的曲线
----静电场是“有源场 ”
穿过高斯面的电通量只与高斯面内的电荷有关
高斯面上的电场强度与高斯面内外电荷都有关
高斯定理也适用于变化的电场
四、高斯定理应用举例
高斯定理可以用于求解具有高度对称性的带电体系所产生的电 场的场强。
超距的观点: 电荷
电荷
电场的观点: 电荷
场
电荷
近代物理的观点认为:凡是有电荷存在的地方,其周围空间便存 在电场
q1
q2
静电场的主要表现: 力:放入电场中的任何带电体都要受到电场所作用的力---电场力 功:带电体在电场中移动时,电场力对它做功 感应和极化:电场中的导体或介质将分别产生静电感应现象或极化
dx θ1= π -θ2
L q
E
j
j
4 0a 2 4 0a 2
例2、半径为R的均匀带电细圆环,电量为q。求圆环轴线上任 一点的场强。
dE dE
0
R
x
P
r
dEx x
讨论: x>>R时
x =0时
dl
电磁学全套ppt课件
感生电动势
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流
。
电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流
。
电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。
大学物理:电磁学PPT
N F4
O
F2 B
en
M,N F1
O,P B
F2
en
l1 l1 M F1 sin F2 sin Il2 B l1 sin ISB sin 2 2 M IS B m B 线圈有N匝时 m NIS
2 电流元的磁场
dB
P *
I
Idl
0 Idl dB er 2 4 r
——毕奥-萨伐尔定律
r
3
磁场的叠加原理
B Bi
i
B dB
例 1: 判断下列各点磁感强度的方向和大小.
1 8 2Βιβλιοθήκη dB 0 1、 5 点 :
7
Idl
R
6 5 4
例 5:
一半径为R,均匀带电Q的薄球壳。 求球壳内外任意点的电场强 度。
0 r R 如图,过P点做球面S1 E dS E dS 0 E 0
S1 S1
r
P
+ + +
+
S +1
O
如图,过P点做球面S2 rR E dS E dS Q / 0
rB
(electric potential )
点电荷电场 中的电势:
V
Q 40 r
电势的叠加 原理:
V Vi
i
点电荷电场中常取 无穷远处为电势零点
点电荷的电场线和等势面:
两平行带电平板的电场线和等势面:
+ + + + + + + + + + + +
大学物理电磁学总结(精华)ppt课件(2024)
34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
电磁学基本知识ppt课件
S B dS
在匀强磁场中,若磁感应强度B与横截面S垂直, 上式可写为: Ф=BS
穿过任一闭合面的磁通为零,用公式表示为:
S B dS 0
(3) 磁场强度 把用来表达磁场强弱的物理量,称为磁场强度,
用H来表示,单位为安/米(A/m)。磁场强度只与产 生磁场的宏观传导电流大小及导体的形状有关,而与
④ 验证:列出的总方程数应该等于所设的支路电 流的个数。
【例1.7】图1.16所示电路中,已知电源电动势E1=18V, E2=6V;电阻R1=6Ω,R2=R3=3Ω。试用基尔霍夫电流和 电压定律求图中的电流I1、I2、I3 【解】根据基尔霍夫电流定律,对节点A
I1+I2-I3=0
图1.16
I1R1-I2R2=E1-E2 I2R2+I3R3=E2
一个元件或一段电路上既有电压的参考方向, 也有电流的参考方向,如果这两个参考方向一致, 称之为关联参考方向,反之,称为非关联参考方向。 如图1.5所示。
图1.4
图1.5
(3) 电动势 电动势就是反映电源内部电源力(即非电场力)
做功能力的物理量,它的大小反映电源力做功能力 的大小,用E
图1.3
E W Q
(1) 磁感应强度是反映磁场中某一点磁场性质的基本
物理量。用大写字母B表示,它是一个矢量,它的方 向就是置于磁场中该点的小磁针的N极指向,它的大 小等于单位正电荷垂直于磁场方向以单位速度运动时
数学表达式为: B F qv
(2) 穿过某一横截面S的磁感应强度B的通量称为磁通
量,简称磁通,用Φ表示,单位为韦伯(Wb),磁通
是:“在任一瞬间,对电路的任一节点,流入该节
点的电流之和等于流出该节点的电流之和。”其数
在匀强磁场中,若磁感应强度B与横截面S垂直, 上式可写为: Ф=BS
穿过任一闭合面的磁通为零,用公式表示为:
S B dS 0
(3) 磁场强度 把用来表达磁场强弱的物理量,称为磁场强度,
用H来表示,单位为安/米(A/m)。磁场强度只与产 生磁场的宏观传导电流大小及导体的形状有关,而与
④ 验证:列出的总方程数应该等于所设的支路电 流的个数。
【例1.7】图1.16所示电路中,已知电源电动势E1=18V, E2=6V;电阻R1=6Ω,R2=R3=3Ω。试用基尔霍夫电流和 电压定律求图中的电流I1、I2、I3 【解】根据基尔霍夫电流定律,对节点A
I1+I2-I3=0
图1.16
I1R1-I2R2=E1-E2 I2R2+I3R3=E2
一个元件或一段电路上既有电压的参考方向, 也有电流的参考方向,如果这两个参考方向一致, 称之为关联参考方向,反之,称为非关联参考方向。 如图1.5所示。
图1.4
图1.5
(3) 电动势 电动势就是反映电源内部电源力(即非电场力)
做功能力的物理量,它的大小反映电源力做功能力 的大小,用E
图1.3
E W Q
(1) 磁感应强度是反映磁场中某一点磁场性质的基本
物理量。用大写字母B表示,它是一个矢量,它的方 向就是置于磁场中该点的小磁针的N极指向,它的大 小等于单位正电荷垂直于磁场方向以单位速度运动时
数学表达式为: B F qv
(2) 穿过某一横截面S的磁感应强度B的通量称为磁通
量,简称磁通,用Φ表示,单位为韦伯(Wb),磁通
是:“在任一瞬间,对电路的任一节点,流入该节
点的电流之和等于流出该节点的电流之和。”其数
《电磁学》PPT课件
磁场
由运动电荷(电流)产生的特 殊物理场,描述磁极间的相互
作用。
电场性质
对放入其中的电荷有力的作用, 且力的方向与电荷的电性有关。
磁场性质
对放入其中的磁体或通电导线 有力的作用,且力的方向与电
流方向及磁场方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相 互作用力,与电荷量的乘积成正比, 与距离的平方成反比。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性Fra bibliotek02超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
05
电磁波传播与辐射理论
麦克斯韦方程组内容解读
麦克斯韦方程组的四个基本方程
01
高斯定律、高斯磁定律、麦克斯韦-安培定律、法拉第感应定律。
方程组的物理意义
02
揭示了电荷、电流与电场、磁场之间的内在联系,描述了电磁
场的产生、传播和变化规律。
方程组在电磁学中的地位
03
是电磁学的基石,为电磁波理论、电磁辐射和天线设计等领域
实例分析
通过具体磁路实例,如电磁铁、变压器等,分析磁路的结构、工作原理和性能特点。
铁磁材料特性及应用领域
铁磁材料特性
具有高磁导率、低矫顽力、高饱和磁感应 强度等特点,易于实现磁化和退磁。
VS
应用领域
广泛应用于电机、变压器、继电器、扬声 器等电气设备中,以及磁记录、磁放大等 领域。
2024版年电磁学全套课件完整版x
静电屏蔽
利用导体静电平衡的特性实现静电屏蔽的原理及 应用。
2024/1/27
10
介质中静电场传播规律
电介质的极化
电介质在静电场中的极化现象及 极化机制,包括电子极化、原子 极化和取向极化等。
介质中的电场强度
电介质中的电场强度与自由电荷 和极化电荷的关系,以及介质中 的高斯定理。
介质中的电位移矢量
电位移矢量的定义及物理意义, 以及介质中的电位移矢量与电场 强度的关系。
2024/1/27
电磁环境与健康关系研究
关注电磁辐射对人类健康的影响,开展相关 研究和评估工作。
32
感谢您的观看
THANKS
2024/1/27
33
2024/1/27
普朗克公式
为了解释黑体辐射的实验结果,德国物理学 家普朗克在1900年提出了一个公式,即普朗 克公式。该公式描述了黑体辐射的能量分布 与频率、温度之间的关系,并引入了量子化
的概念,为量子力学的建立奠定了基础。
24
康普顿散射实验和汤姆逊模型
要点一
康普顿散射实验
要点二
汤姆逊模型
康普顿散射是指X射线或伽马射线与物质相互作用时,光子将 部分能量转移给电子,使电子获得动能并从原子中逸出的现 象。康普顿散射实验证实了光具有粒子性,即光子的存在。
2024/1/27
14
磁感应强度计算方法
磁感应强度的定义
磁感应强度是描述磁场强弱和方向的物理量,用B表示,单位为特斯拉(T)。
磁感应强度的计算方法
根据毕奥-萨伐尔定律和安培环路定理,可以计算载流导线或电流回路在空间任一点产生的磁感应强度。
2024/1/27
15
霍尔元件工作原理及应用
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
《电磁学》.ppt
参考点
VP P E dl
点(无限远处)电场力所作的功。
电势单位: 焦尔 /库仑 ,称为 伏
特,简称伏 (V)。
三、电势的计算 1.点电荷的电势
V
E dl
P
Edr
r
r
q
40r 2
dr
q
4 0 r
V(r) q
rP
∞
4 0 r
dq
2R
1
q dl
L 4 0r 0 4 0 x2 R2 2R
V
(x)
4
q 0(x2
R
2
)
1 2
电势的计算(1)—叠加法
利用以上结果,很容易计算均匀带电圆盘轴线上P
点的电势,在盘上取一宽为dr 的小圆环,带电量为 dq
其,中:dq 2rdr
dr
该圆环在p点的电势为: r
rR Qr
电势的计算(2)—定义法
rR 时
E内 dS E内4r 2 0
E内 0
rR 时
E外
dS
E外 4r 2
Q
0
E外
1
4 0
Q r2
rR Qr
电势的计算(2)—定义法
由电势定义可得
rR rR
V r E外 dl
第一章 真空中的静电场
1.1 电荷和电荷守恒定律 1.2 库仑定律 1.3 电场 电场强度 1.4 高斯定理 1.5 电势 1.6 电场强度和电势的微分关系 1.7 E的边值关系
一、静电场环路定理
1.静电场力所作的功
电磁学(地物)课件 第一章-1
5、电荷与质量重要区别?
e 1.60218921019库仑
• 二、库仑定律(coulomb’s law) • 法国物理学家(1736-1806)
• 点电荷之间的相互作用规律 • 点电荷:
• 库仑定律:真空中两个静止点电荷之间的作用力:
F10
k
q0q1 | r10 |3
r10
F01
三 、 叠加原理:
3、任意带电体
(将连续分布带电体无限分割为一个个电荷元)
连续带电体的电场
对电荷连续分布的带电体,可划分为无限多个电荷
元dq(点电荷), 用点电荷的场强公式积分:
Q E
dE
Q
dq
Q 4 0r 2 er
dq dV
r 体电荷分布 dq dq dV
P
dV
dE
面电荷分布 dq dq ds
Ey
4 0 a
(cos1
cos2 )
当直线长度
Ex Ey
0
4
L 0a
2
{
1 2
第一章 真空中的静电场
• 1.1 电荷守恒 • 1.2 库仑定律 • 1.3 叠加原理 • 1.4 电场强度 • 1.5 高斯定理 • 1.6 环路定理 • 1.7 电势
一、电荷 电为物质的一种基本特性,电不能离开物质而
存在,不存在不依附物质的“单独电荷”。 1、电荷的种类:两种 2、最小电量、电荷的量子性 3、电荷的对称性 4、电荷守恒
q0 40r3
电场强度E是 坐标函数E(x,y,z)
单位: N c
or
伏特 米
电场是带电体周围的一个具有特定性质的空 间,该空间的任一点,外来电荷都会受到一定 大小、方向的作用力。
e 1.60218921019库仑
• 二、库仑定律(coulomb’s law) • 法国物理学家(1736-1806)
• 点电荷之间的相互作用规律 • 点电荷:
• 库仑定律:真空中两个静止点电荷之间的作用力:
F10
k
q0q1 | r10 |3
r10
F01
三 、 叠加原理:
3、任意带电体
(将连续分布带电体无限分割为一个个电荷元)
连续带电体的电场
对电荷连续分布的带电体,可划分为无限多个电荷
元dq(点电荷), 用点电荷的场强公式积分:
Q E
dE
Q
dq
Q 4 0r 2 er
dq dV
r 体电荷分布 dq dq dV
P
dV
dE
面电荷分布 dq dq ds
Ey
4 0 a
(cos1
cos2 )
当直线长度
Ex Ey
0
4
L 0a
2
{
1 2
第一章 真空中的静电场
• 1.1 电荷守恒 • 1.2 库仑定律 • 1.3 叠加原理 • 1.4 电场强度 • 1.5 高斯定理 • 1.6 环路定理 • 1.7 电势
一、电荷 电为物质的一种基本特性,电不能离开物质而
存在,不存在不依附物质的“单独电荷”。 1、电荷的种类:两种 2、最小电量、电荷的量子性 3、电荷的对称性 4、电荷守恒
q0 40r3
电场强度E是 坐标函数E(x,y,z)
单位: N c
or
伏特 米
电场是带电体周围的一个具有特定性质的空 间,该空间的任一点,外来电荷都会受到一定 大小、方向的作用力。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
当穿过一个闭合导体回路所包围的面积内的磁通量发 生变化时(不论这种变化是由什么原因引起的),在导体 回路中就有电流产生。这种现象称为电磁感应现象。 回路中所产生的电流称为感应电流。 相应的电动势则称为感应电动势。
2
一线圈,如果要有感应电流产生,通过它的磁场 要满足什么条件? 那就是:通过线圈的磁通要发生变化 其途径有三:1.部分导体作切割磁力线运动 2.改变磁场 3.导体不动,磁场不变,改变磁介质
F非 dl
E非 dl
I
ε
I
方向: 负极
内部
正极
即使导体回路不闭合,甚至仅是一假想回路,只要 回路中磁通变化,就一定有感应电动势;但回路要 闭合,才有感应电流
9
3.法拉第电磁感应定律 叙述:导体回路中的感应电动势 的大小与穿过导体回路的 磁通量的变化率成正比。
抽真空
显像管
接高频发生器
33
3) 电磁炉 在市面上出售的一种加热炊具---电磁炉。这种电磁炉加热时炉体 本身并不发热,在炉内有一线圈, 当接通交流电时,在炉体周围产生 交变的磁场,当金属容器放在炉上 时,在容器上产生涡电流,使容器 发热,达到加热食物的目的。 电磁炉不能使用诸如玻璃、铝、铜的容器加热食品, 应使用导磁性能较好的材料制成的容器,如铁皮锅、铸铁 锅、含铁不锈钢锅,以及底部是含铁材料的锅具等。原因 是铁是导磁体,磁场可在整个锅底部分产生涡流,而铝、 铜(弱磁性)等金属不导磁。
29
实验一:电子感应加速器
S
增加B
F E涡 涡旋
N
靶
电子 枪
利用涡旋电场加速电子的加速器已 在核物理和医学上得到广泛的应用。
30
涡电流
将导体放入变化的磁场中时, 由于在变化的磁场周围存在着涡旋 的感生电场,感生电场作用在导体 内的自由电荷上,使电荷运动,形 成涡电流。
dB 0 dt
第16章 电磁场
§16.1 §16.2 §16.3 §16.4 §16.5 §16.6 §16.7 §16.8 法拉第电磁感应定律 动生电动势 感生电动势 自感和互感 磁场的能量 位移电流 麦克斯韦方程组 电磁波
1
§1 法拉第电磁感应定律
1. 电磁感应现象
B
N
S
G
Fm v a
26
§3
感生电动势
一、感生电动势 涡旋电场
d d m - dt dt
若区域不动
B ds
B ds t
––– 感生电动势
27
感生电动势的的非静电力:涡旋电场力。 涡旋电场力:变化的磁场激发的作用在电 子上的某种力 感生电动势的计算
dB 0 dt
r0
(v B )
0 I r0 L cos L cos r0 ln 2 2 cos r0
方向
23
例5. 求回路中的动生电动势。
I b
v
45
l
m
a
c
解:
0 Il ab v 2m
( a b)
ca 0
24
首先确定 v B的方向, 选定dl 方向。 bc : (v B ) dl vB cos 45 dl vBdx
d m dt
I
d 例:假设 0,产生图示电流 dt
28
产生持续电流条件: 1.自由移动的电荷 2.使其定向运动的电场 电流方向总是沿电场方向
dB 0 dt
I
涡旋电场的电力线形成闭合回路
线圈中插入介质,或是真空,涡旋电场依然存在 麦克斯韦提出假设:即使不存在导体回路, 变化的磁场也会在周围空间激发涡旋电场
25
引起动生电动势的非静电力是洛仑磁力,而电动势是将单位 正电荷从电源负极经由电源内部移到正极,非静电力所作的 功,这个非静电力是洛仑磁力,而洛仑磁力对运动电荷不做 功。这不就有矛盾吗? a + f e ( v B )
f L e( v B ) V v v F f fL
13
楞次定律定方向:a b.
例2. 一长直电流 I,与之共面的 abcd 线框以 向右匀速平动。
求:任意时刻 t,线框中感应电动势的表达式 解:
b c l a
v
0 I t时刻:B 2x m d m x a 0 I ldx x 2x
0 Il x a ln 2 x
bc b vBdx
m
(c b )
m l
c
0 I v dx 2x
I
(v B ) x x + dx
m a
b
dl
45 l
v
c
0 Iv m l ln 2 m
0 Iv ml ab bc l ln 2 m
解:
m
b a c l d
0 Il x a ln 2 x
I x
d m a dt 0l x a ln I 0 cos t 2 x
方向:楞次定律
v
16
§2
动生电动势
d m dt
m s B ds
17
一、动生电动势
3
法拉第于1791年出生在英国伦敦附 近的一个小村里,父亲是铁匠,自幼家 境贫寒,无钱上学读书。13岁时到一家 书店里当报童,次年转为装订学徒工。 在学徒工期间,法拉第除工作外,利用书店的条件, 在业余时间贪婪地阅读了许多科学著作,例如《化学对 话》、《大英百科全书》的《电学》条目等,这些著作 开拓了他的视野,激发了他对科学的浓厚兴趣。
L (v B ) dl
0 vBdl 0
A
A
(v B )
0 I (l ) dl 2x
22
x r0 l cos
A
I
×B
A dl
o
x
0 I 0 (l ) dl 2 (r0 l cos ) L I l 0 0 dl 2 r0 l cos
I
×
B
a
x
v
dx
d
14
d m dt
0 Il x a m ln 2 x
0 Il x x x a dx 2 2 x a x dt
0 Il a v 2 x( x a )
方向:楞次定律
15
例3. 若上题中 v = 0,I = I0sin t,则结果如何?
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
6
楞次(1804~1865)俄国物理学家。
1831年法拉第发现了电磁感应现象 后,当时已有许多便于记忆的“左 手定则”、“右手定则”、“右手 螺旋法则”等经验性规则,但是并 没有给出确定感生电流方向的一般 法则。1833年楞次在总结了安培的 电动力学与法拉第的电磁感应现象 后,发现了确定感生电流方向的定 律─楞次定律。
I涡
31
1. 涡电流的应用
1) 高频感应炉的应用
在冶金工业中,某些熔化 的活泼稀有金属在高温下容易 氧化,将其放在真空环境中的 坩埚中,坩埚外绕着通有交流 电的线圈,对金属加热,防止 氧化。
抽真空
32
2) 用涡电流加热金属电极 在制造电子管、显像管或激光管 时,在做好后要抽气封口,但管子里 金属电极上吸附的气体不易很快放出, 必须加热到高温才能放出而被抽走, 利用涡电流加热的方法,一边加热, 一边抽气,然后封口。
楞 次
楞次定律说明电磁现象也遵循能量守恒定律。
7
1. 电动势
I
非静电力
ε
I
静电力
––– 将单位正电荷从电源负极经由电源内部 移到正极,非静电力所作的功
F 电场中E q F非 E非 q
A非 q q
F非 dl
E非 dl
8
A非 q q
洛仑磁力合力做功的功率为:
F V ( f f L ) ( v v ) f v f L v evB v ev Bv 0
f - v F fL b
V
v
34
4) 电度表记录电量 电度表记录用电量,就是 利用通有交流电的铁心产生交 变的磁场,在缝隙处铝盘上产 生涡电流,涡电流的磁场与电 磁铁的磁场作用,表盘受到一 转动力矩,使表盘转动。
求:t 时刻回路中的感应电动势 。 a B n
60
l
b
v
12
解:
m sB cos 60 ds
0 B cos 60 ldx
x
n
60
B
l
a
v
b
1 1 1 Blx Blvt klvt 2 2 2 2
d m dt
klvt
B= kt (k > 0)
d m 负号是楞次定律的要求。 dt 所以也可这样做:
(1)直接用
d m 算大小 dt
(2)楞次定律定方向 利用法拉第电磁感应定律 求的关键:求m
10
若有N 匝线圈,彼此串联,总电动势等于各匝线圈所产生 的电动势之和。令每匝的磁通量为 1、 2 、 3 d 1 d 2 dt dt 磁通链数(或全磁通): Ψ 1 2 3