高中数学:函数模型及其应用练习

合集下载

第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析

第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过成立变量之间的函数关系和对所得函数的研究,使问题取得解决.数学模型方式是把实际问题加以抽象归纳,成立相应的数学模型,利用这些模型来研究实际问题的一般数学方式;数学模型那么是把实际问题用数学语言抽象归纳,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.数学模型来源于实际,它是对实际问题抽象归纳加以数学描述后的产物,它又要回到实际中去查验,因此对实际问题有深刻的理解是运用数学模型方式的前提.二、函数是描述客观世界转变规律的根本数学模型,不同的转变现象需要用不同的函数模型来描述,数学应用题的建模进程就是信息的获取、存储、处置、综合、输出的进程,熟悉一些根本的数学模型,有助于提高咱们解决实际问题的能力.三、一次函数、二次函数和幂函数的图像和性质一、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.二、二次函数的一般形式是2(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,极点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞2b x a=-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,极点坐标为24(,)24b ac b a a --,函数在(,)2b a-∞-单调递增,在(,)2b a -+∞2b x a=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,a y x a R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其概念域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有概念,而且图像都过点〔1,1〕;0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数.四、解决实际问题的解题进程一、 对实际问题进展抽象归纳:研究实际问题中量与量之间的关系,肯定变量之间的主、被动关系,并用x 、y 别离表示问题中的变量;二、成立函数模型:将变量y表示为x的函数,在中学数学内,咱们成立的函数模型一般都是函数的解析式;3、求解函数模型:按如实际问题所需要解决的目标及函数式的构造特点正确选择函数知识求得函数模型的解,并恢复为实际问题的解.这些步骤用框图表示:五、解应用题的一般程序1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是根底;2建:将文字语言转化为数学语言,利用数学知识,成立相应的数学模型.熟悉根本数学模型,正确进展建“模〞是关键的一关;3解:求解数学模型,取得数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化进程;4答:将数学结论恢复给实际问题的结果.六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网【方式讲评】【例1】某地域1995年底沙漠面积为95万公顷,为了解该地域沙漠面积的转变情况,进展了持续5年的观测,并将每一年年末的观测结果记录如下表.按照此表所给的信息进展预测:〔1〕若是不采取任何办法,那么到2010年末,该地域的沙漠面积将大约变成多少万公顷;〔2〕若是从2000年末后采取植树造林等办法,每一年改造0.6万公顷沙漠,那么到哪一年年末该地域沙漠面积减少到90万公顷?〔2〕设从1996年算起,第x年年末该地域沙漠面积能减少到90万公顷,由题意得+--=,x x950.20.6(5)90x=〔年〕解得20故到2015年年末,该地域沙漠面积减少到90万公顷.=+的图【点评】〔1〕由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b象,这是解题的切入点和关键点.〔2〕求一次函数的解析式一般利用待定系数法.【反映检测1】某工厂在甲、乙两地的两个分厂各生产某种机械12台和6台,现销售给A地10台,B地8台,从甲地调运1台至A地、B地的运费别离为400元和800元,从乙地调运1台至A地、B地的运费别离为300元和500元.〔1〕设从乙地调运x台至A地,求总运费y关于x的函数关系式;〔2〕假设总运费不超过9000元,问共有几种调动方案?〔3〕求出总运费最低的调运方案及最低的费用.【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全数租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每一个月需要保护费150元,未租出的车每辆每一个月需要保护费50元.〔1〕当每辆车的月租金定为3600元时,能租出多少辆车?〔2〕当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【点评】〔1〕在实际问题背景下,成立收益、利润的函数模型,一般是利润=收入-各项支出.〔2〕依照公司的月收益为:租出车辆⨯〔月租金-保护费〕-未租出车辆⨯保护费,将月收益视为月租金的函数,构造函数模型求解问题.【反映检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总本钱y〔万元〕与年产量x〔吨〕之间的函数关系式可以近似地表示为24880005xy x=-+,此生产线年产量最大为210吨.〔1〕求年产量为多少吨时,生产每吨产品平均本钱最低,并求最低本钱.〔2〕假设每吨产品平均出厂价为40万元,那么昔时产量为多少吨时,可以取得最大利润?最大利润是多少?【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即抵达28400 c m3.〔1〕求平均每一年木材储蓄量的增加率;〔2〕若是平均每一年增加率为8%,几年可以翻两番?【点评】〔1〕增加率〔降低率〕的问题一般是指数或幂函数模型,若是时间求增加率〔降低率〕,多是幂函数模型.〔2〕“翻两番〞指此刻是原来的4倍,“翻n番〞指的是此刻是原来的2n倍.【反映检测3】〔1〕在1975年某市每千克猪肉的平均价钱是1.4元,而到了2021年,该市每千克猪肉的平均价钱是15元,假定这30年来价钱年平均增加率一样,求猪肉价钱的年平均增加率.〔2〕另一方面,1975年时该市职工月平均工资是40元,而到了2021年,该市职工月平均工资是860元,通过猪肉价钱的增加和工资增加的对照,试说明人们的生活水平是日趋提高,并计算假设按这种速度,到2021年,估量该市职工月平均工资是多少元?高中数学常见题型解法归纳及反映检测第09讲:函数(一次函数、二次函数和幂函数〕模型及其应用参考答案【反映检测1答案】〔1〕2008600(06,)y x x x z =+≤≤∈;〔2〕共有3种调运方案;〔3〕乙分厂的6 台机械全数调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.【反映检测2答案】〔1〕年产量为200吨时,每吨平均本钱最低为32万元;〔2〕年产量为210吨时,可取得最大利润1660万元.【反映检测2详细解析】(1)每吨平均本钱为y x(万元), 那么80008000482483255y x x x x x=+-≥-=,当且仅当80005x x =,即200x =时取等号, ∴年产量为200吨时,每吨平均本钱最低为32万元.(2)设年取得总利润为()R x 万元,那么R(x)=40x-y=40x-25x +48x-8 000=-25x +88x-8 000=-15 (x-220)2+1 680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1 660,∴年产量为210吨时,可取得最大利润1 660万元.【反映检测3答案】〔1〕8.2%;(2)4000元.【反映检测3详细解析】〔1〕设猪肉价钱的年平均增加率是%x ,那么有3015 1.4(1%)x =+.利用计算器可得8.2x =.〔2〕该市职工月工资和年平均增加率是%x ,那么有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因这人们的生活水平是日趋提高.照这样的速度到2021年,职工月平均工资是15860(110.8%)4000+≈元.。

2020届高考文科数学复习练习题(二):函数 专题训练

2020届高考文科数学复习练习题(二):函数 专题训练

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

函数模型及其应用(1)_韦余玲

函数模型及其应用(1)_韦余玲

3.4.2函数模型及其应用(1)教学目标:1.能根据实际问题的情境建立数学模型,利用计算工具,结合对函数性质的研究,给出问题的解答;2.通过实例,理解一次函数、二次函数等常见函数在解决一些简单的实际问题中的应用,了解函数模型在社会生活中的广泛应用;3.在解决实际问题的过程中,培养学生数学地分析问题、探索问题、解决问题的能力,培养学生的应用意识,提高学习数学的兴趣.教学重点:一次函数、二次函数以及指、对数函数等常见函数的应用.教学难点:从生活实例中抽象出数学模型.教学过程:一、问题情境某城市现有人口总数为100万,如果人口的年自然增长率为1.2﹪,问:(1)写出该城市人口数y(万人)与经历的年数x之间的函数关系式;(2)计算10年后该城市的人口数;(3)计算大约多少年后,该城市人口将达到120万?(4)如果20年后该城市人口数不超过120万,年人口自然增长率应该控制在多少?二、学生活动回答上述问题,并完成下列各题:1.等腰三角形顶角y(单位:度)与底角x的函数关系为.2.某种茶杯,每个0.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,其定义域为.三、数学应用例1某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元,分别写出总成本C (万元)、单位成本P (万元)、销售收入R (元)以及利润L (万元)关于总产量x 台的函数关系式.例2 大气温度y (℃)随着离开地面的高度x (km)增大而降低,到上空11 km 为止,大约每上升1 km ,气温降低6℃,而在更高的上空气温却几乎没变(设地面温度为22℃).求:(1) y 与x 的函数关系式;(2)x =3.5 km 以及x =12km 处的气温.变式:在例2的条件下,某人在爬一座山的过程中,分别测得山脚和山顶的温度为26℃和14.6℃,试求山的高度. 四、建构数学利用数学某型解决实际问题时,一般按照以下步骤进行:1.审题:理解问题的实际背景,概括出数学实质,尝试将抽象问题函数化;2.引进数学符号,建立数学模型,即根据所学知识建立函数关系式,并确定函数的定义域;3.用数学的方法对得到的数学模型予以解答,求出结果;4.将数学问题的解代入实际问题进行检验,舍去不合题意的解,并作答.五、巩固练习1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为x 件时的成本函数是C (x )=200+10x +0.5x 2(元),若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达到 元.2.有m 部同样的机器一起工作,需要m 小时完成一项任务.设由x 部机 器(x 为不大于m 的正整数)完成同一任务,求所需时间y (小时)与机器的 部数x 的函数关系式.3.A ,B 两地相距150千米,某人以60千米/时的速度开车从A 到B ,在B 地停留1小时后再以50千米/时的速度返回A ,则汽车离开A 地的距离x 与时间t的函数关系式为.4.某车站有快、慢两种车,始发站距终点站7.2km,慢车到达终点需16min,快车比慢车晚发车3min,且行驶10min到达终点站.试分别写出两车所行路程关于慢车行驶时间的函数关系式.两车在何时相遇?相遇时距始发站多远?5.某产品总成本C(万元)与产量x(台)满足关系C=3000+20x-0.1x2,其中0<x<240.若每台产品售价25万元,要使厂家不亏本,则最少应生产多少台?六、要点归纳与方法小结1.利于函数模型解决实际问题的基本方法和步骤;2.一次函数、二次函数等常见函数的应用.七、作业课本P100-练习1,2,3.。

高中数学人教版:3.2--数学模型及其应用(共73张PPT)

高中数学人教版:3.2--数学模型及其应用(共73张PPT)

例3. 一辆汽车在某段路程中的行驶速度与时间的关系如图 所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义; (2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与 时间 t h 的函数解析式, 并作出相应的图象.
所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义;
(2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为
2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与
时间 t h 的函数解析式, 并作出相应的图象.
s/km
解: (2) 列表表示:
2350
2300
[0, 1)
s[1=, 2)
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
关于 x 呈指数型函数变化的变量是 y2 y4.
分析: y1, y2, y3 都是 增函数, 增长速度最快的 是 y2, 所以 y2 最有可能 是指数型函数.
y4 是减函数, 画出 图象如图: y4 也可能是 指数形函数.
y
2048
y=2x
幂函数 y = x3
对数函数 y = log2x
x
5
8 10 11 1231
2x 32 256 1024 2048 1024
1000
x3 125 512 1000 1231
log2x 2.32 3 3.32 3.46 512
随着 x 的增大, 2x 的图象 几乎垂直向上, 增速很大.
口人增数(长1)率5如95(61精果确以50到6各030年.0人508702口41)增, 5用9长867马率尔的660萨6平2斯均6人5值164口作增为62长2我88模国型6这643建5一立时69我5期49国的这人60772

高中数学 第三章 函数的概念与性质 3.4 函数的应用(一)

高中数学  第三章 函数的概念与性质 3.4  函数的应用(一)

3.4函数的应用(一)知识解读•必须会知识点1 常见的几种函数模型1.(2022·安徽亳州高一期中)商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该商店现推出两种优惠方案:①买一个茶壶赠送一个茶杯;②按购买总价的92%付款。

某顾客需购买茶壶4个,茶杯若干个(不少于4个)。

当购买茶杯x个时,付款为y 元,试分别建立两种优惠方案中的y与x之间的函数解析式,并指出如果该顾客需购买茶杯40个,应选择哪种优惠方案。

解析:由优惠方案①,得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,x∈N*)。

由优惠方案②,得函数解析式为y2=(20×4+5x)×92%=4.6x+73.6(x≥4,x∈N*)。

当该顾客需购买茶杯40个时,采用优惠方案①应付款y1=5×40+60=260(元),采用优惠方案②应付款y2=4.6×40+73.6=257.6(元)。

由于y2<y1,故应选择优惠方案②。

知识点2 用函数模型解决实际问题的方法与步骤2.(2021·山东菏泽23校高一期末联考)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元。

根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆。

为了便于结算,每辆电动观光车的日租金x(元)(x只取整数),并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得)。

(1)求函数y=f(x)的解析式及其定义域;答案:(1)当x≤5时,y=60x-120,令60x-120>0,解得x>2,因为x∈N*,所以3≤x≤5。

当x>5时,y=[60-2(x-5)]x-120=-2x2+70x-120,令-2x2+70x-120>0,有x2-35x+60<0,上述不等式的整数解为2≤x ≤33(x ∈N *),所以5<x ≤33(x ∈N *)。

高中数学函数模型及其应用练习题(含答案)

高中数学函数模型及其应用练习题(含答案)

高中数学函数模型及其应用练习题(含答案)高中数学函数模型及其应用练习题(含答案)数学必修1(苏教版)2.6 函数模型及其应用某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗?基础巩固1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场()A.不赚不亏 B.赚了80元C.亏了80元 D.赚了160元解析:960+960-9601+20%-9601-20%=-80.答案:C2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________.解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值.答案:9 m23.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,答案:a(1-b%)n7.某供电公司为了合理分配电力,采用分段计算电费政策,月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.(1)填空:月用电量为100度时,应交电费______元;(2)当x100时,y与x之间的函数关系式为__________;(3)月用电量为260度时,应交电费__________元.解析:由图可知:y与x之间是一次函数关系,用待定系数法可求解析式.答案:(1)60 (2)y=12x+10 (3)1408.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方法如下表:每户每月用水量水价不超过12 m3的部分 3元/m3超过12 m3但不超过18 m3的部分 6元/m3超过18 m3的部分 9元/m3若某户居民本月交纳的水费为48元,则此户居民本月用水量为__________m3.解析:设每户每月用水量为x,水价为y元,则y=3x,012,36+x-126,1218,36+36+x-189,x>18,即y=3x,012,6x-36,1218,9x-90,x18.48=6x-36,x=14.答案:149.国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划收购m万担,为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.(1)写出税收y(万元)与x的函数关系式;(2)要使此项税收在税率调整后,不低于原计划的78%,试确定x的范围.解析:(1)y=120m[1+(2x)%](8%-x%)=-0.024m(x2+42x-400)(08).(2)-0.024m(x2+42x-400)120m8%78%,即x2+42x-880,(x+44)(x-2)0,解得-442.又∵08,02.10.有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9 m,AB=10 m,BC=2.4 m.现把隧道的横断面放在平面直角坐标系中,若有一辆高为4 m,宽为2 m的装有集装箱的汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离开隧道右壁至少多少米才不至于碰到隧道顶部(抛物线部分为隧道顶部,AO、BC为壁)?解析:由已知条件分析,得知抛物线顶点坐标为(5,2.5),C 点的坐标为(10,0),所以设抛物线的解析式为y=a(x-5)2+2.5,①把(10,0)代入①得0=a(10-5)2+2.5,解得a=-110,y=-110(x-5)2+2.5.当y=4-2.4=1.6时,1.6=-110(x-5)2+2.5,即(x-5)2=9,解得x1=8,x2=2.显然,x2=2不符合题意,舍去,所以x=8.OC-x=10-8=2.故汽车应离开右壁至少2 m才不至于碰到隧道顶部.。

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。

【红对勾】高中数学 3.2.2函数模型的应用举例课件 新人教版必修1

【红对勾】高中数学 3.2.2函数模型的应用举例课件 新人教版必修1

(2)设最大利润为Q(x),
1 2 则Q(x)=1.6x-y=1.6x-10x -3x+40
(2)函数关系未知的应用题 其解题步骤可归纳为以下几步: ①阅读理解题意 摆脱对实际问题陌生的心理障碍,按题目的有关规定 去领悟其中的数学本质,理顺题目中的数与形、形与形的 数量关系和位置关系,看一看可以用什么样的函数模型, 初步拟定函数类型.
②抽象函数模型 在理解问题的基础上,把实际问题抽象为函数模型. ③研究函数模型的性质 根据函数模型,结合题目的要求,讨论函数模型的有 关性质,获得函数模型的解. ④得出问题的结论 根据函数模型的解,结合实际问题的实际意义和题目 的要求,给出实际问题的解.
(1)求y与x之间的函数关系式,并在保证商家不亏本的 前提下,写出x的取值范围; (2)假设这种汽车平均每周的销售利润为z万元,试写出 z与x之间的函数关系式; (3)当每辆汽车的销售单价为多少万元时,平均每周的 销售利润最大?最大利润是多少?
【解析】
解决本题需弄清楚:每辆车的销售利润=
销售单价-进货单价;先求出每辆车的销售利润,再乘以 售出辆数可得每周销售利润.通过二次函数求最值,可得 汽车合适的销售单价.
预习篇01
新知导学
解函数模型应用题的一般步骤
1.函数模型应用的两个方面 (1)利用已知函数模型解决问题; (2)建立恰当的函数模型,并利用所得函数模型解 释有关现象,对某些发展趋势进行预测.
2.解函数应用题的一般步骤 (1)审题:弄清题意,分清条件和结论,理顺数理关 系. (2)建模:将文字语言转化为数学语言,用数学知识建 立相应的数学模型. (3)求模:求解数学模型,得到数学结论. (4)还原:将用数学方法得到的结论还原为实际问题的 意义.
1.常见的函数模型有哪些? 提示:(1)正比例函数模型:f(x)=kx(k为常数,k≠0); k (2)反比例函数模型:f(x)= (k为常数,k≠0); x (3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);

【高中数学】函数模型及其应用

【高中数学】函数模型及其应用

函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。

(好题)高中数学必修一第四单元《函数应用》检测卷(有答案解析)

(好题)高中数学必修一第四单元《函数应用》检测卷(有答案解析)

一、选择题1.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫-- ⎪⎝⎭C .(-3,-1)D .(-3,-1]2.已知方程923310x x k -⋅+-=有两个实根,则实数k 的取值范围为( ) A .2,13⎡⎤⎢⎥⎣⎦B .12,33⎛⎤ ⎥⎝⎦C .2,3⎡⎫+∞⎪⎢⎣⎭D .[1,)+∞3.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 4.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2B .1.7C .2.0D .2.55.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米6.对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()31xf x m =+-(m ∈R ,0m ≠)是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是( ) A .2,03⎡⎫-⎪⎢⎣⎭B .21,33⎡⎤--⎢⎥⎣⎦C .2,03⎡⎤-⎢⎥⎣⎦D .(),0-∞7.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①8.函数f(x)=2log ,02,0xx x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是( ) A .a<0B .0<a<C . <a<1D .a≤0或a>19.用二分法求方程x 2–2=0在(1,2)内近似解,设f (x )=x 2–2,得f (1)<0,f (1.5)>0, f (1.25)<0,则方程的根在区间( ) A .(1.25,1.5)B .(1,1.25)C .(1, 1.5)D .不能确定10.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年11.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( )A .πB .2πC .3πD .4π12.若关于x 的方程12xa a -= (a >0,a ≠1)有两个不等实根,则a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .1(0,)2二、填空题13.设方程240x mx -+=的两根为α,β,其中[1,3]α∈,则实数m 的取值范围是________.14.已知函数()1,0ln ,0x x f x x x +≤⎧=⎨>⎩,则函数()1y f f x ⎡⎤=-⎣⎦的零点个数为______. 15.已知函数()()21,043,0x e x f x x x x +⎧≤⎪=⎨+->⎪⎩,函数()y f x a =-有四个不同的零点,从小到大依次为1x ,2x ,3x ,4x ,则1234x x x x -++的取值范围为 _________16.若函数222,0(),0x x x x f x e a x +⎧->⎪=⎨-≤⎪⎩有3个零点,则实数a 的取值范围是___17.已知函数()2log ,02 sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,若1234x x x x <<<且()()()()1234f x f x f x f x ===,则()()341222x x x x --的取值范围为____________.18.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.19.已知函数21,0()(1),0x x f x f x x ⎧-≥=⎨+<⎩,若方程()f x x a =--有两个不同实根,则实数a的取值范围为________.20.已知函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,若关于x 方程()f x ax =有三个不相等的实数根,则实数a 的取值范围是_______________. 三、解答题21.设函数()()21f x ax ax a R =+-∈.(1)当12a =时,求函数()f x 的零点; (2)讨论函数()f x 零点的个数.22.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()124x f x g x +-=.(Ⅰ)求函数()f x 和()g x 的表达式;(Ⅱ)若方程()4xf x m m =⋅-在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,求实数m 的取值范围.23.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD =千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a=--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021lk计算)②当t 为何值时,l 取到最小值?最小值是多少?24.某工厂生产某产品x 件所需成本费用为P 元,且2110005,10P x x =++而每件售出的价格为Q 元,其中(),xQ a a b R b=+∈. (1)问:该工厂生产多少件产品,使得每件产品所需成本费用最少?(2)若生产出的产品能全部售出,且当产量为150件时利润最大,此时每件价格为30,求a b 、的值.25.已知()y f x =(x D ∈,D 为此函数的定义域)同时满足下列两个条件:①函数()f x 在D 内单调递增或单调递减;②如果存在区间[,]a b D ⊆,使函数()f x 在区间[,]a b 上的值域为[,]a b ,那么称()y f x =,x D ∈为闭函数(1)判断函数2()1((0,))f x x x x =+-∈+∞是否为闭函数?并说明理由; (2)求证:函数3y x =-([1,1]x ∈-)为闭函数; (3)若(0)y k x k =<是闭函数,求实数k 的取值范围26.如图所示,已知1(,)A x m 、2(,2)B x m +、3(,4)C x m +(其中2m ≥)是指数函数()2x f x =图像上的三点.(1)当2m =时,求123()f x x x ++的值;(2)设ABC ∆的面积为S ,求S 关于m 的函数()S m 及其最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-,∴112a a <-⎧⎨--<⎩,解得31a -<<-.故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.2.B解析:B 【分析】先将指数型方程的解的问题转化为二次方程的根的问题,再利用判别式和韦达定理即可求出实数k 的取值范围. 【详解】设3x t =,则0t >,则方程923310x x k -⋅+-=有两个实根可转化为方程22310t t k -+-=有两个正根,则利用判别式和韦达定理得()()22431020310k k ⎧∆=---≥⎪>⎨⎪->⎩,解得:1233k <≤; 所以实数k 的取值范围为12,33⎛⎤⎥⎝⎦. 故选:B. 【点睛】关键点睛:将指数型方程的解的问题转化为二次方程的根的问题是解决本题的关键.3.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知,当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误. 由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.4.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =, 所以0.40()tI t N e=,由0()2I t N =,得0.4002tN e N =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B 【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题5.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.6.A解析:A 【分析】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,即存在0[1,1]x ∈-,满足00()()f x f x -=-,即02332x x m -=--+有根,即可求出答案.【详解】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,∴存在0[1,1]x ∈-满足00()()f x f x -=-,003131x x m m -∴+-=--+, 002332x x m -∴=--+,构造函数00332x x y -=--+,0[1,1]x ∈-,令03x t =,1[,3]3t ∈,1122()y t t t t=--+=-+在1[,1]3单调递增,在(1,3]单调递减,所以1t =取得最大值0, 13t =或3t =取得最小值43-,4[,0]3y ∴∈-,4203m ∴-<,032m ∴-<, 故选:A . 【点睛】本题考查的知识点是指数函数的性质、函数的值域,新定义“倒戈函数”,正确理解新定义“倒戈函数”的含义,是解答的关键.7.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论8.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2x x a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.9.A解析:A 【分析】根据零点存在定理,结合条件,即可得出结论. 【详解】已知(1)0,(1.5)0,(1.25)0f f f <><, 所以(1,25)(1.5)0f f ⋅<,可得方程的根落在区间(1.25,1.5)内, 故选A. 【点睛】该题考查的是有关判断函数零点所在区间的问题,涉及到的知识点有二分法,函数零点存在性定理,属于简单题目.10.C解析:C 【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案. 【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元, 由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>, 所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4, 所以第4年,即2022年全年投入的科研经费开始超过2000万元, 故选:C. 【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.11.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称. 函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.12.D解析:D 【分析】由题意转化条件为函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,按照a >1、0<a <1分类,数形结合即可得解. 【详解】根据题意,函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,a >1时,如图(1)所示;0<a <1时,如图(2)所示.由图象知,0<2a <1,所以10,2a ⎛⎫∈ ⎪⎝⎭. 故选:D. 【点睛】本题考查了指数函数图象及函数图象变换的应用,考查了函数与方程的综合应用及数形结合思想、分类讨论思想,属于中档题.二、填空题13.【分析】由题意利用韦达定理不等式的性质求出实数的取值范围【详解】解:方程的两根其中故即解得或令①解得;②解得综上可得故答案为:【点睛】本题考查二次函数根的分布问题属于中档题 解析:[]4,5【分析】由题意利用韦达定理,不等式的性质,求出实数m 的取值范围. 【详解】 解:方程240x mx -+=的两根α,β,其中[1,3]α∈, 故0∆,即()2440m --⨯≥,解得4m ≥或4m ≤-,令()24f x x mx =-+①()()0130f f ∆⎧⎨≤⎩,解得1353m ≤≤; ②()()01030132f f m ∆⎧⎪>⎪⎪⎨>⎪⎪≤≤⎪⎩解得134,3m ⎡⎤∈⎢⎥⎣⎦综上可得[]4,5m ∈ 故答案为:[]4,5. 【点睛】本题考查二次函数根的分布问题,属于中档题.14.【分析】先由可求得的值再由和两种情况结合的值可求得的值即可得解【详解】下面先解方程得出的值(1)当时可得可得;(2)当时可得可得或下面解方程和①当时由可得由可得(舍去)由可得;②当时由可得由可得或由 解析:7【分析】先由()10f f x ⎡⎤-=⎣⎦可求得()f x 的值,再由0x ≤和0x >两种情况结合()f x 的值,可求得x 的值,即可得解. 【详解】下面先解方程()10f f x ⎡⎤-=⎣⎦得出()f x 的值.(1)当()0f x ≤时,可得()()1110f f x f x -=+-=⎡⎤⎣⎦,可得()0f x =;(2)当()0f x >时,可得()()1ln 10f f x f x -=-=⎡⎤⎣⎦,可得()f x e =或()1f x e=. 下面解方程()0f x =、()f x e =和()1f x e=. ①当0x ≤时,由()10f x x =+=可得1x =-,由()1f x x e =+=可得1x e =-(舍去),由()11f x x e =+=可得11x e=-; ②当0x >时,由()ln 0f x x ==可得1x =,由()1ln f x x e==可得1e x e =或1ex e -=,由()ln f x x e ==可得e x e =或ex e -=.综上所述,函数()1y f f x =-⎡⎤⎣⎦的零点个数为7. 故答案为:7. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15.【分析】先将函数有四个不同的零点转化为函数有四个不同的交点利用数形结合得到a 的范围再根据为方程的两根为方程的两根利用韦达定理建立的函数再利用函数的单调性求解【详解】因为函数有四个不同的零点所以函数有 解析:(]3,3e +【分析】先将函数()y f x a =-有四个不同的零点,转化为函数(),y f x y a ==有四个不同的交点,利用数形结合得到a 的范围,再根据1x ,2x 为方程()21x e a +=的两根,3x ,4x 为方程43x a x+-=的两根,利用韦达定理建立1234x x x x -++的函数,再利用函数的单调性求解.【详解】因为函数()y f x a =-有四个不同的零点, 所以函数(),y f x y a ==有四个不同的交点, 如图所示:由图知:1a e <≤,设1x ,2x 为方程()21x e a +=的两根,即221ln 0x x a ++-=的两根, 所以121ln =-x x a , 设3x ,4x 为方程43x a x+-=的两根,即()2340x a x -++=的两根, 所以343x x a +=+,所以1234ln 13ln 2x x x x a a a a -++=-++=++, 因为ln ,2y a y a ==+在()0,∞+上递增, 所以ln 2y a a =++在()0,∞+上递增, 所以1234(3,3]x x x x e ∈-+++, 故答案为:(]3,3e + 【点睛】关键点点睛:本题关键是利用利用数形结合法确定a 的范围,进而利用函数法求解.16.【分析】结合与的图象判断出当时的零点个数由此判断出当时的零点个数画出时的图象由此求得的取值范围【详解】画出与的图象如下图所示由图可知当时与的图象有个交点也即的图象有个零点所以当时有个零点当时画出的图解析:{}()21,e ⋃+∞【分析】 结合2x y =与2yx 的图象,判断出当0x >时,()f x 的零点个数.由此判断出当0x ≤时,()f x 的零点个数.画出0x ≤时2x y e +=的图象,由此求得a 的取值范围.【详解】 画出2x y =与2yx 的图象如下图所示,由图可知,当0x >时,2x y =与2y x 的图象有2个交点,也即()f x 的图象有2个零点. 所以当0x ≤时,()f x 有1个零点.当0x ≤时,画出()20x y ex +=≤的图象如下图所示,由图可知,要使()20x y e x +=≤与y a =只有1个交点,则需1a =或2a e >.所以a 的取值范围是{}()21,e ⋃+∞. 故答案为:{}()21,e ⋃+∞【点睛】研究分段函数零点问题,可结合函数图象,将零点问题转化为函数交点个数问来研究.17.【分析】根据解析式画出函数图象去绝对值并结合对数的运算性质求得根据正弦函数的对称性求得将化为结合二次函数的性质即可得出结果【详解】函数画出函数图象如下图所示:由函数图象可知若则因为与关于对称则且去绝 解析:()0,12【分析】根据解析式,画出函数图象.去绝对值并结合对数的运算性质求得12x x ⋅,根据正弦函数的对称性求得34x x +,将()()341222x x x x --化为2441220x x -+-,结合二次函数的性质,即可得出结果. 【详解】函数()2 log,02sin,2104x xf xx xπ⎧<<⎪=⎨⎛⎫≤≤⎪⎪⎝⎭⎩,画出函数图象如下图所示:由函数图象可知,若()()()()1234f x f x f x f x k====,则()0,1k∈,因为1234x x x x<<<,3x与4x关于6x=对称,则2122log logx x=,3412x x+=,且4810x<<,去绝对值化简可得2122log logx x-=,即2122log log0x x+=,由对数运算可得()212log0x x⋅=所以121x x⋅=,则()()()3434343412222420x xx x x x x xx x--=-=++-()23444442012201220x x x x x x=-=--=-+-,令21220y x x=-+-,()8,10x∈,因为21220y x x=-+-是开口向下,对称轴为6x=的二次函数,所以21220y x x=-+-在()8,10x∈上单调递减,所以10012020649620y-+-<<-+-,即012y<<;即()()()34244122212200,12x xx xx x--=-+-∈故答案为: ()0,12.【点睛】本题考查了分段函数的性质及应用,涉及求二次函数的最值,根据数形结合的方法求解即可,属于中档题.18.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.19.【分析】先画出当时函数的图象当时利用周期性画出函数的图象在同一直角坐标系内画出直线的图象利用数形结合进行求解即可【详解】当时画出函数的图象当时当时画出函数的图象如下图所示:Failedtodownl 解析:(1,)-+∞【分析】先画出当0x ≥时函数()f x 的图象,当0x <时,利用周期性画出函数()f x 的图象,在同一直角坐标系内画出直线y x a =--的图象,利用数形结合进行求解即可. 【详解】当0x ≥时,画出函数()f x 的图象,当10x -≤<时,1()21x f x +=-,当21x -≤<-时,2()21x f x +=-,画出函数()f x 的图象如下图所示: [Failed to download image :http://192.168.0.10:8086/QBM/2020/4/16/2442971918139392/2444041550692352/EXPLANATION /d0eaa7b33ddc4636b9cc52164f3abcc4.png]因为方程()f x x a =--有两个不同实根,所以函数()f x 和函数y x a =--的图象有两个不同的交点.由直线y x a =--过(0,1),得1a =-; 由直线y x a =--过(0,0),得0a =; 由直线y x a =--过(1,0)-,得1a =; 而函数()f x 不过(0,1),(1,1),(2,1)--因此有当1a >-时,函数()f x 和函数y x a =--的图象有两个不同的交点.,即方程()f x x a =--有两个不同实根.故答案为:(1,)-+∞【点睛】本题考查了已知方程根的个数求参数取值范围问题,考查了数形结合思想,考查了函数的周期性,考查了数学运算能力.20.【分析】作出函数图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点数形结合即可得解【详解】作出函数的图象关于方程有三个不相等的实数根即图象与直线有三个不同的公共点由图可得:【点睛】此题考解析:1[,1)2.【分析】作出函数图象,关于x方程()f x ax=有三个不相等的实数根,即()f x图象与直线y ax=有三个不同的公共点,数形结合即可得解.【详解】作出函数21(0)()(1)(0)x xf xf x x-⎧-≤=⎨->⎩,,的图象,关于x方程()f x ax=有三个不相等的实数根,即()f x图象与直线y ax=有三个不同的公共点由图可得:1[,1)2a∈【点睛】此题考查方程的根的问题,根据函数图象,数形结合求解,需要熟练掌握常见基本初等函数的图象和性质,准确作出函数图象求解.三、解答题21.(1)2-和1;(2)答案见解析.【分析】(1)当12a=时,直接解方程()0f x=,即可求得函数()f x的零点;(2)分0a=和0a≠两种情况讨论,在0a=时,直接求解即可;在0a≠时,结合∆的符号可得出函数()f x 的零点个数. 【详解】 (1)当12a =时,()211122f x x x =+-,令()0f x =,可得220x x +-=,解得2x =-或1x =.此时,函数()f x 的零点为2-和1;(2)当0a =时,()1f x =-,此时函数()f x 无零点; 当0a ≠时,24a a ∆=+. ①若∆<0,即40a 时,此时函数()f x 无零点;②若0∆=,即4a =-时,函数()f x 有且只有一个零点; ③若0∆>,即4a 或0a >时,此时函数()f x 有两个零点. 综上所述,当40a时,函数()f x 无零点;当4a =-时,函数()f x 有且只有一个零点; 当4a或0a >时,函数()f x 有两个零点.【点睛】思路点睛:本题考查含参二次函数零点个数的分类讨论,步骤如下: (1)首先确定首项系数为零的情况,直接解方程()0f x =即可;(2)对首项系数不为零进行讨论,分∆<0、0∆=、0∆>三种情况讨论,可得出函数()f x 在不同情况下的零点个数.22.(Ⅰ)()44xxf x -=+,()44xx g x -=-;(Ⅱ)5,2⎛⎫+∞ ⎪⎝⎭.【分析】(Ⅰ)由()()124x f x g x +-=,结合()f x 的偶函数,()g x 是奇函数,得到()()124x f x g x -+-=,两式联立求解.(Ⅱ)()4x f x m m =⋅-在10,2⎛⎫ ⎪⎝⎭恰有一个实根,即()214410x x m m --⋅-=在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,令()4,1,2xz z =∈,转化为()2110m z mz ---=在()1,2上恰有一个实根,令()()211h z m z mz =---,用二次函数的性质求解.【详解】(Ⅰ)由()()124x f x g x +-=.得()()124x f x g x -+---=,.因为()f x 的偶函数,()g x 是奇函数, 所以()()124x f x g x -+-=,解得()44xxf x -=+,()44xx g x -=-.(Ⅱ)因为()4xf x m m =⋅-在10,2⎛⎫ ⎪⎝⎭恰有一个实根, 即444x x x m m -+=⋅-,在10,2⎛⎫ ⎪⎝⎭恰有一个实根, 即()214410xxm m --⋅-=在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,令()4,1,2xz z =∈,则()2110m z mz ---=在()1,2上恰有一个实根,令()()211h z m z mz =---又()12h =-,则有()2250h m =->或()()244012211020m m m m m h ⎧∆=+-=⎪⎪<<⎪-⎨⎪-<⎪<⎪⎩, 解得52m >, 综上m 的取值范围为5,2⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 23.(1)3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值. 【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭, 把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-.∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈, ∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.24.(1)该工厂生产100件产品时,使得每件产品所需成本费用最少;(2)25,30.a b ==【分析】(1)建立函数的解析式,再利用基本不等式求函数的最值;(2)根据利润=销售收入-成本,求出利润函数,再利用当产量为150套时利润最大,此时每套价格为30元,结合二次函数的性质建立条件关系,即可求a ,b 的值 【详解】解:(1)由题意,每套玩具所需成本费用为211000510001000105255251010x xP x x xxx x++==+++==,当且仅当100010x x=, 即100x =时,每套玩具所需成本费用最少为25元.(2)利润22111()()(10005)()(5)10001010x y xQ x P x a x x x a x b b =-=+-++=-+--,若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,∴满足5150112()1015030ab a b -⎧=⎪-⎪⎨⎪+=⎪⎩,解得25a =,30b =.【点睛】本题考查函数模型的构建,考查利用基本不等式求函数的最值,考查二次函数的最值,确立函数模型是关键,属于中档题.25.(1)见解析;(2)见解析;(3)1(,0)4-【分析】(1)可判断函数f (x )在定义域内不单调,由闭函数的定义可作出判断;(2)按照闭函数的定义只需证明两条:①在定义域内单调;②该函数值域也为[﹣1,1];(3)由y k =0,+∞)上的增函数,知其符合条件①;设函数符合条件②的区间为[a ,b ],从而有a k b k ⎧=⎪⎨=⎪⎩x k =用二次方程根的分布知识可得k 的限制条件; 【详解】(1)函数f (x )在区间1,2⎛⎤-∞ ⎥⎝⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增;所以,函数在定义域上不是单调递增或单调递减函数,从而该函数不是闭函数. (2)先证y =﹣x 3符合条件①:对于任意x 1,x 2∈[﹣1,1],且x 1<x 2, 有331221y y x x-=-=()()22212121x x x x x x -++=()222121113024x x x x x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,∴y 1>y 2,故y =﹣x 3是R 上的减函数.又因为y =﹣x 3在[﹣1,1]上的值域是[﹣1,1]. 所以函数y =﹣x 3(x ∈[﹣1,1])为闭函数;(3)易知y k =0,+∞)上的增函数,符合条件①;设函数符合条件②的区间为[a ,b ],则有a k b k ⎧=+⎪⎨=⎪⎩故a ,b是x k =22(21)00x k x k x x k ⎧-++=⎪⎨⎪⎩有两个不等非负实根;设x 1,x 2为方程x 2﹣(2k +1)x +k 2=0的二根,则2212212(21)4021000k k x x k x x k k ⎧∆=+->⎪+=+>⎪⎨=⎪⎪<⎩,解得:104-<<k ∴k 的取值范围:1,04⎛⎫- ⎪⎝⎭. 【点睛】本题考查新定义,考查导数知识的运用,解题的关键是理解新定义,并利用新定义求参数的值,属于中档题. 26.(1)48;(2)24log 3【分析】(1)根据指数运算法则求解,(2)作辅助线,将所求三角形面积转化为一个大直角三角形面积减去一个小直角三角形面积以及一个直角梯形面积,利用坐标表示面积,最后根据二次函数性质求最值. 【详解】(1)()()()123312123222224x x x x x x f x x x m m m ++++===++,∴ 当2m =时,()12348f x x x ++=;(2)过C 作直线l 垂直于x 轴,分别过,A B 作11,AA BB 垂直于直线l ,垂足分别为11,A B ,则1111ABC AAC BB C AA B B S S S S ∆∆∆=--梯形 ()()()31323231111422222x x x x x x x x =-⨯--⨯--+-⨯ ()()()()21322222log 2log log 4x x x m m m =-+=+-++()2222224log log 144m m m m m +⎛⎫==+ ⎪++⎝⎭即S 关于m 的函数为:()224log 14S m m m ⎛⎫=+⎪+⎝⎭,[)2,m ∈+∞令24v m m =+,因为24v m m =+在[)2,+∞上是增函数,∴12v ≥ 再令41t v =+,则41t v =+在[)12,+∞上是减函数,∴413t <≤; 而2log S t =在区间41,3⎛⎤ ⎥⎝⎦上是增函数,所以,函数()224log 14S m m m ⎛⎫=+⎪+⎝⎭在区间[)2,+∞上是减函数,故当2m =时,()()2max 42log 3S m S ==.【点睛】本题考查指数函数、对数函数以及二次函数性质,考查基本分析求解能力,属中档题.。

【高中数学】2.6函数模型及其应用

【高中数学】2.6函数模型及其应用

【高中数学】2.6函数模型及其应用重难点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同类型的函数增长的含义.大纲要求:① 了解指数函数、对数函数、幂函数的增长特性,了解线性增长、指数增长、对数增长等不同函数类型的增长含义;②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.如果人口自然年增长率控制在1.25%,1995年我国总人口为12亿,中国总人口哪一年会超过14亿当堂练习:1.一天中物体的温度T是时间T的函数:T(T)=t3-3t+60,时间单位为小时,温度单位为。

当t=0表示中午12:00,然后t值为正值时,上午8:00的温度为()a.8 b.112 c.58 d.182.一家商店出售两种不同价格的商品:A和B。

由于A商品的价格连续两次上涨20%,B商品的价格连续两次下跌20%,因此每件售价为23.04元。

如果商店同时销售这两种商品中的一种,与价格不涨不跌的情况相比,商店的利润是:()a.多赚5.92元b.少赚5.92元c.多赚28.92元d.盈利相同3.工厂生产所需的一些配件可以自行购买或生产。

如果购买,价格为1.10元;如果是自己生产,固定成本每月增加800元,每个配件生产所需的材料和劳动力为0.60元,那么该配件外包或自产的转折点是()件(即生产多少件,自产多少件符合成本效益)a.1000 b.1200 c.1400 d.16004.在数学实验中,使用图形计算器收集以下数据集x-2.0-1.01.00二3.00Y0.24零点五一1二点零二3.98八点零二则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()a、 y=a+bxb、 y=a+bxc、 y=a+logbxd、 y=a+b/x5.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240,x∈n),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()a、 100套B.120套C.150套D.180套6.购买手机的“全球通”卡,使用须付“基本月租费”(每月需交的固定费用)50元,在市内通话时每分钟另收话费0.40元;购买“神州行”卡,使用时不收“基本月租费”,但在市内通话时每分钟话费为0.60元.若某用户每月手机费预算为120元,则它购买_________卡才合算.7.某商场以6元的单价购买了一批日用品。

高中数学:函数模型及其应用

高中数学:函数模型及其应用

应用函数模型解决实际问题通常有四个步骤:①阅读理解,认真审题;②引进数学符号,建立数学模型;③利用数学的方法,得到数学结果;④转译成具体问题作出解答。

其中关键是建立数学模型,下面谈一谈函数模型的应用。

一、二次函数模型例1、如图所示,某房地产公司在矩形拆迁地ABCD中规划一块矩形地面PQCR建造住宅小公园,为了保护文物,公园又不能超越文物保所区的界线EF,由实地测量知,米,米,米,米,问:怎样设计矩形公园的长和宽,才能使其面积最大?最大面积是多少?分析:由题意可知,点Q、R必定在边BC、CD上。

若点P在DF上,则矩形PQCR应为具有最大面积的矩形PQCD;若点P在BE上,则矩形PQCR应为具有最大面积的矩形EBCR。

因此只需求出点P在EF上时矩形PQCR的最大面积,然后加以比较便知。

解析:设点P在EF上,PQ=x,则。

延长QP交AF于G,则。

因为∽,故。

所以。

x,当时,最大,此时最大值约为24067。

而,所以。

故设计矩形公园的长PQ为190米,宽PR约为126.67米时,其面积最大,最大面积约为24067平方米。

说明:根据几何图形的形状,对点P的位置进行分类讨论,比较不同位置下面积的大小,从而求出最大面积时点P的位置。

此题借助于二次函数的最值研究方法,求出了矩形PQCR面积的最大值。

二、分段函数模型例2、一家报刊摊点,从报社买进报纸价格是每份0.24元,卖出是每份0.40元,卖不掉的报纸还可以每份0.08元的价格退回报社,在一个月的30天里,有20天每天可卖出300份,其余10天,每天卖出200份,但这30天里,每天从报社买进的份数必须相同,这家报刊摊点应该每天从报社进多少份报纸,才能获得最大利润?一个月可赚多少钱?解析:设这家报刊摊点第天从报社买进x份报纸,一个月可赚y元。

①当时,。

②当时,。

③当时,。

综上知,这家报刊摊点应该每天从报社进300份报纸,才能获得最大利润,一个月可赚1120元。

说明:函数模型为分段函数,求分段函数的最值,应先求出函数在各分段的最值,然后取各分段的最值中的最大者为整个函数的最大值,取各分段最值中的最小者为整个函数的最小值。

2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题

2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题

4.5 函数模型及其应用1、几种函数增长快慢的比较 ................................................................................. 1 2、形形色色的函数模型 .. (7)1、几种函数增长快慢的比较1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .y =2x -2 B .y =⎝ ⎛⎭⎪⎫12xC .y =log 2xD .y =12(x 2-1)解析:选D 法一:相邻的自变量之差从左到右依次大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,抛物线拟合程度最好,故选D.法二:可以采用特殊值代入法,取某个x 的值代入,再比较函数值是否与表中数据相符.可取x =4,经检验易知选D.2.有甲、乙、丙、丁四种不同品牌的自驾车,其跑车时间均为x 小时,跑过的路程分别满足关系式:f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 3(x +1),f 4(x )=2x -1,则5个小时以后跑在最前面的为( )A .甲B .乙C .丙D .丁解析:选D 法一:分别作出四个函数的图象(图略),利用数形结合,知5个小时后丁车在最前面.法二:由于4个函数均为增函数,且f 1(5)=52=25,f 2(5)=20,f 3(5)=log 3(5+1)=1+log 32,f 4(5)=25-1=31,f 4(5)最大,所以5个小时后丁车在最前面,故选D.3.(2021·安徽省级示范高中高一期中)若x ∈(0,1),则下列结论正确的是( )A .2x >x 12>lg x B .2x >lg x >x 12 C .x 12>2x >lg xD .lg x >x 12>2x解析:选A 如图所示,结合y =2x ,y =x 12及y =lg x 的图象易知,当x ∈(0,1)时,2x >x 12>lg x ,故选A.4.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:选A 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可知,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ).因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2.故本年5月份甲食堂的营业额较高.5.某企业的一个车间有8名工人,以往每人年薪为1万元.从今年起,计划每人的年薪比上一年增加10%,另外每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么第x 年企业付给工人的工资总额y(万元)表示成x的函数,其表达式为() A.y=(3x+5)1.1x+2.4B.y=8×1.1x+2.4xC.y=(3x+8)1.1x+2.4D.y=(3x+5)1.1x-1+2.4解析:选A第一年企业付给工人的工资总额为8×1.1+3×0.8(万元),第二年企业付给工人的工资总额为(8+3)×1.12+3×0.8(万元),…,以此类推,第x年企业付给工人的工资总额应为y=[8+3(x-1)]×1.1x+2.4=(3x+5)1.1x+2.4(万元).6.函数y=x2与函数y=x ln x在区间(1,+∞)上增长较快的一个是________.解析:当x变大时,x比ln x增长要快,∴x2要比x ln x增长的要快.答案:y=x27.一种专门侵占内存的计算机病毒,开机时占据内存2 KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64 MB内存(1 MB=210 KB).解析:设开机后经过n个3分钟后,该病毒占据64 MB内存,则2×2n=64×210=216,∴n=15,故时间为15×3=45(分).答案:458.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器水高度变化快,与(3)对应,D容器水高度变化慢,与(2)对应.答案:(4)(1)(3)(2)9.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系.解:函数f(x)与g(x)的图象如图所示.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).10.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上一年增加9%.你觉得哪种方案较好.(参考数据:(1+9%)5≈1.538 6)解:方案一:5年后树木面积是10+1×5=15(万平方米).方案二:5年后树木面积是10×(1+9%)5≈15.386(万平方米).∵15.386>15,∴方案二较好.11.当0<x<1时,f(x)=x2,g(x)=x 12,h(x)=x-2的大小关系是()A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x) C.g(x)<h(x)<f(x) D.f(x)<g(x)<h(x)解析:选D在同一坐标下作出函数f(x)=x2,g(x)=x 12,h(x)=x-2的图象.由图象知,D正确.12.某地发生地震后,地震专家对该地区发生的余震进行了监测,记录的部分数据如下表:地震强度(J)1.6×10193.2×10194.5×1019 6.4×1019震级(里氏) 5.0 5.2 5.3 5.4地震强度x(×1019)和震级y的模拟函数关系可以选用y=a lg x+b(其中a,b 为常数).利用散点图可得a=________,b=________.(取lg 2=0.3进行计算)解析:由模拟函数及散点图得a lg 1.6+b=5,a lg 3.2+b=5.2,两式相减得a(lg 3.2-lg 1.6)=0.2,所以a lg 2=0.2,解得a=2 3,所以b=5-23lg 1.6=5-23(4lg 2-1)=5-23×15=7315.答案:23731513.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来拟合h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7解:在坐标轴上标出t (年)与h (米)之间的关系如图所示.由图象可以看出增长的速度越来越慢,用一次函数模型拟合不合适,则选用对数函数模型比较合理.不妨将(2,1)代入h =log a (t +1)中,得1=log a 3,解得a =3. 故可用函数h =log 3(t +1)来拟合这个实际问题.当t =8时,求得h =log 3(8+1)=2,故可预测第8年松树的高度为2米. 14.假设有一套住房的房价从2011年的20万元上涨到2021年的40万元.下表给出了两种价格增长方式,其中P 1是按直线上升的房价,P 2是按指数增长的房价,t 是2011年以来经过的年数.t 0 5 10 15 20 P 1/万元 20 40 P 2/万元2040(1)求函数P 1=f (t )的解析式; (2)求函数P 2=g (t )的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.解:(1)设f (t )=kt +b (k ≠0), 则⎩⎨⎧b =20,10k +b =40⇒⎩⎨⎧b =20,k =2. ∴P 1=f (t )=2t +20.(2)设g (t )=ma t (a >0,且a ≠1), 则⎩⎨⎧m =20,ma 10=40⇒⎩⎪⎨⎪⎧m =20,a =102.∴P 2=g (t )=20×(102)t =20×2t 10.(3)图象如图.表格中的数据如下表所示:t 05101520P1/万元2030405060P2/万元20202404028012增长的价格,但10年后,P2价格增长速度很快,远远超出P1的价格并且时间越长,差别越大.2、形形色色的函数模型1.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N +),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x解析:选D经过1年,y=a(1+5%),经过2年,y=a(1+5%)2,…,经过x年,y=a(1+5%)x.2.某种放射性元素,每年在前一年的基础上按相同比例衰减,100年后只剩原来的一半,现有这种元素1克,3年后剩下()A.0.015克B.(1-0.5%)3克C.0.925克D.1000.125 克解析:选D设每年减少的比例为x,因此1克这种放射性元素,经过100年后剩余1×(1-x)100克,依题意得(1-x)100=0.5,所以x=1-1000.5,3年后剩余为(1-x)3,将x的值代入,得结果为1000.125,故选D.3.某商场2020年在销售某种空调旺季的4天内的利润如下表所示,时间t 123 4利润y(千元)2 3.988.0115.99现构建一个销售这种空调的函数模型,应是下列函数中的()A.y=log2t B.y=2tC.y=t2D.y=2t解析:选B作出散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;把t=1,2,3,4代入B,C选项的函数中,函数y=2t的函数值最接近表格中的对应值,故选B.4.(多选)如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为1B.第5个月时,浮萍面积就会超过30 m2C.浮萍每月增加的面积都相等D.若浮萍蔓延到2 m2,3m2,6 m2所经过的时间分别是t1,t2,t3,则t1+t2=t3解析:选ABD图象过(1,2)点,∴2=a1,即a=2,∴y=2t.∵2t+1-2t2t=2t(2-1)2t=1,∴每月的增长率为1,A正确.当t=5时,y=25=32>30,∴B正确.∵第二个月比第一个月增加y 2-y 1=22-2=2(m 2),第三个月比第二个月增加y 3-y 2=23-22=4(m 2)≠y 2-y 1,∴C 不正确.∵2=2t 1,3=2t 2,6=2t 3, ∴t 1=log 22,t 2=log 23,t 3=log 26,∴t 1+t 2=log 22+log 23=log 26=t 3,D 正确.故选A 、B 、D.5.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10·lg I I 0(其中I 0是人耳能听到的声音的最低声波强度),设η1=70 dB的声音强度为I 1,η2=60 dB 的声音强度为I 2,则I 1是I 2的( )A.76倍 B .10倍 C .1076倍D .ln 76倍解析:选B 依题意可知,η1=10·lg I 1I 0,η2=10·lg I 2I 0,所以η1-η2=10·lg I 1I 0-10·lg I 2I 0,则1=lg I 1-lg I 2,所以I 1I 2=10.故选B.6.在一场足球比赛中,一球员从球门正前方10 m 处将球踢起射向球门,当球飞行的水平距离是6 m 时,球到达最高点,此时球高3 m ,已知球门高2.44 m 并且球按抛物线飞行,球________踢进球门(填“能”或“不能”).解析:建立如图所示的坐标系,抛物线经过点(0,0),顶点为(6,3). 设其解析式为y =a (x -6)2+3,把x =0,y =0代入,得a =-112, ∴y =-112(x -6)2+3.当x =10时,y =-112(10-6)2+3=53<2.44. ∴球能踢进球门. 答案:能7.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料的质量M kg ,火箭(除燃料外)的质量m kg 的函数关系式是v =2 000·ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.解析:当v =12 000 m/s 时,2 000·ln ⎝ ⎛⎭⎪⎫1+M m =12 000,所以ln ⎝ ⎛⎭⎪⎫1+M m =6,所以Mm =e 6-1.答案:e 6-18.我们知道,燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题知,当燕子静止时,它的速度v =0,代入函数关系式可得0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入函数关系式,得 y =5log 28010=5log 28=15.即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.9.某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2015年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )近似符合以下三种函数模型之一:f (x )=ax +b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后选取2015年和2017年的数据求出相应的解析式;(2)因遭受某国对该产品进行反倾销的影响,2021年的年产量比预计减少30%,试根据所建立的函数模型,确定2021年的年产量.解:(1)符合条件的是f (x )=ax +b , 若模型为f (x )=2x +a , 则由f (1)=21+a =4,得a =2, 即f (x )=2x +2,此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合. 由已知得⎩⎨⎧a +b =4,3a +b =7,解得⎩⎪⎨⎪⎧a =32,b =52.所以f (x )=32x +52,x ∈N .故最适合的函数模型解析式为f (x )=32x +52,x ∈N . (2)2021年预计年产量为f (7)=32×7+52=13, 2021年实际年产量为13×(1-30%)=9.1. 故2021年的年产量为9.1万件.10.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (单位:μg)与时间t (单位:h)之间近似满足如图所示的曲线.(1)写出服药后每毫升血液中的含药量y 与时间t 之间的函数关系式y =f (t );(2)据进一步测定:每毫升血液中含药量不少于0.25 μg 时,对治疗疾病有效,求服药一次治疗疾病的有效时间.解:(1)当0≤t <1时,y =kt ,由点M (1,4)在直线上,得4=k ,故y =4t ; 当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a ,由点M (1,4)在曲线上,得4=⎝ ⎛⎭⎪⎫121-a,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(2)由题意知f (t )≥0.25,则⎩⎨⎧4t ≥0.25,0≤t <1或⎩⎨⎧⎝ ⎛⎭⎪⎫12t -3≥0.25,t ≥1,解得116≤t ≤5. 所以服药一次治疗疾病的有效时间为5-116=7916(h).11.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度D (分贝)由公式D =a lg I +b (a ,b 为非零常数)给出,其中I (W/cm 2)为声音能量.(1)当声音强度D 1,D 2,D 3满足D 1+2D 2=3D 3时,求对应的声音能量I 1,I 2,I 3满足的等量关系式;(2)当人们低声说话,声音能量为10-13 W/cm 2时,声音强度为30分贝;当人们正常说话,声音能量为10-12 W/cm 2时,声音强度为40分贝.当声音强度大于60分贝时属于噪音,一般人在100~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.解:(1)∵D 1+2D 2=3D 3,∴a lg I 1+b +2(a lg I 2+b )=3(a lg I 3+b ), ∴lg I 1+2lg I 2=3lg I 3,∴I 1·I 22=I 33.(2)由题意得⎩⎨⎧-13a +b =30,-12a +b =40,⎩⎨⎧a =10,b =160,∴100<10lg I +160<120, ∴10-6<I <10-4.故当声音能量I ∈(10-6,10-4)时,人会暂时性失聪.12.中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近70%,居全球首位.中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称.某科研单位在研发钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y 与这种新合金材料的含量x (单位:克)的关系为:当0≤x <6时,y 是x 的二次函数;当x ≥6时,y =⎝ ⎛⎭⎪⎫13x -t.测得数据如表(部分).(1)求y 关于x 的函数关系式y =f (x ); (2)求函数f (x )的最大值. 解:(1)当0≤x <6时,由题意, 设f (x )=ax 2+bx +c (a ≠0),由题中表格数据可得⎩⎪⎨⎪⎧f (0)=c =0,f (1)=a +b +c =74,f (2)=4a +2b +c =3,解得⎩⎪⎨⎪⎧a =-14 ,b =2,c =0.所以当0≤x <6时,f (x )=-14x 2+2x . 当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -t,由题中表格数据可得,f (9)=⎝ ⎛⎭⎪⎫139-t =19,解得t =7,所以当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7.综上,f (x )=⎩⎪⎨⎪⎧-14x 2+2x ,0≤x <6,⎝ ⎛⎭⎪⎫13x -7,x ≥6.(2)当0≤x <6时,f (x )=-14x 2+2x =-14(x -4)2+4, 所以当x =4时,函数f (x )取得最大值,为4;当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7单调递减,所以f (x )的最大值为f (6)=⎝ ⎛⎭⎪⎫136-7=3,因为4>3,所以函数f (x )的最大值为4.。

高中数学必修一-函数模型的选择及简单应用

高中数学必修一-函数模型的选择及简单应用

函数模型的选择及简单应用知识集结知识元函数的单调性及单调区间知识讲解1.函数的单调性及单调区间【知识点的认识】一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题方法点拨】判断函数的单调性,有四种方法:定义法;导数法;函数图象法;基本函数的单调性的应用;复合函数遵循“同增异减”;证明方法有定义法;导数法.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用符号“∪”联结,也不能用“或”联结,只能用“和”或“,”连结.设任意x1,x2∈[a,b]且x1≠x2,那么①⇔f(x)在[a,b]上是增函数;⇔f(x)在[a,b]上是减函数.②(x1﹣x2)[f(x1)﹣f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1﹣x2)[f(x1)﹣f(x2)]<0⇔f(x)在[a,b]上是减函数.函数的单调区间,定义求解求解一般包括端点值,导数一般是开区间.【命题方向】函数的单调性及单调区间.是高考的重点内容,一般是压轴题,常与函数的导数相结合,课改地区单调性定义证明考查大题的可能性比较小.从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测明年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.例题精讲函数的单调性及单调区间例1.已知函数f(x)=x|x|-2x的单调增区间为________________。

高中数学必修一同步练习题库:函数模型及其应用(填空题:容易)

高中数学必修一同步练习题库:函数模型及其应用(填空题:容易)

函数模型及其应用〔填空题:容易〕1、某电视台应某企业之约播放两套连续剧.连续剧甲每次播放时间为80分钟,其中广告时间为1分钟,收视观众为60万;连续剧乙每次播放时间为40分钟,其中广告时间为1分钟,收视观众为20万.假设企业与电视台达成协议,要求电视台每周至少播放6分钟广告,而电视台每周只能为该企业提供不多于320分钟的节目时间.那么该电视台每周按要求并合理安排两套连续剧的播放次数,可使收视观众的最大人数为_______x2、长为6米、宽为4米的矩形,当长增加工米,且宽减少2米时面积最大,此时宽减少了米, 面积取得了最大值.3、某医院用甲、乙两种原材料为手术后病人配制营养餐,甲种原料每克含蛋白质5个单位和维生素C 10个单位,售价2元;乙种原料每克含蛋白质6个单位和维生素 C 20个单位,售价3元;假设病人每餐至少需蛋白质50个单位、维生素 C 140个单位,在满足营养要求的情况下最省的费用为4、〔10分〕某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费;乙厂直接按印刷数量收取印刷费.甲厂的总费用y1〔千元〕、乙厂的总费用y2 〔千元〕与印制证书数量x 〔千个〕的函数关系图分别如图中甲、乙所示.it f于元〕.1234567B9 *〔l〕甲厂的制版费为千元,印刷费为平均每个—元,甲厂的费用y i与证书数量x之间的函数关系为,〔2〕当印制证书数量不超过2千个时,乙厂的印刷费为平均每个元;〔3〕当印制证书数量超过2千个时,求乙厂的总费用与证书数量x之间的函数关系式为 ;〔4〕假设该单位需印制证书数量为8千个,该单位应选择哪个厂更节省费用?请说明理由5、如图,函数f(x)的图象是曲线 OAB,其中点O, A, B 的坐标分别为(0,0), (1,2), (3,1),那么f(f(3))的值 等于.[Log ->26、设,那么J SQ))的值为|log 2x(x >0 ][〞三.).那么打川.上) 八」_X 2+K (工)0)卜8、函数f (x) =l x+l (工<0) ,对任意的xC [0,「恒有f (x-a) wf(x) ( a>0)成立,那么实数a=.(3 A--.49--9、二次函数F 二的顶点坐标为I 2 ,,且,〞工)二°的两个实根之差等于7 ,/« =10、如图,二次函数 y=ax 2+ bx+c(a, b, c 为实数,点,假设ACXBC,那么实数a 的值为11、某地高山上温度从山脚起每升高 100m 降低0.6C.山顶的温度是 146C,山脚的温度是 26C,那么此山的高为 m.12、我国古代数学名著?数书九章?中有 天池盆测雨〞题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.假设盆中积水深九寸,那么平地降雨量是 ________ 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)13、里氏震级M 的计算公式为:二】趴4一坨遥,其中A 是测震仪记录的地震曲线的最大振幅, 工二是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,那么此次地震的震级为 级;9级地震的最大振幅是 5级地震最大振幅的 倍.7、函数aw0的图像过点 C(t,2),且与x 轴交于 A, B 两14、/3 =」<%-3丁+9 - +4,那么/(X)的最大值是.15、如下图,线段AB=8,点C在线段AB上,且AC=2, P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点 D.设CP=x, 4CPD的面积为f(x),那么f(x)的定义域为; f'(即零点j ------------------- 〜* *AA~~CP B是?第15曲用)16、对于定义域和值域均为1°刀的函数,㈤,定义工⑸/式力=/5(项, 兀(力二八九3 , n=1, 2, 3,….满足九㈤=’的点称为f的程阶周期点.(1)设“那么f的2阶周期点的个数是 ______________________________ ;"*)= 12-2x x = [-=l](2)设〔 2 那么f的2阶周期点的个数是.,y ...... . ...................................... P^4BC J - , k」F(芭F),…、、一口17、如图放置的边长为1的正方形沿轴滚动.设顶点- /的轨迹方程是y二/(月,那么}二〃月在其两个相邻零点间的图象与x轴所围区域的面积/3 二/一工一二人-= ir18、函数''' 的一个零点所在的区间为I -,那么比的值为 .19、在一定范围内,某种产品的购置量y吨与单价x元之间满足一次函数关系,如果购置1000吨,每吨为800元,购置2000吨,每吨700元,那么客户购置400吨,单价应该为元.20、〔此题总分值9分〕某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.投资1万元时,两类产品的收益分别为0.125万元和0.5万元〔如图〕〔1〕分别写出两种产品的收益与投资的函数关系.〔2〕该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21、某汽车油箱中存油22 kg,油从管道中匀速流出, 200分钟流尽,油箱中剩余量y〔kg〕与流出时间x 〔分钟〕之间的函数关系式为 .周一4口工+1|飞卜1 txWR〕的最大值为M,最小值为m ,那么的值为23、我市某旅行社组团参加香山文化一日游,预测每天游客人数在:“至13"人之间,游客人数 ' 〔人〕与游客的消费总额* 〔元〕之间近似地满足关系:.那么游客的人均消费额最高为_________ 元24、某工厂2002年生产某种产品2万件,以后每一年比上一年增产20%,那么从年开始这家工厂、土工由* 口M金* 曰加一八flfi- = 0.3010L1E3= 0,4771〕生厂这种广品的年广重超过12万件.6中22、函数25、用长为18cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为 2: 1,那么长方体的最大体积是 ______________其中正确命题是27、设函数〃方=皿口/-1) .假设了 有唯一的零点工(7立R ),那么实数a= 128、函数上的零点个数是于(%) -- + : (工于己29、设, 21:二,那么f(x)+f(1-x)=,并利用推导等差数列前 n 项和公式的方法,求得 f(-5)+f(-4)+ +f(0)+ ■ +f(5)+f(6)的值为30、假设关于工的方程 匕- I"山工有解,那么实数巳的取值范围是 ▲.31、设口力u 克,关于X 的方程Xy "Xx-F + D =0的四个实根构成以"为公比的等比数列,假设32、、一种新款 的价格原来是 a 元,在今后m 个月内,价格平均每两个月减少p%,那么这款 的价格 y 元随月数x 变化的函数解析式: —(1)方程角鼠处]-°有且仅有 6个根 (2)方程处八年1 . °有且仅有3个根 (3)方程/[/")] = °有且仅有5个根(4)方程W 式期=°有且仅有4个根26、函数〃工.叮=且付在一工?]的图象如下所示:给出以下四个命题:口'的取值范围是33、设函数7⑶的定义域为,假设存在非零实数k使得对于任意工三口有,伏-幻:/〔工〕,那么称人工〕为Q上的定调函数〞.如果定义域是「L-工〕的函数为「L-M〕上的无调函数〞,那么实数4的取值范围是▲34、假设函数八,“疗+ / Tin,一〞-ig/1〕有三个零点,那么?的值是35、如果关于实数的所有解中,仅有一个正数解,那么实数口的取值范围为36、在同一平面直角坐标系中, > =虱力的图象与J'=卜〞的图象关于直线丁= '对称,而A /⑸的图象与J =式公的图象关于点对称,假设•"⑸=T ,那么实数网的值为37、.函数*2 =,-X - 1的单调递减区间为▲ 38、放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素葩137的衰变过程中,其含量〔单位:太贝克〕与时间才〔单位:年〕满足函数关系:"〔f〕=/上:,其中乂为『=.时葩137的含量,「二卸时,葩137的含量的变化率是一1讪2 〔太贝克/年〕,那么必那么二—太贝克.39、°<日<1 ,那么函数J 一" 一'呜〞的零点的个数为40、假设是方程产,",.一侬,匚亡的的根,其中:是虚数单位,那么一.x+z= 1< -j'sinE -33=2*w" 尸科** ^3^ 鼻m41、假设关于T1' 一的三元一次方程组I " " ■有唯一解,那么8的取值的集合是------------- ------ .42、〔文〕方程1Og上仅7〕=工的解是43、某区的绿化覆盖率的统计数据如下表所示,如果以后的几年继续依此速度开展绿化,那么到44、1992年底世界人口到达54.8亿,假设人口的平均增长率为1%,经过工年后世界人口数为3〔亿〕,那么与工的函数解析式为45、对任意一,函数一⑴满足㈤T,设/=【了⑴⑺,数列31同〕的前15项的和为16 ,那么/QA.46、假设函数"工〕一国+ " ' 没有零点,那么以的取值范围为47、函数/〔幻满足/住+1> = 一&〕,且/'〔工〕是偶函数,当工H01]时,,⑴三亡;假设在区间[T3]内,函数= —有4个零点,那么实数k的取值范围为一.48、关于*的方程V- + 2x + C^0有一个正根与一个负根的充要条件是49、某校要建造一个容积为8^',深为2m的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为元.50、购置的全球通〞卡,使用须付根本月租费〞每月需交的固定费用〕50元,在市内通话时每分钟另收话费0.40元;购置神州行〞卡,使用时不收根本月租费〞,但在市内通话时每分钟话费为0.60元.假设某用户每月费预算为120元,那么它购置卡才合算.51、方程2x|=2 —x的实数解有个.52、以初速度40 A,垂直向上抛一物体,,时刻的速度〔卜的单位是八〕为'=40-10.,那么该物体达到最大高度为.米53、一批设备价值*万元,由于使用磨损,每年比上一年价值降低b%,那么建年后这批设备的价值为___________ 万元.54、定义在R上的奇函数门口和偶函数目⑸满足『3 ’虱月=丁,假设不等式喈⑴*虱2»士0对,苣〔0,1]恒成立,那么实数交的取值范围是.55、建造一个容积为18m3,深为2m的长方体无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么这个水池的最低造价为〔单位:元〕.56、某种化学反响需要一种催化剂加速反响,但这种催化剂用多了对生成物有影响〔影响它的纯度〕.假设这种催化剂参加量在^到〞断1兄之间,那么第二次参加的催化剂的量为芸.57、用二分法求方程x3-2x-5=0在区间[2, 3]上的近似解,取区间中点x°=2 . 5,那么下一个有解区间为.58、一辆汽车沿直线轨道前进,假设司机踩刹车后汽车速度叫r-i 八〔单位:米/秒〕,那么汽车刹车后前进二米才停车;59、由曲线?.和露次= = 所围成的图形的面积的最小值是_.60、092年底世界人口到达’4无亿,假设人口的年平均增长率为不整上河.年底世界人口为丁亿,那么手与之的函数关系式为 .61、某厂2021年12月份产值方案为当年1月份产值的a倍,那么该厂2021年度产值的月平均增长率为.62、,〔灯是周期为2的奇函数,当.工至工1时,那么\ 5』63、将函数户小,S XT'-二缶在仁曲的图像绕坐标原点逆时针方向旋转角59 W⑴,得到曲线Q.假设对于每一个旋转角,曲线C都是一个函数的图像,那么,的最大值为(1) 1; 0. 5; y=0. 5x+1 (2) 1 . 5(3) 尸?=—上+ —4 2(4)选择乙厂更节省费用1、200万2、0.5 (或一米)3、23参考答案5、6、7、8、9、-4/—12工十4010、11、19004、13、5, 10000.15、16、2,417、18、119、500020、(1)八6二:封了?与近可二不同工之可8 2(2)当* = 2 ,即至=之6万元时,收益最大,,但=二万元1121、y= 22- I..x22、233、34、2(f 0]u[226、⑴(3)(4)27、428、329、1,630、11231、32、 • 一 .」•'〔:二二〕37、38、150 15.39、ffl40、7T—,Z} 41、42、43、ID44、54.8(1 +1%)x45、3/4(OJ) 工)46、49、352050、神州行51、252、8053 '53、55、540056、,二-57、[2, 2, 5]63、【解析】1每次播放时间〔单位皿电广告时间〔单位口回1收视观众〔单位连续剧甲「80P 1连线配4012C i限制条件播放最长时间320戢少厂告时间6设每周播放连续剧甲?次,播放连续剧乙丁次,收视率为-,那么目标函数为工-.约束条件为SOx+401 <320 x + y>6 x>G. v>G由图可知,:=60*+?0N在点,』g书处取到最大值200,所以可使收视观众的最大人数为200万X 1 -I5=(6+ 工)(4——) => y = - -JT +X-H 24(0 < r < 8) 2、试题分析:由题意有:设面积为 3 ,那么 2 , 2>3 =2/米1 1 = 0.5 i当K = 1米时, ~ 2那么2 米.故填0.5 〔或2米〕.考点:此题考查数学建模水平和二次函数求最值点的方法.3、解:设每盒盒饭需要甲、乙原料分别为x 〔克〕,y 〔克〕,所需费用为S=2x+3y,61、62、arctafi—作出可行域如图.且x、y满足由图可知,直线s=2x+3y过A 〔4, 5〕时,s最小,即S 最/」、=2X4+3X5=23.故甲、乙原料应该分别使用4, 5时,才能既满足营养,又使病人所需费用最省,最省的费用为23.故答案为:23.【点评】用图解法解决线性规划问题时,分析题目的条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组〔方程组〕寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比拟,即可得到目标函数的最优解,该题是中档题.4、试题分析:〔1〕由函数图像可知甲厂印刷量为2千元时,费用为2千元,因此可得到一次函数关系式〔23〕的系数,从而得到函数解析式;〔2〕由乙的函数图像过点时可得到印刷费3千时印刷量为2千个,从而得到平均值;〔3〕利用待定系数法,设出解析式后由函数图像过的两点坐标代入函数式可得到参数值,从而得到函数式;〔4〕利用两函数解析式分别求出自变量为8时的函数值,比拟可得选择哪个厂更节省费用试题解析:〔1〕印刷量为0时费用为1千元,因此制版费为1千元;图像过点,所以印刷2千时,〔2 21 f 0 fl费用为1千,因此平土费用为0. 5;由函数过点V 1X —,因此方程为y=0. 5x+1 ;〔2〕印刷量为2千时费用为3千,因此平均费用为1. 5〔3〕设y2=kx+b ,由图可知,当 x=6 时,y 2=y i =0 , 5><6+1=4 , 所以函数图象经过点〔2,3〕和〔6,4〕[2H8二3所以把〔2,3〕和〔6,4〕代入y 2=kx+b ,得色〞 =4 ,b ——解得- ~ ,所以y 2与x 之间的函数关系式为〔4〕由图象可知,当 x=8时,y I >y 2,因此该单位选择乙厂更节省费用.〔求出当x=8时,y 1和y 2的值,用比拟大小的方法得到结论也正确〕 考点:1.函数图像;2.函数解析式5、由图可知 f(3) = 1, f(f(3)) =f(1) = 2.一 ,⑵二 1鸣〔〞-1〕二6、试题分析:由于 -考点:1.分段函数;2.指数、对数运算.考点:1.二次函数的图象与性质; 2.分段函数的性质;3.恒成立问题9、试题分析:由题意,设的两根为9三口1f 〕,那么可得:6 % r » 一、 八—〕=49 = 〔_二_2乂_二+5〕口=49=>口=14,设/〔力=口.7〕〔工+9,又「'『 七八2'.= 7/ -12X + 40考点:二次函数解析式求解 10、设点 A(x i,0), B(x 2,0),那么仁4 = (x i —t, —2), CS =(x 2-t, —2),所以仁4 CB = x i X 2—t(x i + X 2)+t 2 cb bec + 4=0.又 x i x 2= a , x i + x 2=- 口 ,所以 t 2+口 +4 +4=0.又点 C(t,2)在抛物线上,所以 at 2+bt+c=1,所以川⑵/10〕 = 3c =1 7、试题分析:由得考点:分段函数求值.川〕=啕】=.,所以/[".〕]=.8、试题分析:数形结合法,由图象可知当 =1时,对任意的上,°』,恒有f 〔x-a 〕 wf 〔x 〕成立;当 0 nl 时容易举出反例,答案为 1.Ar c 2 2 12,所以t2+ 0 + 口= 口,即—4=°,解得a=—二.ii、(26—14.6) 06 X00=i900.i2、天池盆中水的形状是以上底半径i0寸,下底半径6寸,高9寸的圆台,,平均降雨量==3.i3、试题分析:解析:由灯=1吐1科=以00.-1的001=0当为9级地震时,那么有1纠="-1居=£-1%当为5级地震时,那么有1魏・〃-1配・5十口故4・5皿d・WJ*三=10' =10000所以,事.答案为5,10000.考点:函数应用问题,对数函数的性质.点评:中档题,函数的应用问题,要注意遵循审清题意,设出变量,列出关系式,解,答〞.i4、试题分析/3二火工一3〕:十9 _ J〔x _ 1〕二十4= 33〕二+9一可]-必川*〔0-以的几何意义可以看做点d到点3 G3〕和点C Q2〕距离之差的最大值.而g-'〕所以- I考点:函数的最值两点的距离公式点评:此题的关键是根据函数的几何意义将代数问题转化成几何问题.属中木^题.i5、在三角形DCP中,CP=X, DC=2, DP=6-X.由三角形两边之和大于第三边,两边之差小于第三边得2 <x< 4.16、试题分析:〔1〕当xC [0, 1]时,后〔-丫〕一/〔此=工,由工=x 得,x=0,1 , f 的1阶周期点的个数是 2; 当xC [0, 1]时,/2〔工〕=『0;]工〕〕=*',由H 」=x ,得x=0,1,所以f 的2阶周期点的个数是2.J〔2〕当 xC [0,2]时,f [〔x 〕 =2x=x ,解得 x=0,I 2当xC 〔2,1]时,f 1 〔x 〕 =2-2x=x ,解得x= -,.二f 的1阶周期点的个数是 2;£当 xC [0, A ]时,f [〔x 〕 =2x, f 2 〔x 〕 =4x=x ,解得 x=0;II 1当 xC 〔4, 2]时,f [〔x 〕 =2x, f2 〔x 〕 =2-4x=x ,解得 x=-; I 3 2当 xC 〔 2,4]时,f [〔x 〕 =2-2x, f 2 〔x 〕 =-2+4x=x ,解得 x=-; 34 当 xC 〔 4 , 1]时,f [〔x 〕 =2-2x , f 2 〔x 〕 =4-4x=x ,解得 x= ’ .二. f 的 2 阶周期点的个数是 22=4. 故答案为2, 4. 考点:此题主要考查函数的 2阶周期点的个数的求法.点评:新定义问题是中档题.解题时要认真审题,仔细解答,注意分类讨论思想和等价转化思想的灵活运 用.1P 点从x 轴上开始运动的时候,首先是围绕 A 点运动4个圆,该圆半径为1,然后以B 点为中央,滚动到 C 点落地,其间是以 BP 为半径,旋转90.,再以C 为 17、考查P 点的运动轨迹,不妨考查正方形向右滚动,7C+ —xl xlq —JI +1圆心,再旋转90°,这时候以CP 为半径,因此最终构成图象如下: S=4- 4故答案为:兀+118、略19、本试题主要是考查了待定系数法的函数解析式的求解和运用. 购置1000吨,每吨为 800元,1000=800k+b; 假设购置2000吨,每吨为700元,2000=700k+b . 解方程组 1000=800k+b , 2000=700k+b得到k=-10 , b=9000函数关系式为y=-10x+9000 .当y=400时,解得x=5000 .故答案为单价应是 5000元, 故答案为5000元.解决这类问题的关键是设出解析式,然后将的变量和函数值代入解析式得到参数的值,进而运用其求 解别的变量的函数值.门向=处乳上〞与正=5 ggf =一=土;,, 二= I -伏〕旗号二彳£0〕即-y — 7[月+ 式20 - 电】二一 十-J20 —< 2€〕依题意得:..一 :-令「-20-? I 1-我 +v =■ -------- + 一〞一一-那么 ,■:至二羲万元时,收益最大, ,包=’万元20、解〔1〕设〔2〕设投资债券类产品 W 万元,那么股票类投资为〔」〕万元2221、流速为一 ••1111ICO 八裕可应100,x 分钟可流X.那么g(x)为奇函数,所以g(x)的最大值与最小值和为0,所以『卜耳-1 -『(工)工日-1 = °:即,11 +冽=2 .消费额最高且为40元.国2-坨2 卜]-2+1* 1lg2+ (n-1) lg1.2=lg12 , • . n= 二二 二二一匚="0.7781" 0.0791 +1〜10.84由于y=JxL2A ,是增函数,现x 取正整数,可知从 2021年开始,这家工厂生产这种产品的产量超过 12万台25、设长方体的宽为 xcm,那么长为2xcm,高为L8-8x-4x 9、---------- —— —3JC4- cm ;它的体积为 V=2x?x?3苒、: :)=9犷-6M ,(其中0<x<2);对V 求导,并令V' (x) =0,得1舐—13 =0,解得x=0,或x=1 ;当0vxv 1时,函数 V (x)单调递增,当1vxv -时,函数 V (x)单调递减;所以,当 x=1时,函数V (x)有最大值3,此时长为2cm,宽为1cm,高为1.5cm.故答案为3.26、解:由于方程过观幻】二° ,中当旦区=0那么有且仅有2个根,因此错误.而其余的方程的根,方程 /I 虱功=0中,纲=0, x 两个值,一个负数一个正数.而无论取正数函数复数,在函数 y=f(x)中,总有 6个交点,因此有且仅有 6个根分别对g(x),f(x)令值,注意验证都可以满足题意.因此选择 (1)(3)(4) 27、由"")"也.有唯一的零点三,口松+1=心有唯一的零点飞记= -axd-122、由于|jd-sinjc+1 /W = U ---/⑴= 1-,所以sin JC],令-23、解:由于根据二次函数的性质可知当每天游客人数在50至130人之间,而其对称轴为x=120,时,人均24、设?为这家工厂2002年生产这种产品的年产量,即 "二=2,并将这家工厂2003、2004年生产这种产品 的年产量分别记为 %、%,根据题意,数列{"肛}是 个公比为1.2的等比数列,其通项公式为। - 7 X 1 小 更 ,根据题意,设2Mb• =12两边取常用对数,得①当 a=^0 时=②当国=.时=1=0 〔舍去〕> =〔-〕r28、函数2的零点个数即函数‘ ? 与函数卜图象的交点个数,⑻十八一)=三 Y+占29、-那么 - -由于f(6)+f(-5) = /(5)+/(-4)=…=/(0) +/(!)=』= /(-4) + /⑸=/(-5) + 〃6)=得,■:一 • ■ 「一- 所以■ " ■由图象可知,两个函数有三个交点,即函数/〔x 〕=dy-jc 22的零点个数为3两式相加可t lnjc-130、因X>° ,所以别离参数可得上,即方程氏+1=1口*有解,即兀的取值l nx -l-xx-Qnx-1)为函数缶丁的值域—")二当时/V0>°,当其)时/r S)<0 ,所以/8==/(屋)=4 小山人 j ,士巾 E 」]卷,故实数上的取值范围是寸.31、设关于、的方程(1-皿+ 1村一改+ 1)=0的四个实根为网』三口鼻,其中X ;三是方程/一必+1=0的两根,三=三是方程f — b 工十1 二 0的两根由于再三二当下,所以网三和三不分别是等比数列的第一、四项和第二、三项_ 3 _ 1 N 一 二不妨设巧为等比数列的首项,那么三二砧1,由七七二1可得 『 口方二(七+FX 三+.)二(及+豌=4a-4'Xq +j)〔1+/X4+铲〕<r“、:…IJ2--2_d)Q/+g+2)----- J (5) = ------------------------- : ------- = --------------- j ------------ 记 q q~,那么 q g由于"仁」,所以当"中"时,/⑷©,此时 ;④ 单调递减;当 〞[口 时/go ,此 时,9」单调递增J 112 27 八1 112尸产■-/1, —) = > — = /( 2)q =-.....所以/⑷在@=1处取到极小值4,而“3,9 *',所以/⑷在, 3处取到极大值91 in11;q 已1不/ F ⑷三乩子]品七乩子]所以当 ,时, 9 ,即 932、由于根据关系式得到 f(3)=f (5) =f(7)=7-5=2,选C二—Lu x /,令/(外二°那么所以 七十七 二日二内三 二1;冯一三二比毛』=1其一 —七 上WT2,不符合;假设左<0那么 2 ,所以2 ,解得^之2.综上可得,k>2人E G) = 4,+*〞—尤加&-f34、令^g r (x) = a x I )ia^2x-Ina=(a x -l\Ina+2x;口 > 1,当“式岭町时,EG" ° 当时,/⑶<口故s (可在其=0处取得极小值,且式=2⑼=1 T 由于函数 声 =,量+£ rh 日-0-1(" 1)有三个零点 故:■’1二 1 即"二—二 3K x = +--— GC C — — = 3H35、当口三°时,方程为工 ,解得 3 ,符合条件.方程 工 即方程1 「 : 1 □ 1—=—OJT T Hax —— = JXj五,那么方程 上仅有一个正数解〞等价于函数.工与函数卜=一"一 , '工的图象在J 轴右侧只有一个交点_F当口 二0时,抛物线卜二一"- 4」,开口向下经过原点且对称轴3 人2万二^一<0当白〈°时,抛物线卜二一"- 4」,开口向上经过原点且对称轴 la,所以此时双曲线与抛物线在33、依题意可得,(工+处土工当工1-1时恒成立,即时恒成立.假设k<0 3 人真二——>2a1> =—,由于双曲线 上的图象位于第一、三象限,所以此时双曲线与抛物线相切.设切点坐标为 &谕,那么双曲线与抛物线在该点处的切线方程相同斜率相同,所以有 一工喉 + 3 =--L不:r 1 —y +3飞=—飞,解得叮二二1轴右侧恒有一个交点.综上可得,或.=36、由于J⑹=T ,所以点〔叽-D是函数3 =,⑸的图象,0*7关于点口口」对称点是!?-阳D,而1 =/〔工〕的图象与}二g⑶的图象关于点〔】◎对称,那么匚-也」〕是}=或稳的图象上的点,即虱2 一同=七点〔2-mJ〕关于直线y=x对称的点是〔1:一用〕,又1二以上〕的图象与J=1n x的图象关于直线y = £对称,所以点〔1二一间是> =瓜工的图象上的点,那么 2 —m=ln L/. m = 2,37、由/㈤々-L*.得/?1 ,所以富0 口,故函数"幻〞Y-1的单调递减区间为〔一K , 0〕〔此处也可以写成〔T,.】〕.38、略39、略40、略41、略42、略43、略44、略45、略46、略48、略49、考点:根据实际问题选择函数类型.4 S分析:设底面一边长x 〔m〕,那么令一边长为工〔m〕,底面积为4,侧面积为2X2X+2XH ,这样,可得总造价y,再利用根本不等式,可求得水池的最低总造价解:设底面一边长x 〔m〕,那么另一边长为工〔m〕,如图:8 4总造价为:y= 〔2X2X+2X工〕X160+4X240= 〔x+工〕>€40+960工^640+960=3520 元4当且仅当x=x,即x=2时,函数y的值最小,即当底面边长为 2 〔m〕的正方形时,建造的水池造价最少.故答案为:3520点评:此题考查了长方形模型的应用,由长方形的侧面积建立函数解析式,由解析式判断单调性并求最值,是中档题.50、考点:分段函数的应用.分析:分别计算出120元两种卡能拨打的分钟数,进而确定哪种卡比拟合算.120 - 50解答:解:购置的全球通卡120元能打的分钟数为:0 4=175 〔分钟〕120购置神州行卡120元能打的分钟数为:山6二2..〔分钟〕由于175V200所以购置神州行的卡比拟适宜.故答案为:神州行.51、方程2|x|=2-x的实数解个数就是函数y=2|x|与y="2-x〞的图象交点的个数,结合图象作答.解:如图:方程2|x|=2-x的实数解个数就是函数y=2|x|与y="2-x"的图象交点的个数,由图象可知,交点个数是2, 故答案为2.52、先求物体到达最大高度即其速度为0时,物体运动时间,再将物体最大高度问题转化为速度函数在时间上的定积分问题,利用微积分根本定理计算定积分的值即得最大高度解:令v=0,得t=4,该物体到达最大高度为h=〈(4OT0t)dt=(40t7J) |A=160-80-0=80故答案为8053、略54、略55、略56、略57、略58、略tan/"——那么 ,2.当切线方程和‘轴重合时,曲线上的点满足函数的定义,即是一个函数图象,再逆时针旋一 [加白伊-打转,曲线不再是一个函数的图象,所以,旋转角为能“一 / ,那么60、 增长率类型题目61、 先假设增长率为 p,再根据条件可得(1+p)1Ja,从而可解. 解: 由题意,该厂去年产值的月平均增长率为p,那么(1+p) 11=a,p=^ -1,62、点评:考察函数的奇偶性的性质和灵活运用,容易出错的是奇函数__ , 1 = J4T1 - 2y 曰 f 工一 63、由一 “可得,『仃-/二".-川,所以函数>二小+6才一/ -2表示的图象是在y.<6:y>-2时,以为圆心、半径为 行 的一段圆弧,设过原点且与曲线c 相切的直线方程为2,设此时直线的倾斜角为22—3 — arc taii —m ,即 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:函数模型及其应用练习1.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P 运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是(D)解析:依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知D项符合要求.2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(B)x 1.99234 5.15 6.126y 1.517 4.041 87.51218.01A.y=2x-2 B.y=12(x2-1)C.y=log2x D.y=log 1 2x解析:由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.3.我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)(C) A.2[x+1] B.2([x]+1)C.2{x} D.{2x}解析:如x=1时,应付费2元,此时2[x+1]=4,2([x]+1)=4,排除A、B;当x=0.5时,付费为2元,此时{2x }=1,排除D,故选C.4.(福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( C )A .8B .9C .10D .11解析:设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C. 5.(贵州遵义模拟)某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元.该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于( B )A .6B .7C .8D .7或8解析:盈利总额为21n -9-⎣⎢⎡⎦⎥⎤2n +12×n (n -1)×3=-32n 2+412n -9.因为其对应的函数的图象的对称轴方程为n =416.所以当n =7时取最大值,即盈利总额达到最大值,故选B.6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示:①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A.①③B.①④C.②③D.②④解析:买小包装时每克费用为3100元,买大包装时每克费用为8.4300=2.8100元,而3100>2.8100,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元),而2.3>2.1,所以卖1大包盈利多,故选D.7.如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P所形成的轨迹为G,记G围成的区域的面积为y,则函数y=f(x)的图象大致为(D)解析:由题意可知点P的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD的周长为8,AB=x,则AD=8-2x2=4-x,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3), 显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D.8.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润(f (n )=前n 年的总收入-前n 年的总费用支出-投资额),则从第 5 年开始盈利.解析:由题知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0, 解得4<n <15,所以从第5年开始盈利.9.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝ ⎛⎭⎪⎫x 2+8x (x >0).则当年广告费投入 4 万元时,该公司的年利润最大.解析:由题意得L =512-⎝ ⎛⎭⎪⎫x 2+8x ≤512-2x 2·8x =21.5,当且仅当x 2=8x ,即x =4时等号成立. 此时L 取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.10.某商品在近30天内每件的销售价格P (元)与时间t (天)之间的函数关系式为P =⎩⎨⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N ,且该商品的日销售量Q (件)与时间t (天)之间的函数关系式为Q =-t +40(0<t ≤30,t ∈N ),则这种商品日销售金额最大的一天是30天中的第 25 天.解析:设日销售金额为W (t )元,则W (t )=P ·Q =⎩⎨⎧(t +20)(-t +40),0<t <25,t ∈N ,(-t +100)(-t +40),25≤t ≤30,t ∈N .令f (t )=(t +20)(-t +40)=-t 2+20t +800(0<t <25,t ∈N ),易知f (t )max =f (10)=900,令g (t )=(-t +100)(-t +40)=t 2-140t +4 000(25≤t ≤30,t ∈N ),易知g (t )max =g (25)=1 125.综上,当t =25,即第25天时,日销售金额W (t )最大.11.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3, ∵x 为整数,∴3≤x ≤6,x ∈Z .当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115. 令-3x 2+68x -115>0,有3x 2-68x +115<0, 结合x 为整数得6<x ≤20,x ∈Z .∴y =⎩⎨⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185;对于y =-3x 2+68x -115=-3·⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270. ∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.12.(山东德州模拟)某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质.已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y =mf (x ),其中f (x )=⎩⎪⎨⎪⎧x 225+2,0<x ≤5,x +192x -2,x >5.当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化.(1)如果投放的药剂的质量为m =5,试问自来水达到有效净化总共可持续几天?(2)如果投放的药剂质量为m ,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解:(1)当m =5时,y =⎩⎪⎨⎪⎧x 25+10,0<x ≤5,5x +952x -2,x >5.当0<x ≤5时,x 25+10>10,显然符合题意; 当x >5时,由5x +952x -2≥5,解得5<x ≤21.综上,0<x ≤21,所以自来水达到有效净化总共可持续21天.(2)y =mf (x )=⎩⎪⎨⎪⎧mx 225+2m ,0<x ≤5,m (x +19)2x -2,x >5.当0<x ≤5时,y =mx 225+2m 在区间(0,5]上单调递增, 所以2m <y ≤3m ;当x >5时,y ′=-40m(2x -2)2<0,所以函数y =m (x +19)2x -2在(5,9]上单调递减,所以7m 4≤y <3m .综上可知7m4≤y ≤3m . 为使5≤y ≤10恒成立,只要⎩⎪⎨⎪⎧7m 4≥5,3m ≤10,解得207≤m ≤103,所以应该投放的药剂质量m 的最小值为207.13.(嘉定模拟)某市环保研究所对市中心每天环境中放射性污染情况进行调查研究后发现,一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=⎪⎪⎪⎪⎪⎪x x 2+1-a +2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈⎣⎢⎡⎦⎥⎤0,12.如果以每天f (x )的最大值为当天的环境综合放射性污染指数,并记为M (a ),若规定当M (a )≤2时为环境综合放射性污染指数不超标,则该市中心的环境综合放射性污染指数不超标时,a 的取值范围为( B )A.⎣⎢⎡⎦⎥⎤0,14 B.⎣⎢⎡⎦⎥⎤0,49 C.⎣⎢⎡⎦⎥⎤14,49 D.⎣⎢⎡⎦⎥⎤49,12 解析:设t =x x 2+1,当x ≠0时,可得t =1x +1x ∈⎝ ⎛⎦⎥⎤0,12,当x =0时,t =0,因而f (x )=g (t )=|t -a |+2a +23=⎩⎪⎨⎪⎧-t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12,从而有g (0)=3a +23,g ⎝ ⎛⎭⎪⎫12=a +76,g (0)-g ⎝ ⎛⎭⎪⎫12=2⎝ ⎛⎭⎪⎫a -14,因而M (a )=⎩⎪⎨⎪⎧ g ⎝ ⎛⎭⎪⎫12,0≤a ≤14,g (0),14<a ≤12,即M (a )=⎩⎪⎨⎪⎧a +76,0≤a ≤14,3a +23,14<a ≤12,当0≤a ≤14时,M (a )<2,当14<a ≤49时,M (a )≤2,当49<a ≤12时,M (a )>2,所以该市中心的环境综合放射性污染指数不超标时,a 的取值范围为⎣⎢⎡⎦⎥⎤0,49.14.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为 y =⎩⎨⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *) ,该工厂的年产量为 16 件时,所得年利润最大.(年利润=年销售总收入-年总投资)解析:当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100; 当x >20时,y =260-100-x =160-x .故y =⎩⎨⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156, 当x =16时,y max =156. 当x >20时,160-x <140, 故x =16时取得最大年利润.15.(潍坊模拟)某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是 120 ; (2)最低种植成本是 80 (元/100 kg). 解析:根据表中数据可知函数不单调, 所以Q =at 2+bt +c ,且开口向上, 对称轴t =-b 2a =60+1802=120,代入数据⎩⎨⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,解得⎩⎨⎧b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80(元/100 kg).16.(西安质检)我国加入WTO 后,根据达成的协议,若干年内某产品的关税与市场供应量P 的关系近似满足:y =P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈⎣⎢⎡⎭⎪⎫0,12,x 为市场价格,b ,k 为正常数),当t =18时的市场供应量曲线如图:(1)根据图象求b ,k 的值;(2)若市场需求量为Q ,它近似满足Q (x )=.当P =Q 时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元的范围内,求税率t 的最小值.解:(1)由图象知函数图象过(5,1),(7,2).解得⎩⎨⎧k =6,b =5.(2)当P =Q 时,2(1-6t )(x -5)2=211-x 2, 则(1-6t )(x -5)2=11-x2,所以1-6t =11-x 2(x -5)2=12·22-x (x -5)2= 12·⎣⎢⎡⎦⎥⎤17(x -5)2-1x -5.令m =1x -5(x ≥9),m ∈⎝ ⎛⎦⎥⎤0,14.设f (m )=17m 2-m ,m ∈⎝ ⎛⎦⎥⎤0,14,对称轴为m =134, 所以f (m )max =f ⎝ ⎛⎭⎪⎫14=1316,所以,当m=14,即x=9时,1-6t取得最大值为12×1316,则1-6t≤12×1316,解得t≥19192,所以税率的最小值为19192.。

相关文档
最新文档