储氢材料

合集下载

1.第三讲储氢材料

1.第三讲储氢材料

⑨ 储氢材料价廉。
52
(三) 影响储氢材料吸储能力的因素
① 活化处理 制造储氢材料时,表面被氧化物覆盖及 吸附着水和气体等会影响氢化反应,采用加 热减压脱气或高压加氢处理。
53
② 耐久性和中毒 耐久性是指储氢材料反 复吸储的性质。向储氢材料供给新的氢气时带 入的不纯物使吸储氢的能力下降称为“中毒”。 ③ 粉末化 在吸储和释放氢的过程中,
23
第一节 金属的贮氢原理 氢与金属或合金的基础反应: (1)H2传质; (2)化学吸附氢的解离,H2=2Had ; (3)表面迁移; (4)吸附的氢转化为吸收氢,Had =Habs; (5)氢在相的稀固态溶液中扩散; (6) 相转变为相, Habs()=Habs(); (7)氢在氢化物( )中扩散。
24
第一节 金属的贮氢原理 合金的吸氢反应机理
25
第一节 金属的贮氢原理
元素周期表中,除He、Ne、Ar等稀有气体外, 几乎所有的元素均能与氢反应生成氢化物或含氢化合 物。 氢与碱金属、碱土金属反应,一般形成离子型 氢化物,氢以H- 离子形式与金属结合的比较牢固。 氢化物为白色晶体,生成热大,十分稳定,不易 于氢的储存。 大多数过渡金属与氢反应,则形成不同类型的 金属氢化物,氢表现为H-与H+之间的中间特性, 氢与这些金属的结合力比较弱,加热时氢就能从 这些金属中放出,而且这些金属氢化物的储量大。
1 2 pH 2
H M
17
第一节 金属的贮氢原理 第二步:
固溶体进一步与氢反应,产生相变,形成氢 化物相(β相):
式中:x为固溶体中的氢平衡浓度,y是合金 氢化物中氢的浓度,一般y≥x。 第三步: 再提高氢压,金属中的氢含量略有增加。
18
第一节 金属的贮氢原理

储氢材料

储氢材料
材料科学与化学工程学院
储 氢 材 料
The brief introduction of hydrogen storage materials
什么是储氢材料?
在一定的温度和压力条件下,能 可逆地吸收和释放氢气的材料,可 作为储氢材料。
储氢材料应具备的特点: 1、低释氢温度
2、吸收—放氢过程可逆
3、材料稳定,安全,无毒,低成本
储氢合金按组成元素的主要种类分为:镁系、稀土系、
钛系、锆系、铁系五大类。
按主要组成元素的原子比分为:AB5型、AB2型、AB 型、
A2B型,其中A是容易形成稳定氢化物的发热型金属元素,B 为难于形成氢化物的吸热型元素,且A原子半径大于B原子半 径。 A如:Ti、Zr、La、Mg、Ca、 Mm(混合稀土金属)等。
单壁纳米碳管束TEM 照片
多壁纳米碳管TEM 照片
2.2.2 碳纳米管材料的制备及研究方法 制备方法 电弧法 气相沉积法
低分子化合物
加载气(H2) 金属微粒催化剂
气相生长
1000~1400°C
碳纤维(或纳米管) 石墨化
2000~3000°C
表面处理
产品
石墨纤维 (或纳米管)
研究方法
有机液态氢化物主要包括苯、甲苯、萘等,人们现在主 要用苯及甲苯来储氢。
有机液体氢化物储氢的优、缺点
有机液体储氢技术与传统的储氢技术(深冷液化、金属氢化 物、高压压缩)相比具有以下优点:
①储氢量大 苯和甲苯的理论储氢质量分数分别为7.19%和 6.18%,比传统的金属氢化物、高压压缩的储氢量大得多。
MOF-5的吸附等温线78K
MOF-5的吸附等温线298K
温度、压力对其储氢性能的影响

储氢材料

储氢材料
hydrogen storage material
20世纪70年代以后,由于对氢能源的研究和开发日趋重要,首先要解决氢气的安全贮存和运输问题,储氢材料范围日益扩展至过渡金属的合金。如镧镍金属间化合物就具有可逆吸收和释放氢气的性质:
编辑本段化学每克镧镍合金能贮存0.157升氢气,略为加热,就可以使氢气重新释放出来。LaNi5是镍基合金,铁基合储氢材料 储氢材料
____
编辑本段纳米材料储氢存在的问题世界范围内所测储氢量相差太大:0.01(wt ) %-67 (wt ) %,如何准确测定
储氢机理如何
四,结束语-氢能离我们还有多远
氢能作为最清洁的可再生能源,近10多年来发达国家高度重视,中国近年来也投入巨资进行相关技术开发研究
氢能汽车在发达国家已示范运行,中国也正在筹划引进
2.13TiFeH0.10 + 1/2H2 → 2.13TiFeH1.04
2.20TiFeH1.04 + 1/2H2 → 2.20TiFeH1.95
镁系
典型代表:Mg2Ni,美Brookhaven国家实验室首先报道
储氢容量高
资源丰富
价格低廉
放氢温度高(250-300℃ )
放氢动力学性能较差
抗杂质气体中毒能力差
实际使用时需对合金进行表面改性处理
PCT curves of TiFe alloy
TiFe(40 ℃)
TiFe alloy
Characteristics:
two hydride phases;
phase (TiFeH1.04) & phase (TiFeH1.95 )
3.2 配位氢化物
3.3 纳米材料

储氢材料综述范文

储氢材料综述范文

储氢材料综述范文储氢材料是指能够吸收、储存并释放氢气的材料。

在氢能源领域的发展中,储氢是一个至关重要的环节,因为氢气的体积密度很大,必须以高效的方式储存,以方便在需要时使用。

本文将对当前常用的储氢材料进行综述,并探讨它们的优缺点。

1.吸附剂吸附剂是一种通过吸附氢气将其储存的材料。

常见的吸附剂有多孔碳材料、金属有机骨架(MOFs)和石墨烯等。

吸附剂具有吸附容量大、反应速度快等特点,但其储氢能力受到温度和压力的影响较大。

此外,吸附剂在吸附和释放氢气时存在能量损失,影响了系统能量效率。

2.氢化物氢化物是一种将氢气与金属元素结合形成化合物的材料,例如金属氢化物和金属嵌/插入化合物。

氢化物储氢的优势在于储氢密度高,但其缺点是吸附和释放氢气的反应速度较慢,且需要较高的温度和压力条件。

此外,氢化物的循环稳定性也是一个需要解决的问题。

3.化学氢储存(化学吸附)化学氢储存是指将氢气吸附到化学反应中产生产物中的材料。

常见的化学吸附剂有氨基硼烷和有机液体。

化学氢储存的优点是储氢密度高,且在环境条件下能够进行吸附和释放反应。

然而,该方法的主要挑战是吸附和释放反应的速率以及循环稳定性的问题。

4.内聚力储氢内聚力储氢是指将氢气以化学键的形式储存在材料中,例如氢化镁和氢化锂等。

这种储氢方式具有很高的储氢密度,同时释放氢气时产生的化学能也可以被利用。

然而,内聚力储氢的挑战在于原料的成本高,以及吸附和释放氢气的动力学限制。

总体而言,不同类型的储氢材料各有优劣势。

目前,研究人员正在努力开发新型储氢材料,以提高储氢容量、降低操作条件、提高储氢效率等。

此外,也有一些复合储氢材料正在研究中,通过结合多种储氢机制来提高整体储氢性能。

综上所述,储氢材料是氢能源领域不可或缺的一部分。

吸附剂、氢化物、化学吸附和内聚力储氢等不同类型的储氢材料各有优劣势,需要根据具体应用场景选择合适的储氢材料。

随着技术的不断进步,相信将会出现更加高效、便捷的储氢技术,进一步推动氢能源的发展。

储氢材料分类

储氢材料分类

储氢材料分类目前储氢材料有金属氢化物、碳纤维碳纳米管、非碳纳米管、玻璃储氢微球、络合物储氢材料以及有机液体氢化物。

下面仅就合金、有机液体以及纳米储氢材料三个方面对储氢材料加以介绍。

一,合金储氢材料储氢合金是指在一定温度和氢气压力下,能可逆的大量吸收、储存和释放氢气的金属间化合物,其原理是金属与氢形成诸如离子型化合物、共价型金属氢化物、金属相氢化物-金属间化合物等结合物,并在一定条件下能将氢释放出来。

合金作为储氢材料要满足一定的要求,首先其氢化物的生成热要适当,如果生成热太高,生成的氢化物过于稳定,释放氢时就需要较高的温度.而如果生成热太低,则不易吸收氢。

其次形成氢化物的平衡压要适当,最好在室温附近只有几个大气压,便于吸放氢,而且要吸放速度快,这样才能够满足实际应用的需求。

另外合金及其氢化物对水、氧和二氧化碳等杂质敏感性小,反复吸放氢时,材料性能不至于恶化。

而且,储氢材料的氢化物还要满足在存储与运输过程中性能可靠、安全、无害、化学性质稳定等条件。

现在已研究的并且符合上述要求的有镁系、稀土系、钛系和锆系等。

在上述储氢材料中,镁系储氢合金具有较高的储氢容量,而且吸放氢平台好、资源丰富、价格低廉,应用前景十分诱人。

镁可直接与氢反应,在300—400℃和较高的压力下, 反应生成Mg和H2反应生成MgH2: Mg + H2= MgH2 △H=-74.6kJ/mol。

MgH2理论氢含量可达7.6% , 具有金红石结构, 性能较稳定, 在287 ℃时分解压为101.3kPa。

由于纯镁的吸放氢反应动力学性能差, 吸放氢温度高, 所以纯镁很少被直接用来储存氢气,为此人们又开始研究镁基储氢合金材料。

到目前为止, 人们已对300多种重要的镁基储氢合金材料进行了研究。

二,液态有机物储氢材料有机液体氢化物贮氢是借助不饱和液体有机物与氢的一对可逆反应, 即加氢和脱氢反应来实现的。

加氢反应时贮氢,脱氢反应时放氢, 有机液体作为氢载体达到贮存和输送氢的目的。

讲义4储氢材料

讲义4储氢材料
4
不同储氢方式的比较总结
气态储氢:能量密度低 不太安全
液化储氢:能耗高 对储罐绝热性能要求高
固态储氢的优势:体积储氢容量高 无需高压及隔热容器安全性好, 无爆炸危险可得到高纯氢, 提高氢的附加值
5
体积比较
6
氢含量比较
0
LaNi H 56
TiFeH nanotube (RT,10MPa 氢压)
➢活化容易,储氢量较大,抗杂质气体中毒性能好 ➢平衡压力适中且平坦,吸放氢平衡压差小
➢动力学特性较差,价格昂贵 ➢改变A、B组元可以改善动力学特性,调整吸放氢温度、平台压力
❖ 经元素部分取代后的
MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成分La 、Ce、Pr、Nd)广泛用于镍/氢电池
22
PCT curves of LaNi5 alloy
23
钛铁系
典型代表:TiFe,美Brookhaven国家实验室 首先发明
价格低 室温下可逆储放氢 易被氧化 活化困难 抗杂质气体中毒能力差
实际使用时需对合金进行表面改性处理
24
TiFe alloy
Characteristics: ❖ two hydride phases; ❖ phase (TiFeH1.04) & phase (TiFeH1.95 ) ❖ 2.13TiFeH0.10 + 1/2H2 → 2.13TiFeH1.04 ❖ 2.20TiFeH1.04 + 1/2H2 → 2.20TiFeH1.95
氢能开发,大势所趋
氢是自然界中最普遍的元素,资源无 穷无尽-不存在枯竭问题
氢的热值高,燃烧产物是水-零排放,无污染
,可循环利用
氢能的利用途径多-燃烧放热或电化学发电 氢的储运方式多-气体、液体、固体或化合物

高中化学常见储氢材料

高中化学常见储氢材料

高中化学常见储氢材料
储氢技术是解决氢能源应用的重要环节之一。

在氢能源的应用中,储氢材料的选择和性能直接影响到储氢系统的性能和成本。

本文将介绍高中化学常见的储氢材料。

1. 金属储氢材料
金属储氢材料是指能够在一定条件下,将氢气吸附或吸附并化学反应形成化合物的金属及其合金。

常见的金属储氢材料有镁、钛、锆等。

2. 有机储氢材料
有机储氢材料是指能够通过吸附氢气来储存氢气的化合物,其主要成分为氨基酸、多孔有机聚合物等。

3. 化合物储氢材料
化合物储氢材料是指由金属、非金属等基础成分组成的化合物,能够在一定条件下储氢,如氢化物、氮化物、碳化物等。

4. 碳材料
碳材料是指以碳为主体的材料,如石墨、碳纤维等,能够通过吸附、物理吸附、化学吸附等方式储氢。

总之,高中化学常见的储氢材料有金属储氢材料、有机储氢材料、化合物储氢材料和碳材料等。

对于不同的应用场景和要求,选择合适的储氢材料非常重要。

- 1 -。

金属材料之储氢材料

金属材料之储氢材料
02
储氢材料通过物理吸附或化学反 应的方式储存氢气,具有高容量 、高纯度、低成本等优点。
储氢材料的分类
根据储氢原理,储氢材料可分为 物理吸附储氢和化学反应储氢两
类。
物理吸附储氢材料主要利用材料 表面的物理吸附作用储存氢气, 具有较高的储存密度和安全性。
化学反应储氢材料通过化学反应 将氢气储存于材料的化学键中, 具有较高的储存容量和较低的成
02 金属储氢材料的特性
金属储氢原理
金属与氢气发生反应,通过物理吸附或化学键合的方式将氢气储存于金属材料中。
金属储氢过程中,氢气与金属原子之间相互作用,形成稳定的金属氢化物。
金属储氢的原理主要基于金属的化学性质和晶体结构,不同的金属具有不同的储氢 能力和特性。
金属储氢材料的优点
01
02
03
高储氢密度
燃油效率和环保性能。
汽车热能回收
03
金属储氢材料可以吸收和释放大量的热能,可用于汽车热能回
收和利用。
感谢您的观看
THANKS
降低成本和提高安全性
成本
金属储氢材料的成本较高,限制了其 大规模应用。通过降低材料成本、优 化制备工艺和提高回收利用率,可以 降低金属储氢材料的成本。
安全性
金属储氢材料在充放氢过程中存在一 定的安全隐患。因此,提高金属储氢 材料的安全性是当前面临的重要挑战。 通过改进材料结构和控制反应条件, 可以降低安全风险。
材料复合化
金属间化合物
多层复合材料
通过控制金属元素的配比和合成条件, 制备具有优异性能的金属间化合物储 氢材料。
将不同种类的金属储氢材料进行多层 复合,利用各层材料的优点实现优异 的综合性能。
纳米复合材料
将金属储氢材料与纳米尺度的其他材 料(如碳纳米管、陶瓷颗粒等)进行 复合,以提高材料的储氢性能和机械 强度。

储氢材料有哪些

储氢材料有哪些

储氢材料有哪些
储氢材料是指能够吸附、吸收或储存氢气的材料。

随着氢能源的发展,储氢材
料的研究和开发变得越来越重要。

目前,主要的储氢材料包括金属氢化物、碳基材料、化合物材料等。

这些材料在储氢过程中具有不同的特性和应用。

金属氢化物是一类重要的储氢材料,它们可以通过吸附氢气来实现储氢。

金属
氢化物的储氢能力主要取决于金属和氢原子之间的化学键强度。

常见的金属氢化物包括镁、钛、锆等金属的氢化物。

这些材料在储氢过程中能够释放出大量的能量,因此被广泛应用于氢能源领域。

碳基材料也是重要的储氢材料之一。

碳材料具有较大的比表面积和丰富的微孔
结构,能够有效地吸附氢气。

常见的碳基储氢材料包括活性炭、碳纳米管、石墨烯等。

这些材料具有良好的化学稳定性和储氢性能,因此被广泛应用于氢能源的储氢系统中。

除了金属氢化物和碳基材料,化合物材料也是重要的储氢材料之一。

化合物材
料通常由金属、非金属元素组成,具有较高的储氢容量和储氢速率。

常见的化合物储氢材料包括金属有机框架材料、过渡金属硼化物、氨硼烷等。

这些材料在储氢过程中能够实现高密度的氢储存,因此被广泛应用于氢能源的储氢系统和储氢车辆中。

总的来说,储氢材料的研究和开发对于推动氢能源的发展具有重要意义。

不同
类型的储氢材料具有不同的特性和应用,可以根据具体的需求选择合适的材料。

随着科技的不断进步,相信未来会有更多高效、安全、经济的储氢材料出现,为氢能源的发展注入新的动力。

储氢材料课件

储氢材料课件

速吸放氢速率和良好平衡的储氢材料能够提高设备的充放氢效率。
储氢材料的性能评估
评估指标
评估储氢材料的性能主要依据其储氢能力、吸放氢速率 、可逆性、稳定性等指标。这些指标可以通过实验测试 获得。
材料筛选
根据实际应用需求,通过对比不同储氢材料的性能指标 ,可以筛选出适合特定应用的储氢材料。
材料改性
为了进一步提高储氢材料的性能,可以通过改性手段对 其进行处理,如表面改性、掺杂改性等,以改善其物理 化学性质。
储氢材料课件
xx年xx月xx日
目 录
• 储氢材料概述 • 储氢材料的性质与性能 • 储氢材料的制备方法 • 储氢材料的研究进展 • 储氢材料的未来发展趋势与挑战 • 结论与展望
01
储氢材料概述
储氢材料的定义
储氢材料是一种能够可逆地吸收和释放氢气的材料。 储氢材料通常具有较高的比表面积、良好的化学稳定性和较低的成本。
提高储氢材料的储氢性能
发展新型高性能储氢材料
研究新型高性能储氢材料的结构和性能,提高储氢材料的储氢 容量和储氢效率。
优化储氢材料的吸放氢性能
通过优化储氢材料的吸放氢性能,实现快速、可逆的吸放氢反应 ,提高储氢材料的实用性和安全性。
研究多尺度储氢材料
从纳米到宏观尺度,研究不同尺度储氢材料的性能和优化方法, 实现多尺度协同优化。
优化储氢材料的合成方法
改进和优化储氢材料的合成方法,实现低成本、大规模、可持续的制备和应用。
解决储氢材料的安全性和环境影响问题
1 2
提高储氢材料的安全性
研究储氢材料的热稳定性、化学稳定性、抗毒 性等安全性能,提高其使用安全性和可靠性。
降低储氢材料的环境影响
研究储氢材料的生命周期评估和环境影响,降 低其对环境的影响,实现可持续发展。

储氢材料介绍

储氢材料介绍

3
在以氢作为能源媒体的氢能体系中,
氢的贮存与运输是实际应用中的关键。
贮氢材料就是作为氢的贮存与运输媒 体而成为当前材料研究的一个热点项目。
4
贮氢材料(Hydrogen storage materials)是在通常条件下能可逆地大量
吸收和放出氢气的特种金属材料。
5
贮氢材料的作用相当于贮氢容器。
贮氢材料在室温和常压条件下能迅速
23
氢在各种金属中的溶解热H(kcal/mol)
24
可见IA-IVA族金属的氢的溶解热是负
(放热)的很大的值,称为吸收氢的元素;
VIA--VIII族金属显示出正(吸热)的值 或很小的负值,称为非吸收氢的元素; VA族金属刚好显示出两者中间的数值。
25
2、金属氢化物的能量贮存、转换
金属氢化物可以作为能量贮存、转换
的斜率可求
出 H,由直
平 衡 氢 压 /
线在lnp轴上
的截距可求
Mpa
出 S。
各种贮氢合金的平衡氢压与温度的关系 (Mm为混合稀土合金) 52
300K时,氢气的熵值为31cal/K.mol.H2,
与之相比,金属氢化物中氢的熵值较小,即
式:
mn MH n ( ) H 2 MH m 2
p3 p2
p1
C p1 B n2 n1 A 对应一个M原子的氢原子数/n
2 M (固) H 2 (气, p ) n
在下面的反应:
吸氢,放热
放氢,吸热
2 MH n (固) H n
完成之前,压力为一定值。
47
若相成分为n, 相成分为m,则在温
度T1时等压区域里的反应为:
mn MH n ( ) H 2 MH m 2

储氢材料

储氢材料

二、储氢合金
储氢合金在一定温度和压力下, 能可逆地吸收、 储存和释放H2。由于其储氢量大、污染少、制备 工艺相对成熟, 所以得到了广泛的应用。 储氢合金研究比较深入的主要有五种: 1)镁系 2)稀土系 3)钛系 4)锆系 5)V基固溶体储氢合金
1)镁系
镁基储氢材料以Mg2Ni 为代表。 镁合金密度小、储氢量大, 理论储氢质量分数达 71.6%, 是目前储氢材料研究的主要热点之一。 但其动力学性能以及在碱液中的循环寿命差, 因此 需要在动力学性能和循环寿命方面进行改善。近 年来, 主要对镁基合金化学组成的优化、合金的组 织结构及合金的表面改性等方面进行了相关的研 究,取得了一定进展。
2)稀土系
典型的稀土储氢合金La2Ni5 该合金具有吸氢快、易活化、平衡压力适中、易 调节、电催化活性好、高倍率放电性能好、对环 境污染小和循环寿命长等优点。 通过元素合金化、化学处理、非化学计量比、不 同的制备及热处理工艺等方法,La2Ni5型稀土储 氢合金作为商用电池的负极材料,目前该系列储 氢合金正向大容量、高寿命、耐低温、大电流等 方向发展。
五、有机液体氢化物储氢
有机液体氢化物储氢技术是借助不饱和液体有机 物与氢的一对可逆反应,即加氢反应和脱氢反应实 现的加氢反应实现氢的储存(化学键合),脱氢反应 实现氢的释放, 不饱和有机液体化合物做氢载体, 可循环使用。 有机液体氢化物储氢具有储氢量大、能量密度高、 储运安全方便等优点,因此被认为是未来储运氢能 的有效方法之一。
三、配位氢化物储氢
配位氢化物储氢材料是现有储氢材料中体积和质量 储氢密度最高的储氢材料,其主要代表是硼氢化钠。 硼氢化钠是强还原剂,在催化剂存在下,通过加水 分解反应可产生比其自身含氢量多的H2,供给燃料电 池, 同时副产物偏硼酸钠可通过电解、球磨等方法 生成硼氢化钠,实现物质和能量循环。 硼氢化钠水解制氢技术安全、方便,是目前一种比 较热门的制氢技术。具有以下优点:不燃烧,在碱 性溶液中能稳定存在;产生H2的速度容易控制;副 产物能被循环利用;H2纯度高, 储存效率高。

第三章 储氢材料

第三章 储氢材料

氢气,使溶液呈强碱性,如:
CaH2+2H2O→Ca(OH)2+2H2↑ 在高温下还原性更强,如:
NaH+2CO→HCOONa+C
2CaH2+PbSO4→PbS+2Ca(OH)2
2LiH+TiO2→Ti+2LiOH
24
离子型氢化物可由金属与氢气在不同条件 下直接合成制得。除用做还原剂外,还用做干 燥剂、脱水剂、氢气发生剂,1kg氢化锂在标准 状态下同水反应可以产生2.8m3的氢气。在非水 溶剂中与+Ⅲ氧化态的B(Ⅲ),Al(Ⅲ)等生成广 泛用于有机合成和无机合成的复合氢化物,如 氢化铝锂:
贮氢材料在室温和常压条件下能迅速 吸氢(H2)并反应生成氢化物,使氢以金属氢 化物的形式贮存起来,在需要的时候,适 当加温或减小压力使这些贮存着的氢释放 出来以供使用。
7
贮氢材料中,氢密度极高,下表 列出几种金属氢化物中氢贮量及其他 氢形态中氢密度值。
8
(1)相对氢气瓶重量
从表中可知,金属氢化物的氢密度与液态氢、
储氢材料
1
第一节 储氢材料
氢能源系统是作为一种储量丰富、无 公害的能源替代品而倍受重视。
如果以海水制氢作为燃料,从原理上 讲,燃烧后只能生成水,这对环境保护极 为有利;
2
如果进一步用太阳能以海水制氢,则 可实现无公害能源系统。
此外,氢还可以作为贮存其他能源的 媒体,通过利用过剩电力进行电解制氢, 实现能源贮存。
传统的基于液化氢和高压气态氢的储存 方法有很大的弊端。要携带足够行驶400-500km的 高压气态氢,容器必须由能禁受住高达700bar压 力的复合材料制成。如果发生撞车,后果不堪设 想;容器的绝热性对再次充氢不利,对压力进行 有效的控制就更是一个难题。

储氢材料

储氢材料
❖ 现在人们对碳纳米管的研究还处于初级阶段,至今不能 完全了解纳米孔中发生的特殊物理化学过程,即氢气吸 附机理和储氢行为,还无法准确测得纳米管的密度,即 应在储氢机理、化学改性和结构控制方面进行深入研究。
精品课件
14
精品课件
15
精品课件
16
5.金属化合物储氢
❖ 储氢合金:在一定的温度和压力条件下,一些合 金能够大量吸收氢气,反应生成金属氢化物同时 放出热量。将这些金属氢化物加热,它们又会分 解将储存在其中的氢释放出来。这些会吸收/释 放氢气的金属合金,被称为储氢合金。
❖ 活性炭作为特种功能吸附材料具有质轻,对少 量的气体杂质不敏感,并且原料丰富、比表面 积高、且可重复使用,微孔孔容大和容易进行 孔径控制、表面化学修饰和负载金属等优点。
精品课件
13
❖ 但从已有的应用研究证明,各种分子筛和超级活性炭均 达不到美国能源部要求(60kg/m3),近年来人们把研 究重点放在碳纳米管方面。
改变温度和压力条件可使反应按正向、逆向反复进 行,实现材料的稀释氢功能。

PCT曲线是储氢材料的重要特征曲线,它可反 映出储氢合金在工程应用中的许多重要特性,
(1) 可以了解金属氢化物中能含多少氢(%)和任一 温度下 的
分解压力值。
精品课件
24
(2)可以看出,金属氢化物在吸氢与释氢时,虽在同一温 度,但压力不同,这种现象称为滞后。作为贮氢材
第四章 贮氢材料
精品课件
1

随着传统能源石油、煤的日渐枯竭,且石油、煤燃烧
产物CO2和SO2又分别产生温室效应和酸雨,使人类面临能源
和环境危机的双重挑战,寻找新的洁净能源已列入人们的议
事日程。

氢是一种洁净能源,其燃烧值为1.43x108j/kg(煤

贮氢材料

贮氢材料

之间。
12
然而,氢吸收元素和氢非吸收元素组成的 合金,不一定都具备贮氢功能。 例如 在 Mg 和 Ni 的金属间化合物中 , 有 Mg2Ni和 MgNi2。Mg2Ni可以和氢发生反应生 成 Mg2NiH4 氢化物,而 MgNi2 在 100atm 左右 的压力下也不和氢发生反应。
13
作为贮氢材料的另一个重要条件是要存在
由直线
的斜率可求
出 H,由直 线在ln p轴上 的截距可求 出 S。
平 衡 氢 压 /
Mpa
图4 各种贮氢合金的平衡氢压与温度的 关系(Mm为混合稀土合金)
22
300K时,氢气的熵值为31cal/K.mol.H2,
与之相比,金属氢化物中氢的熵值较小,即
式:
mn MH n ( ) H 2 MH m 2
42
金属氢化物贮氢材料的应用领域很多,而且
还在不断发展之中,目前对贮氢材料应用包括以
下几个主要方面:
高容量贮氢器、热泵、用作催化剂、发展 镍氢电池、温度传感器、控制器
43
参考文献
[1]马如璋.功能材料学概论[M] .冶金工业出版社,1999.P480-487 [2]胡子龙 . 贮氢材料 [ M ] . 北京 : 化学工业出版社, 2002 .
金属功能材料
—贮氢材料
目录
贮氢材料简介 贮 氢 原 理 贮氢材料应具备的条件 贮氢材料的种类 贮氢材料的应用
2
贮氢材料简介
贮氢材料(Hydrogen storage material)是在一般温和条件下, 能反复可逆地(通常在一万次以上)吸入和放出氢的特种金属材 料。又称贮氢合金或储氢金属间化合物。这种材料在一定温度和 氢气压强下能迅速吸氢,适当加温或减小氢气压强时又能放氢的 材料。 在1970-1985年期间,基于SmCo5和LaNi5的可逆吸储氢和 释放氢的 性质,荷兰的Philips实验室首先研发LaNi5材料,除用 两种金属组合的二元型,如AB2、AB5、AB等外,还开发了多元 金属组成的复合材料。有人将早期开发的稀土类的储氢材料成为 第一类的 储氢材料,而把钛锆系、镁系称为第二代储氢材料。

储氢材料名词解释

储氢材料名词解释

储氢材料名词解释
嘿,朋友!咱今儿来聊聊储氢材料。

你知道吗,储氢材料就像是一
个超级大口袋,专门用来装氢气的呢!比如说,金属氢化物,这玩意
儿就像是一个神奇的小盒子,能把氢气紧紧地“抱”在怀里。

想象一下,氢气就像是一群调皮的小精灵,到处乱跑,而储氢材料呢,就是那个能把它们都收服的厉害角色。

像一些合金,它们可厉害了,能把氢气储存起来,需要的时候再放出来,这不就跟咱存钱到银行,要用的时候再取出来一样嘛!
还有那些有机储氢材料,它们就像柔软的海绵,能吸纳好多好多的
氢气呢。

你说神奇不神奇?咱生活中很多地方都需要氢气,那怎么能
没有好的储氢材料来帮忙呢。

我记得有一次,在实验室里,大家都在研究各种储氢材料。

有个小
伙伴拿着一块金属氢化物,兴奋地说:“看呀,这就是我们的秘密武器!”大家都笑了起来。

这就好比一场战斗,储氢材料就是我们手中的
利器,能帮我们解决很多问题呢。

你说要是没有储氢材料,那我们的氢能汽车怎么跑起来呀?那不是
成了没油的汽车,只能干瞪眼了嘛!储氢材料就是氢能发展的关键呀,没有它,好多美好的设想都没法实现呢。

所以呀,储氢材料真的超级
重要,我们可得好好研究它,让它发挥更大的作用!我的观点就是,
储氢材料是未来能源领域不可或缺的一部分,我们要重视它,不断探索和创新,让它为我们的生活带来更多的便利和惊喜!。

第四章储氢材料正式版ppt课件

第四章储氢材料正式版ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(1) 体积比较
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
Position for H occupied at HSM
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
▪ (LiAlH4在TiCl3、 TiCl4等催化下180℃ ,8MPa氢 压下获得5%的可逆储放氢容量)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
金属配位氢化物的主要性能
▪ 化石能源的使用正在给地球造成巨大的生态 灾难-温室效应、酸雨等严重威胁地球动植物的生存
▪ 人类的出路何在-新能源研究势在必行
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.2 氢能开发,大势所趋
因此,高容量贮氢系统是贮氢材料研究 中长期探求的目标。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

储氢材料的储氢原理及应用

储氢材料的储氢原理及应用

储氢材料的储氢原理及应用储氢材料是指能够吸附、储存和释放氢气的材料。

储氢技术是目前广泛研究和探索的关键能源领域之一,因为氢气是一种高能量和清洁的能源来源。

以下是关于储氢材料的储氢原理及其应用的详细介绍。

一、储氢原理储氢材料的储氢原理主要包括吸附、化学反应和物理吸附等。

1. 吸附储氢吸附储氢是利用储氢材料的孔隙结构和表面积来吸附氢气分子。

常见的吸附储氢材料有活性炭、金属有机骨架材料(MOFs)和碳纳米管等。

这些材料具有高比表面积,能够吸附大量氢气分子。

在一定的压力和温度条件下,储氢材料可以吸附氢气并保持稳定,当需要释放氢气时,也可以通过调整压力和温度来释放。

2. 化学反应储氢化学反应储氢是指将氢气与储氢材料之间进行化学反应,从而形成氢化物。

在适当的条件下,氢气可以与某些金属或合金产生化学反应,形成金属氢化物。

常见的化学反应储氢材料有镁、锂等金属和它们的合金。

这些金属或合金在吸收氢气时会形成相对稳定的金属氢化物,当需要释放氢气时可通过升高温度、减小压力或添加催化剂等方式实现。

3. 物理吸附储氢物理吸附储氢是指利用储氢材料和氢气之间的范德华力来吸附氢气。

常见的物理吸附材料有多孔材料和各种纳米材料。

物理吸附储氢具有高氢负荷能力,吸附和释放速度较快,但在低温下储氢效果较差。

二、储氢材料的应用储氢材料的应用可以分为储能、氢气燃料和移动能源等方面。

1. 储能应用储能是储氢材料的主要应用之一。

通过将电能或其他能量形式转化成氢气的形式进行储存,在需要时释放氢气来产生电能,从而实现能量的存储和利用。

储氢材料在储能领域的应用可以提高能源储存效率,弥补电能储存的不足,并能够用于平稳供电和峰值需求。

2. 氢气燃料应用利用储氢材料储存的氢气作为燃料是储氢技术的另一个重要应用。

储氢材料可以储存大量的氢气,为氢燃料电池等设备提供持续稳定的氢气供应。

氢气燃料具有高燃烧效率和零排放的特点,被广泛应用于汽车、工业生产和发电等领域。

3. 移动能源应用储氢材料在移动能源领域的应用主要是为了解决电动汽车等电存储设备能量密度较低的问题。

化学功能材料 第五章 储氢材料

化学功能材料 第五章  储氢材料
A2B型镁系贮氢合金
贮氢合金材料
贮氢合金
贮氢合金的分类 (按合金系统)
稀土贮氢合金 钙系贮氢合金 钛系贮氢合金 镁系贮氢合金 锆系贮氢合金
贮氢合金材料
贮氢合金
一、稀土类及钙系贮氢合金 AB5型稀土类及钙系贮氢合金主要有以 下几个类型:
LaNi5系贮氢合金 MmNi5系贮氢合金 MlNi5系贮氢合金 CaNi5系贮氢合金
(5) 有机液体储氢
苯、甲苯、甲基环己烷、萘等借助合适催化 剂,作为氢的载体
优点:储氢量高(苯为7.19wt%、甲苯为 6.18wt%);可利用现有设备;储运简单。 不足: ①需要催化剂配合,催化剂易失活,低温转
化率低 ②载体有一定的毒性 ③吸放氢工艺复杂,脱氢温度高
(6) 金属(合金)储氢
原理: 金属或合金与氢反应后以形成氢化物的
0
1
2
3
4
5
LaNi H 56
TiFeH 1.9
1.4wt%
per weight
1.8wt%
Mg NiH
2
4
Carbon nanotube (RT,10MPa 氢压)
0
3.6wt%
4.2wt%
1
2
3
4
5
Hydrogen storage capacity (wt%)
二、贮氢材料的定义及研究历程
2.1 定义
以LaNi5 为代表的稀土储氢合金被认为 是所有储氢合金中应用性能最好的一类。
优点:初期氢化容易,反应速度快, 吸-放氢性能优良。20℃时氢分解压仅几个 大气压。
缺点:镧价格高,循环退化严重,易 粉化。
贮氢合金材料
贮氢合金
LaNi5 属

储氢材料

储氢材料
储氢材料


一、能源现状 二、储氢材料 三、储氢材料应用
四、储氢材料未来发展趋势
能源现状
能源现状
传统能源
化石燃料:煤、石油、天然气等。 优点:浓缩能源; 易储存; 易运输。
缺点:不可再生资源;
无法满足消耗增长率; 破坏环境; 军事冲突。
能源现状
新能源
新能源:太阳能、风能、核能、地热能、海洋能、生物能、
储氢材料
储氢合金应具备的条件
①高的储氢容量。 ②氢化物的生成热适当。
③平衡氢压适中。
④吸、放氢速度快。
⑤容易活化。
⑥良好的抗气体杂质中独特性。 ⑦长期循环稳定性。 ⑧原材料资源丰富,价格便宜。
储氢材料
储氢材料
2.液态有机物储氢材料
有机液体氢化物储氢是借助不饱和液体有机物与氢的一 对可逆反应,即加氢和脱氢反应来实现的。
平衡压差驱动氢气流动,使两种氢化物分别处于吸氢(放热) 和放氢(吸热)状态,从而达到增热或制冷的目的。 优点:①可利用废热、太阳能等低品位的热源驱动热泵工作。 ②系统通过气固相作用,无磨损、无噪声。 ③系统工作范围大,温度可调。 ④可达到夏季制冷、冬季供暖的双效目的。
储氢材料的应用
金属氢化物氢压缩机
缺点:氢流量受合金吸收、释放氢的循环速度限制。
储氢材料的应用
制取高纯度氢气
基本原理:含有杂质的氢气与储氢合金接触,氢气被 吸收,而杂质则被吸附于合金表面,除去杂质后,再
使氢化物放氢,则可得到高纯度的氢气,其纯度可高
达99.9999%。
TiMn1.5和稀土系储氢合金是应用效果较为理想的。
储氢材料的应用
究, 各种纳米管材料、金属有机物多孔材料等都具有非常
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储氢材料摘要:作为一种新型的清洁能源,氢的廉价制取、安全高效储存与运输及其模型应用,将是今后研究的重点。

本文介绍了储氢材料的结构、性能、制备及应用;展望了储氢材料的发展趋势。

关键字:氢;储氢材料;清洁能源1引言随着传统能源的日渐枯竭,致使人类面临着能源、资源和环境危机的严峻挑战,同时人们环保意识的日益增强,开始大力寻找新的洁净能源己成为科研工作的焦点[l]。

在这些过程中,氢以其独有的优点逐渐得到人们的公认。

氢作为洁净能源具有以下优点:(l) 氢的燃烧产物是水,对环境不产生任何污染;(2) 氢可以通过太阳能、风能等分解水而再生,是可再生能源;(3) 燃烧1g氢放出的热量是等量汽油的3倍左右;(4) 氢资源丰富,可通过水、碳氢化合物等电解或分解生成。

由此可见,氢是一种清洁,高效的能源,在未来有着广阔的应用前景。

在氢能利用过程中,有两个重要的方面,即氢能的制备和储运。

在氢能的制备方面:人类通过利用太阳能光解海水可以制得大量的氢;故氢的储存和运输是其发展和应用中遇到的难点之一。

2 氢的存储标准与现状“储氢材料”顾名思义是一种能够储存氢的材料。

衡量储氢材料性能的标准主要有2个:体积储氢密度(kg/m3)和储氢质量分数(%)。

体积储氢密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的比值。

另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数[2]。

和其它物质一样,氢的存在状态也是固态、液态、气态。

气态时存储方式较为简单方便,也是目前储存压力低于17MPa氢气的常用方法。

但其密度较小,体积大;由于是易燃气体在运输和使用过程中存在安全隐患是该方法的不足之处。

液态储氢方法的体积密度高(70kg/m3),但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%~45%。

液态氢不仅储存成本高,而且使用条件苛刻,目前只限于在航天技术领域中应用。

因此这些传统的储氢方法根本无法满足现代社会对氢能利用的要求。

为此世界各国纷纷投人大量精力来解决这一难题。

随着研究的深入进展,在储氢材料领域中逐渐出现了多样化,其中最典型的有三大类:金属储氢材料、多孔吸附储氢材料、有机液态储氢材料等。

3 金属储氢材料金属储氢材料通常是指合金氢化物材料,其储氢密度是标态下氢气的1000倍以上,与液氢相同甚至超过液氢[3]。

储氢合金的特征是由一种吸氢元素或与氢有很强亲和力的元素(A)和另一种吸氢量小或根本不吸氢的元素(B)共同组成。

A 金属主要是ⅠA —ⅤB 族金属,如Ti 、Zr 、Ca 、Mg 、V 、Nb 、Re(稀土元素)等,它们与氢的反应为放热反应(ΔH<0)。

B 金属与氢的亲和力小,如Fe 、Co 、Ni 、Cr 、Cu 、Al 等,氢溶于这些金属时为吸热反应(ΔH>0),但氢很容易在其中移动。

A 控制着储氢量,是组成储氢合金的关键元素;B 控制着吸放氢的可逆性,起调节生成热与分解压力的作用。

3.1 金属储氢材料的储氢原理通过控制一定的温度和压力,当氢与储氢合金接触时,即能在储氢合金表面分解为H 原子,然后H 原子扩散进入合金内部直到与合金发生反应生成金属氢化物。

氢原子在储氢合金内的扩散模型如图1所示[4]:反应为可逆反应,反应进行的方向由氢气的压力和温度决定。

如果氢气的压力在平衡压力以上,则反应向形成金属氢化物的方向进行,反之,若低于平衡氢压,则发生金属氢化物的分解。

可逆特征反应如下式所示:n MH H n M ⇔+22式中:M 为储氢材料(合金,储氢合金);MH n 为金属氢化物(氢化物)。

若反应向右进行,称为氢化(吸氢)反应,为放热反应;若反应向左进行,称为释氢反应,为吸热反应。

式中的n 表示吸储氢量的大小。

在氢气的吸储和释放过程中,伴随着热能的生成或吸收,也伴随着氢压的变化,因此,可利用这种可逆反应,将化学能(H 2)、热能(反应热)和机械能(平衡氢压)有机地结合起来,构成具有各种能量形态转换、储存或运输的载能系统。

在一定温度和压力下,储氢合金与氢接触首先形成含氢固溶体(MH x ) (α相),其溶解度[H]M 与固溶体平衡氢压2H P 的平方根成正比,即:图1 氢原子在合金内的扩散模型M H H P ][2/12∝ 随后,固溶体MH x 继续与氢反应,产生相变,生成金属氢化物(β相)。

这一反应可写成:y x MH xy H MH x y -⇔+-222 式中,x 是固溶体中的氢平衡浓度,y 是合金氢化物中氢的浓度,一般y ≥x 。

再提高氢压,金属中的氢含量略有增加。

这个反应是一个可逆反应,正向反应吸氢,放出热量;逆向反应解吸,吸收热量。

储氢合金的吸放氢反应与碱金属、碱土金属或稀土金属所进行的氢化反应的主要差别在于其可逆性。

不论是吸氢反应,还是放氢反应,都与系统温度、压力及合金组成有关。

根据Gibbs 相律,如果温度一定,上式反应将在一定压力下进行,该压力即为反应平衡压力。

金属与氢的反应平衡用压力/组成/温度P-C-T 曲线如图2所示[5]:横轴表示固相中的氢与金属的原子比;纵轴为氢压,图中T 1<T 2<T 3。

温度不变时,随着氢压的增加,氢溶于金属的数量逐渐变大,金属吸氢,形成含氢固溶体(α相)。

当达到氢在金属中的极限溶解度(A 点)时,α相与氢反应,生成氢化物相,即β相。

继续加氢时,系统压力不变,而氢在恒压下被金属吸收。

当所有α相都变为β相时,组成到达B 点。

AB 段为两相(α+β)互溶的体系,到达B 点时,α相最终消失,全部金属都变成金属氢化物。

这段曲线呈平直状,故称为平台区,相应的曲线上平台(相变区)压力即为平衡压力。

该段氢浓度(H/M)代表了合金在温度T 时的有效储氢容量。

在全部组成变成β相组成后,如再提高氢图2 典型的吸放氢P-C-T 曲线O压,则β相组成就会逐渐接近化学计量组成,氢化物中的氢仅有少量增加。

B点以后,β相氢化反应结束,氢压显著增加。

而放氢过程一般是上述过程的逆过程。

温度升高时,平台向图的上方移动,而当温度升至某一点时,平台消失,即出现拐点(又称临界点)。

因此,温度低有利于吸氢,温度高有利于放氢。

这也就是说,一般合金氢化物的生成过程是放热反应,而氢化物的放氢过程则是吸热反应。

3.2 典型的储氢合金储氢合金的分类方式有很多种。

按组成储氢合金金属成分的数目区分,可分为二元系、三元系和多元系;按储氢合金材料的主要金属元素区分,可分为稀土系、钙系、钛系、锆系、镁系;如果把构成储氢合金的金属分为吸氢类(用A表示)和不吸氢类(用B表示),可将储氢合金分为AB5型、AB2型、AB型、A2B型等。

3.2.1 稀土系储氢合金稀土系储氢合金以LaNi5为代表,储氢密度约 1.4wt%,25℃时分解压约0.2MPa。

其优点是吸放氢速度快、易活化、不易中毒、平衡压适中和滞后小;其缺点是在吸放氢过程中晶胞膨胀过大、易于粉化、储氢密度低和成本高。

改善其储氢性能的方法是以Ce、Pr、Nd、Sm、Gd、Y和Er等稀土元素代替部分La[6];以Al、Mn、Cu、Cr、Fe、Co、Ag和Pd等代替部分Ni,除Pd外,其它金属均可降低LaNi5的平衡压力。

3.2.2 镁系储氢合金金属镁具有资源丰富、价格低廉和储氢密度大(理论储氢密度为7.6wt%)等优点,但由于MgH2生成热大,相对稳定,放氢温度高,动力学性能差,使其应用受到了限制。

近年来利用过渡金属催化镁系储氢合金氢化反应得到了较快的发展,过渡元素Ni、Cu、Ti等能够降低氢化镁的活化能和改善反应动力学性能,从而催化了镁与氢气的反应,如Mg-Ni-Cu、Mg-Ni-Ti、Mg-Ni-Co-Ca等合金储氢密度可达到3%~5%(wt),储氢温度为150℃,放氢温度低于300℃。

镁系储氢合金的制备除了熔炼法,还可用氢化燃烧合成法、还原扩散法、共沉淀还原法和机械力化学法。

目前镁系储氢材料的制备主要朝着机械合金化方向发展,以Ti、Zr、Al来代替部分Mg制备纳米晶和非晶态合金,如Liang G等制备的纳米晶Mg1.9Ti0.1Ni合金,200℃时未经活化即可快速储氢,储氢密度为3.0wt%;Woo J H 等用Zr代替部分Mg,混合球磨120h形成的Mg1.8Zr0.2Ni非晶态合金,30℃时储氢密度为2.3wt%,200℃以下可逆放氢量为2.0wt%;Zaluska A等制备的纳米晶Mg-Mg2Ni的储氢密度可达5.5wt%;Wu C Z等制备的纳米镁碳复合材料的储氢密度在6.0wt%以上。

3.2.3 钛系储氢合金TiFe合金是钛系储氢合金的代表,理论储氢密度为1.86wt%,室温下平衡氢压为0.3MPa,具有CsCl型结构。

钛系合金的优点是资源丰富,成本低,在室温下即可吸放氢,易于工业化生产;其缺点是活化困难,需要在较高温度和压力下进行,并且容易受杂质气体的影响。

为了克服这些缺点,在二元合金的基础上用其它元素代替Fe,开发出了一系列TiFe复合合金,如TiFe0.8Mn0.18Al0.02Zr0.05、TiFe0.8Ni0.15V0.05、TiMn0.5-Co0.5、TiCo0.75Cr0.25等。

3.2.4 锆系储氢合金锆系合金以ZrMn2为代表,具有C14、C15、C36等Laves相结构,理论储氢密度为1.5wt%,易于活化、热效应小,但稳定性较差。

为了改善其稳定性,采用多元合金复合的方法,如Zr(Mn-V-Ni-M)2+a(M代表Cr、Fe、Co,0≤a≤1)系列合金。

3.2.5 钒系固溶体型储氢合金钒系固溶体以V-Ti和V-Cr为代表,与氢反应可生成VH及VH2两种类型氢化物,VH2的理论储氢密度为3.8wt%,VH由于平衡压太低(10-9MPa),室温时VH放氢不能实现,而VH2向VH转化,储氢密度只有1.9wt%。

但钒系固溶体的储氢密度仍高于现有稀土系和钛系储氢合金。

钒系固溶体合金具有储氢密度较大、平衡压适中等优点,但其氢化物的分解压受金属杂质的影响很大,且合金熔点非常高、价格昂贵、制备困难、对环境有污染,不适合作为大规模应用的储氢材料。

目前钒系固溶体储氢合金研究的重点是优化合金的相结构来提高钒系固溶体的储氢性能和利用低廉的V合金原料代替纯V来降低合金的成本。

通过对金属储氢合金成本、储氢性能及动力学比较,可以得出如下结论:稀土系、锆系和钛系合金吸放氢温度低、动力学性能好,易于工业化生产,但储氢密度低,不能满足汽车工业的需要;镁系合金成本低,储氢密度大,但热力学和动力学性能差,工业化尚有距离;钒系固溶体价格昂贵,对环境有污染,与氢能是洁净二次能源相矛盾。

就目前的研究现状而言,金属储氢合金还不能满足氢能汽车用氢的要求。

相关文档
最新文档