四年级数学 三角形内角和

合集下载

四年级上册数学教案 三角形的内角和 北师大版

四年级上册数学教案 三角形的内角和 北师大版

四年级上册数学教案:三角形的内角和教学目标
1.知道三角形的内角和等于180°。

2.了解三角形的几种分类方法。

3.能够求解三角形内角和和缺角。

教学重点
1.三角形内角和等于180°的概念。

2.对三角形的分类方法的理解和应用。

3.求解三角形的内角和和缺角。

教学难点
1.小学生对三角形分类的理解和应用。

2.求解三角形缺角时需要注意的细节。

教学过程
导入环节
1.教师问学生是否学过三角形。

2.引出本节目标,即学习三角形的内角和等于180°,让学生知道将在本节课学到什么内容。

理论教学
1.介绍三角形的定义、特征和分类方法。

–根据角度分类:锐角三角形、直角三角形、钝角三角形。

–根据边长分类:等边三角形、等腰三角形、普通三角形。

–根据角度和边长分类:等腰直角三角形等。

2.讲解三角形的内角和等于180°的概念,做例题加深理解。

实践操作
1.通过画图,让学生实际感受三角形的内角和为180°。

2.给学生练习一些应用题,如:已知三角形两个内角分别为60°和80°,求
第三个内角的度数。

拓展应用
1.多边形内角和的公式。

2.根据三条边的长度求解三角形的缺角问题。

教学总结
通过本节课的学习,学生了解到了三角形的内角和等于180°的概念,掌握了
三角形的分类方法,学会了求解三角形内角和和缺角的方法。

这对学生以后的学习、生活都有很大的帮助。

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。

首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。

二是把三个内角折叠在一起,发现也能组成一个平角。

每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。

本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。

学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。

“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。

学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

四年级数学《三角形内角和》评课稿

四年级数学《三角形内角和》评课稿

四年级数学《三角形内角和》评课稿四年级数学《三角形内角和》评课稿今天上午听了《三角形内角和》一课,片断随感,权当学着评课吧!首先感觉最深的还是教学的基本功,无论是课堂的语言,还是表情、态势语以及一些即性课堂生成的问题,都处理得很好,很到位,给人一种亲切随和、轻松自如的感觉。

(有点儿羡慕这样的感觉!也希望自己能够努力之后做到!)其次,对整个课的设计,觉得很不错!三角形的内角和是180度,是三角形的一个特征,这部分的内容如果简单说,可以作为一个重要的知识点,让学生接受式地学习,也能掌握。

但现代教育看重的不仅仅是教育的结果,也要关注学生学习的过程。

布鲁纳说:“知识是过程,不是结果。

”杜威也曾指出“除了探究,知识没有别的意义”。

而在小学数学的教学过程之中,培养学生在学习数学、探究数学的过程中相应的情感态度、方法与技能显得尤为重要。

该老师的这节课,充分体现了让学生在探究的过程中主动建构生成,这样一个数学教学的重要原则。

1、由特殊到一般,见证事物研究的一般进程整课之中,由两次经历了从特殊到一般的研究进程。

(1)从特殊直角三角表到普通直角三角形。

课的开始在教学完内角的概念之后,由一把常用的三角尺引入内角和的概念,让学生通过计算得出这个直角三角形的内角和是180度。

当时就有学生由此联想到另一种等腰直角三角形的内角和也是180度。

进而顾老师又提出了新的问题,这两个直角三角形的内角和是180度,那其他的直角三角形的内角和是不是也是180度呢?我们可以怎样去难证。

在此情形之下,学生自然地想到通过使用量角器去测量直角三角形每一个角的度数进行验证。

每位学生课前都准备好了一个直角三角形,在四人小组内,选择一个直角三角形进行测量,四人小组,选择一个,体现了分工合作的理念。

(测量、记录、做加法、代表小组发言,必然要进行小组人力资源的调度与分配,相互之间的协作与交流。

)(当每个学生举起自己准备好的直角三角形时,我看到每个直角三角形的三个内角都已标出了,个人认为可以不标出。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

四年级数学下册三角形的内角和

四年级数学下册三角形的内角和

四年级数学下册三角形的内角和四年级数学下册三角形的内角和一、引言在四年级数学下册中,我们开始学习关于三角形的知识。

三角形作为几何学中重要的基本形状之一,无处不在我们的生活中。

本文将重点介绍三角形的内角和,帮助同学们更好地理解和掌握这一概念。

二、三角形的定义三角形是由三条边和三个角组成的几何图形。

根据其内角和的大小,可以将三角形分为三类:1. 锐角三角形:锐角三角形的三个内角都小于90度。

例如,一张纸折成的三角形就是一个典型的锐角三角形。

2. 直角三角形:直角三角形有一个内角是90度,另外两个内角为锐角。

我们经常见到的标志性的直角三角形就是直角脚为3、4、5的三角形。

3. 钝角三角形:钝角三角形至少有一个角大于90度。

例如,打开门的两扇门板所组成的三角形就是一个典型的钝角三角形。

三、三角形内角和的性质三角形的内角和具有以下性质:1. 性质一:任意三角形内角和等于180度。

这意味着无论是锐角三角形、直角三角形还是钝角三角形,它们的内角之和都等于180度。

2. 性质二:对于等腰三角形来说,两个底角是相等的,而顶角与两个底角的和为180度。

这一性质是等腰三角形的重要特征之一。

四、利用三角形内角和求解问题掌握三角形的内角和概念,有助于我们解决一些与三角形相关的问题。

1. 求解缺失的角度:已知一个三角形的两个内角,可以通过将两个已知角度之和与180度相减,得到所求角的度数。

2. 判断三角形类型:根据三角形的内角和,可以判断三个内角的大小关系,从而确定三角形的类型是锐角、直角还是钝角三角形。

五、小结通过学习本文所介绍的内容,我们对四年级数学下册关于三角形的内角和有了更深入的理解。

三角形作为几何形状中的重要一员,其内角和能够帮助我们判断三角形的类型和求解相关问题。

希望同学们通过勤奋学习,能够更好地掌握这一知识点,并能够将其运用到实际生活中。

总字数:824字。

小学四年级下册数学《三角形的内角和》教案

小学四年级下册数学《三角形的内角和》教案

课题:三角形的内角和执教教师:2.明确本节课的学习内容。

1)学生已经知道长方形和正方形都有四个内角,且每个内角都是直角,很快会得出:90°×4=360°2)学生观察,思考,回答1)学生动手操作2)生1回答:我们小组的方法是用量角器测量出三角形的三个内角的度数,求我们需要验证一下,这也是我们今天要研究的内容——三角形的内角和。

(板书课题:三角形的内角和)二、合作交流,探究新知1.探究直角三角形的内角和。

(1)师:同学们,图形之间都是有联系的,这儿有两个大家都很熟悉的图形。

教师拿出正方形和长方形并贴在黑板上。

师:你知道正方形和长方形的内角和分别是多少度吗?你是怎样算出来的呢?(2)教师演示操作,学生观察。

把正方形、长方形分别沿着对角线折叠,分别得到两个完全一样的直角三角形。

教师分别指着正方形和长方形折叠后得到的直角三角形,并提问:这两个直角三角形的内角和又是多少度呢?你是怎样想的?请把你的想法跟同学分享。

(3)小结:我们通过正方形和长方形的内角和推导出直角三角形的内角和是180°。

2.探究任意三角形的内角和。

(1)小组合作探究。

师:同学们,我们现在已经明确地知道直角三角形的内角和就是180°。

那是不是任意三角形的内角和都是180°呢?请同学们小组合作,选一种喜欢的三角形,充分利用你们的学具进行验证,比一比哪个组的方法多而且富有新意。

(2)全班汇报交流。

师:谁愿意给大家介绍一下你们小组是用什么方法来验证三角形的内角和是180°的出内角和大约是180°。

生2回答:我们是先假设三角形的内角和是180°,测量出第一个角和第二个角的度数,算出第三个角的度数,再用量角器测量验证第三个角是否等于算出的结果。

3)生思考回答:还可以用剪拼的方法。

4)学生在讲台上边演示边汇报:把三角形的三个角剪下来后拼成一个平角。

5)请男同学拿出钝角三角形,女同学拿出直角三角形,迅速剪下三个角,看能否拼成一个平角。

四年级数学下册三角形的内角和

四年级数学下册三角形的内角和

700
700 1800-700×2
它一的个一等个腰底三角角是形70的0,风它筝,==148000 0 -1400
的顶角是多少度? 答:它的顶角是400。
小结 拓展
知识的升华
你能根据自己的知识求出四边形和 正六边形的内角和吗?
两个三角形: 180°×2=360 °
4个三角形: 180°×4=720°
答:这个三角形未知角的度数是30°。
第二关 求出这个三角形各个角的度数。
180°-90°- 40°= 50°
90°- 40°= 50°
答:这个三角形另外一个锐角的 度数是50°。
第三关

一个等腰三角形的风筝, 它的一个底角是700,他 的顶角是多少度?
400
1800-700 -700 =1100 -700 =400
2
2
3
3
锐角三角形
2
2
3
3
直角三角形
三角形的内角和的验证方法
一、测量法
活动记录表
三角形 形状
每个角的度数
三个内 角和
二、撕拼法 三、折叠法
结论:
结论:所有三角形的内角和都是180°
第一关
1、看图,求三角形中未知角的度数。
180°-125°-25°=30° 180°-(125°+25°)=30°
三角形按角分,可以分为哪几类?
不对。我有一个大 钝角,所以我的内
角和才最大!
我的个头最 大,所以我 的内角和最
大!
难道只有我的 内角和最小?
1、什么是三角形的内角? ∠1,∠2,∠3
2、什么是三角形的内角和?
∠1+∠2+∠3
1
2

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

四年级数学三角形内角和

四年级数学三角形内角和

三角形内角和
新华桥学校孟飞
课时:1
教学准备: 三角形、量角器
教学目标:1、通过测量撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

基本教学过程:
一、一、创设问题情境
大三角形说:“我的个头大,所以我的内角和一定比你大。

”小三角形很不甘心地说:“是这样的吗?”我们来做一回裁判。

二、自主探究,创建数学模型
1、分小组测量,比较。

寻找不同形状的三角形。

填在书上。

2、你发现了什么?
3、那如果把三个角撕下来,拼在一起,应该很接近平角了?
这是三角形的一个很隐秘的特征,你记得了吗?
三、巩固与应用
1、那如果知道三角形三个角中的两个角,就应该可以知道另一个角的大小了。

第31页试一试。

2、第32页练一练1。

3、第2题。

4、实践活动。

四、总结与拓展。

这节课你了解到了什么?
等腰三角形是对称图形吗?如果知道一个三角形是等腰三角形,只知道其中一个底角是50°,你能知道其它两个角的大小吗?
教学反思:一开始上课创设问题情境,提出疑问,引导学生自主探究,分组测量三角形内角和的度数,在测量的过程中学生发现每个三角形的三个内角和接近180度。

提醒学生注意测量时有误差。

接下来通过撕拼、折叠等方法,验证三角形的内角和。

这样学生记忆深刻。

四年级数学教案三角形的内角和

四年级数学教案三角形的内角和

四年级数学教案三角形的内角和一、教学目标1.让学生理解三角形内角和的概念。

2.使学生掌握三角形内角和为180度的性质。

3.培养学生运用三角形内角和的性质解决实际问题的能力。

二、教学重难点重点:理解三角形内角和为180度。

难点:运用三角形内角和的性质解决实际问题。

三、教学准备1.教具:三角形模型、直尺、圆规、三角板。

2.学具:三角形纸片、剪刀、胶水。

四、教学过程(一)导入新课1.教师出示一个三角形,提问:“同学们,你们知道三角形有什么特点吗?”(二)探究三角形内角和1.教师提问:“同学们,你们知道三角形的内角和是多少度吗?”2.学生猜测,教师给出提示:我们可以通过实验来验证。

3.学生分组实验,用三角板测量三角形的内角和。

(三)三角形内角和的性质1.教师提问:“同学们,你们知道三角形的内角和为什么是180度吗?”2.学生思考,教师给出提示:我们可以通过画图来理解。

3.学生画图,发现三角形的内角和可以拼成一个平角。

(四)巩固练习1.教师出示练习题,让学生运用三角形内角和的性质解决问题。

2.学生独立完成,教师点评。

(五)拓展延伸1.教师出示三角形模型,提问:“同学们,你们知道三角形的内角和与边长有什么关系吗?”2.学生思考,教师给出提示:我们可以通过观察三角形的形状来理解。

3.学生观察,发现三角形的内角和与边长有关。

(六)课堂小结1.教师提问:“同学们,本节课我们学习了什么内容?”五、作业布置1.完成课后练习题。

2.收集生活中的三角形,观察并记录三角形的内角和。

六、教学反思本节课通过实验、观察、讨论等方式,让学生理解三角形内角和的概念,掌握三角形内角和为180度的性质,并培养学生运用三角形内角和的性质解决实际问题的能力。

在教学过程中,要注意引导学生主动参与,激发学生的学习兴趣,使学生在轻松愉快的氛围中掌握知识。

同时,教师应关注学生的个体差异,因材施教,使每个学生都能在课堂上得到提升。

重难点补充:一、教学重点1.理解三角形内角和为180度的概念。

四年级下册数学三角形的内角和

四年级下册数学三角形的内角和

四年级下册数学三角形的内角和在四年级下册的数学中,你会学习关于三角形的知识。

对于一个三角形来说,它的内角和是固定的。

不论是什么样的三角形,其内角的和总是180度(°)。

当你遇到一个三角形,你可以通过将其三个内角的度数相加,来验证它们的和是否等于180度。

这是一个基本的三角形性质,被称为三角形的角和定理。

例如,如果一个三角形的三个内角分别是角A、角B和角C,那么它们的和应该是:角A + 角B + 角C = 180°无论这个三角形是等边三角形、等腰三角形还是一般的三角形,这个性质都是成立的。

让我们以一个一般的三角形为例来详细解释。

假设我们有一个三角形ABC,其中顶点A、B和C分别是三角形的三个角。

我们可以用角度符号表示它们,如∠A、∠B和∠C。

根据三角形的性质,我们知道三角形的内角和等于180度,表示为:∠A + ∠B + ∠C = 180°这意味着,无论∠A、∠B和∠C各自是多少度,它们的和总是等于180度。

例如,如果∠A是60度,∠B是70度,那么∠C就是180度减去∠A和∠B的度数之和,即:∠C = 180°- 60°- 70°= 50°验证一下:60°+ 70°+ 50°= 180°所以,这个三角形的内角和确实等于180度。

这个性质适用于所有三角形,不论其形状和大小。

无论是直角三角形、锐角三角形还是钝角三角形,它们的内角和始终等于180度。

以下是一些常见类型的三角形及其内角和的特点:1.等边三角形:●三边相等,三个角度也相等。

●每个内角都是60度。

●∠A + ∠B + ∠C = 60°+ 60°+ 60°= 180°。

2.等腰三角形:●至少两条边相等,至少两个角度相等。

●如果两个等角为x度,则第三个角度为y度。

●∠A + ∠B + ∠C = x°+ x°+ y°= 2x°+ y°= 180°。

四年级数学下册《三角形的内角和》知识点及基础习题

四年级数学下册《三角形的内角和》知识点及基础习题

方法4:转化法:
转化成两个直角三角形。

把三角形沿着高剪开,变成两个直角三角形,直角三角形中,第一个直角三角形的两个锐角的和是90°,第二个直角三角形的两个锐角的和也是90°,合起来就是180°,刚好是原来三角形的内角和。

所以三角形的内角和是180°。

三、求出下面∠1的度数。

①180°-105°-40°②∠2=180°-60°-50°=70°
=75°-40°因为对顶角相等
=35°所以∠1=70°
180°-35°=145°
③180°-(120°+25°)④180°-90°-30°
=180°-145°=90°-30°
=35°=60°
四、解答题
张叔叔不小心把家里的一块玻璃摔成3块(如下图),可他
只拿其中一块玻璃去玻璃店划了一块与原来一样大的玻璃,
你知道他拿的是哪一块玻璃吗?动脑想一想吧!
3号;这三块玻璃中,只有3号玻璃中有原来三角形的两个角,可以用这块玻璃得到与原来一样大的玻璃。

以下是4组小棒的长度,都能分别围成三角形吗?你从中发
现了什么?(单位:cm)
①1、2、3
②2、3、4
③7、8、9
④19、20、21
除第一组外,其它的三组都能围成三角形,我发现,三角形
的任意两边的长度之和大于第三边,任意两边的长度之差小
于第三边。

北师大版小学数学四年级下册《三角形的内角和》说课稿

北师大版小学数学四年级下册《三角形的内角和》说课稿

三角形的内角和说课稿一、说教材“三角形的内角和”是北师大版四年级年级数学下册第二单元的内容。

“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

为了更好的领会教材,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。

主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。

从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:1.知识目标:知道三角形内角和是180°。

2.能力目标:(1)通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。

(2)学会解决与角有关的实际问题。

(3)初步培养学生的说理能力。

3.情感目标:让学生在探索活动中产生对数学的好奇心,增强学好数学的信心。

教学重点:了解三角形的内角和的性质,学会解决简单的实际问题。

教学难点:探索三角形的内角和是180°二、说教法新课程标准的基本理念就是要让学生“人人学有价值的数学”。

强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。

要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。

《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。

使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。

如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

《三角形的内角和》教学设计15篇

《三角形的内角和》教学设计15篇

《三角形的内角和》教学设计15篇《三角形的内角和》教学设计1【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。

通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180 。

【教学准备】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的好奇心。

然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4.导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探索交流新知1.分组活动,探索新知根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

四年级《三角形内角和》教学设计8篇

四年级《三角形内角和》教学设计8篇

四年级《三角形内角和》教学设计8篇作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。

优秀的教学设计都具备一些什么特点呢?下面是小编为大家整理的四年级《三角形内角和》教学设计,希望能够帮助到大家。

四年级《三角形内角和》教学设计1教学目标:1、通过测量,撕拼,折叠等方法。

探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:探索和发现“三角形内角和是180°”。

教学难点:验证“三角形内角和是180°,以及对这一知识的灵活运用。

”教具准备:三角形,多媒体课中。

教学过程设计:一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?二、探究新知:(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°(二)、拼一拼引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?引导学生得出:三角形内角和等于180°(三)折一折引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展1、填一填①直角形三角形的两个锐角和是()度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()2、火眼金晴①钝角三角形的两个钝角和大于90°()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形内角和
知识梳理
教学重、难点
作业完成情况
典题探究
一个
1、三角形的两个内角和是850,你知道这是一个什么三角形吗?
2、在一个三角形中,已知∠1是∠2的2倍,∠2是∠3的。

这个三角形各个角是多少度?这是一个什么三角形?
3、同学们知道三角形的内角和是1800,你能运用这个知识分别求出四边形、五边形、六边形的内角和吗?
4、如图,两个三角形都是等腰三角形,∠3是多少度?
演练方阵
A档(巩固专练)
1.由三条( )围成的图形叫三角形。

2.三角形按角可分为( )三角形、( )三角形、( )三角形。

3.三角形的内角和是( )。

4.等腰直角三角形中三个内角分别是( ),( )和( )。

5、判断,(对的画“√”,错的画“X”)
(1).一个三角形有一个锐角,那么,这个三角形就一定是锐角三角形。

( )
(2).直角三角形中只能有一个角是直角。

( )
(3).等边三角形一定是锐角三角形。

( )
(4).三角形共有一条高。

( )
(5).一个三角形中,最大的角是锐角,那么,这个三角形一定是锐角三角形。

( )
(6).两个底角都是280的三角形,一定是钝角三角形。

( )
6、选择。

(1).一个等腰三角形,其中一个底角是750,顶角是( )
A.750 B.450 C.300 D.600
(2).任意一个三角形都有( )高。

A.一条 B.两条 C三条 D.无数条
(3).( )个角是锐角的三角形,叫锐角三角形。

A.三 B.二 C.—
(4).三角形越大,内角和( )
A.越大 B.不变 C.越小
7、求下面三角形中/3的度数,并指出是什么三角形。

1.∠1=300,∠2=1080,∠3= ( ),它是( )三角形。

2.∠1=900,∠2=450,∠3=( ),它是( )三角形。

3.∠1=700,∠2=700,∠3=( )。

它是( )三角形。

4.∠1=900,∠2=300,∠3=( ),它是( )三角形。

8、一个三角形的两个内角和是1100,你知道这是一个什么三角形吗?
9、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B大600,这个三角形各个角是多少度?你知道这是一个什么三角形?
10、一个等腰三角形的顶角是一个底角的2倍,这个三角形各个角是多少度?
B档(提升精练)
1、任意三角形的内角和是度;一个直角三角形的两个锐角的和是度。

2、正三角形的每一个内角是度。

3、一个三角形的两个角分别是30度和40度,那么这个三角形是
三角形。

4、判断题。

(1)、由三条线段一定可以组成三角形。

()
(2)、最少要用3个直角三角形可以拼成一个。

()
(3)、三角形两个内角和是115度,另一个角一定是75度。

()
(4)、等腰三角形一定是锐角的三角形。

()
(5)、等腰三角形可以是直角三角形。

()
(6)、有一个锐角的三角形是锐角的三角形。

()
(7)、有一个钝角的三角形是钝角三角形。

()
5、选择题。

5、等腰三角形的一个底角是70度,那么顶角是()。

A、110度
B、40度
C、55度
6、所有的等边三角形都是()。

A、直角三角形
B、钝角三角形
C、锐角三角形
7、平行四边形的内角和是()。

A、180度
B、270度
C、360度
6、、求出下面图形中的角的度数。

7、一个三角形的最大角是最小角的5倍,另一个角是最小角的3倍,这是一个什么三角形?
8、在一个三角形中,已知∠1的度数是∠2的2倍,∠2的度数是∠3的3倍。

这个三角形各个角是多少度?这是一个什么三角形?
9、已知一个三角形的一个内角是720,是另外一个内角的4倍,这个三角形是什么三角形?
10、如图:已知AD长3厘米,DC长2厘米,∠1=450,求BC长多少厘米?
C档(跨越导练)
1.(辨析题)在能组成的三角形的三个角后面画“√”。

(1). 900 500 400 ( )
(2). 500 500 500 ( )
(3). 1200 300 300 ( )
(4). 1000 320 190 ( )
(5). 600 600 600 ( )
2、在下面的点子上画图形。

3、如图,是由一个七巧板拼成一个正方形,已知这个正方形的面积是64平方厘米,求图形
1和图形2的面积和。

4、如图:在等边三角形ABC中,∠1=∠2=∠3=∠4,求∠5的度数。

5、如下图,在等腰直角三角形ABC中,AD是底边上的高,那么∠1是多少度?
6、如图,直角三角形ABC中有一个正方形BDEF,那么∠1和∠2的大小有什么关系?∠3和∠4的大小有什么关系?为什么?
7、如果一个多边形的内角和是18000,那么这个多边形是几边形?
8、如图,两个三角形都是等腰三角形,∠3是多少度?
9、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B大500,这个三角形各个角是多少度?你知道这是一个什么三角形?
10、如图:已知∠1=600,∠2=250,∠3=200,求∠4的度数。

成长足迹
课后检测
学习(课程)顾问签字:负责人签字:教学主管签字:主管签字时间:。

相关文档
最新文档