中国古代数学问题.
中国古代最著名的数学题
中国古代最著名的数学题
中国古代最著名的数学题有:
1.韩信点兵问题:韩信点兵,原来有1500名士兵,打完战后不知道士兵总数。
只知道士兵若三人一组余两人;五人一组余三人;七人一组余四人。
请问,总共有多少士兵?
2.鸡兔同笼问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
3.物不知数问题:有物不知其数,三三数之余二,五五数之余三,七七数之余二。
问物几何?
4.今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。
大鼠日自倍,小鼠日自半:有一堵十尺厚的墙,两只老鼠从两边向中间打洞。
大老鼠第一天打一尺,小老鼠也是一尺。
大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半。
问它们几天可以相逢,相逢时各打了多少。
中国古代数学趣题
中国古代数学1. 及时梨果元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。
问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。
问买梨、果各几个,各付多少钱? 解:梨每个价:11÷9=911(文) 果每个价:4÷7=74(文) 果的个数:(911×1000-999)÷(911-74)=343(个) 梨的个数:1000-343=657(个)梨的总价:911×657=803(文) 果的总价:74×343=196(文)2.两鼠穿墙我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。
大鼠日自倍,小鼠日自半。
问何日相逢,各穿几何?今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。
大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。
问几天后两鼠相遇,各穿几尺?解:第一天,1+1=2尺 还有3尺第二天,2+0.5=2.5尺 还有0.5尺第三天,解:设还需X 天。
(4+0.25)X=0.5 X=172 172天=2小时49分 在第三日凌晨2时49分相逢,相逢时大老鼠穿 3.47尺,小老鼠穿 1.53尺。
3.隔壁分银只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。
试问各位能算者,多少客人多少银?(注:旧制1斤=16两,半斤=8两)此题是民间算题,用方程解比较方便。
解:设客人为x人。
4x+4=8x-8x=34×3+4=16(两)答:客人3人,银16两。
4.李白打酒李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。
中国古代数学趣题
中国古代数学1.及时梨果元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。
问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。
问买梨、果各几个,各付多少钱?解:梨每个价:11÷9=911(文)果每个价:4÷7=74(文)果的个数:(911×1000-999)÷(911-74)=343(个)梨的个数:1000-343=657(个)梨的总价:911×657=803(文)果的总价:74×343=196(文)2.两鼠穿墙我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。
大鼠日自倍,小鼠日自半。
问何日相逢,各穿几何?今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。
大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。
问几天后两鼠相遇,各穿几尺?解:第一天,1+1=2尺还有3尺第二天,2+0.5=2.5尺还有0.5尺第三天,解:设还需X 天。
(4+0.25)X=0.5 X=172172天=2小时49分在第三日凌晨2时49分相逢,相逢时大老鼠穿 3.47尺,小老鼠穿1.53尺。
3.隔壁分银只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。
试问各位能算者,多少客人多少银?(注:旧制1斤=16两,半斤=8两)此题是民间算题,用方程解比较方便。
解:设客人为x 人。
4x +4=8x -8x=34×3+4=16(两)答:客人3人,银16两。
4.李白打酒李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。
试问酒壶中,原有多少酒?这是一道民间算题。
题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。
中国古代经典数学题
中国古代经典数学题
中国古代经典数学题有很多,以下是其中的一些例子:
1. 《孙子算经》中的“百钱买百鸡”问题:一个农夫用100文钱去买100只鸡,其中公鸡5文钱一只,母鸡3文钱一只,小鸡1文钱三只,问该农夫如何购买才能恰好买到100只鸡并且花光所有的钱?
2. 《周髀算经》中的“鸡兔同笼”问题:有若干只鸡和兔子在一个笼子里,数目不知道,但是头数是已知的,若数总共有35个头,脚的总数有94只,求兔子和鸡各有多少只?
3. 《算经十书》中的“海岛问题”:有36个人,他们要穿过一座桥,桥上只能同时容纳两个人,且必须有灯才能够通过。
这36个人中有12个人可以在1分钟内穿过桥,24个人需要2分钟,在桥的这一端还有一盏30秒钟的灯,问这36个人最短需要多长时间才能全部通过桥?
这些问题都具有一定的难度,但又非常有趣,是中国古代数学智慧的体现。
中国古代数学名题
數學名題欣賞中国古代数学名题1、雞兔同籠:今有雞兔同籠,上有35個頭,下有94只腳。
雞兔各幾隻?想:假設把35只全看作雞,每只雞2只腳,共有70只腳。
比已知的總腳數94只少了24只,少的原因是把每只兔的腳少算了2只。
看看24只裏面少算了多少個2只,便可求出兔的只數,進而求出雞的只數。
解決這樣的問題,我國古代有人想出更特殊的假設方法。
假設一聲令下,籠子裏的雞都表演“金雞獨立”,兔子都表演“雙腿拱月”。
那麼雞和兔著地的腳數就是總腳數的一半,而頭數仍是35。
這時雞著地的腳數與頭數相等,每只兔著地的腳數比頭數多1,那麼雞兔著地的腳數與總頭數的差等於兔的頭數。
我國古代名著《孫子算經》對這種解法就有記載:“上署頭,下置足。
半其足,以頭除足,以足除頭,即得。
”具體解法:兔的只數是94÷2-35=12(只),雞的只數是35-12= 23(只)。
2.韓信點兵:今有物,不知其數。
三三數之剩二,五五數之剩三,七七數之剩二。
問物幾何?這是我國古代名著《孫子算經》中的一道題。
意思是:一個數除以3餘2,除以5餘3,除以7餘2。
求適合這些條件的最小自然數。
想:此題可用枚舉法進行推算。
先順序排出適合其中兩個條件的數,再在其中選擇適合另一個條件的數。
3.三階幻方:把1—9這九個自然數填在九空格裏,使橫、豎和對角線上三個數的和都等於15。
想:1+9=10,2+8=10,3+7=10,4+6=10。
這每對數的和再加上5都等於15,可確定中心格應填5,這四組數應分別填在橫、豎和對角線的位置上。
先填四個角,若填兩對奇數,那麼因三個奇數的和才可能得奇數,四邊上的格裏已不可再填奇數,不行。
若四個角分別填一對偶數,一對奇數,也行不通。
因此,判定四個角上必須填兩對偶數。
對角線上的數填好後,其餘格裏再填奇數就很容易了。
4.兔子問題:十三世紀,義大利數學家倫納德提出下面一道有趣的問題:如果每對大兔每月生一對小兔,而每對小兔生長一個月就成為大兔,並且所有的兔子全部存活,那麼有人養了初生的一對小兔,一年後共有多少對兔子?想:第一個月初,有1對兔子;第二個月初,仍有一對兔子;第三個月初,有2對兔子;第四個月初,有3對兔子;第五個月初,有5對兔子;第六個月初,有8對兔子……。
巧解民间数学趣题注释中国古代名题
巧解民间数学趣题注释中国古代名题
巧解民间数学趣题注释中国古代名题是指在中国古代流传下来的一些有趣的数学题目,这些题目多以民间的形式存在,并且具有一定的知名度。
下面是一些中国古代名题的注释:
1. 百鸡问题:古代一位数学家提出了“百鸡问题”,即用100文钱买100只鸡,公鸡5文钱一只,母鸡3文钱一只,小鸡3只1文钱,问公鸡、母鸡、小鸡各多少只?这个问题是一个著名的线性方程问题,可以用代数的方法解答。
2. 田忌赛马:这是一个古代的竞赛问题,讲述了田忌与王良进行马赛的故事。
田忌的马分为上中下三等,王良的马都是中等马,王良提出了几次策略,让田忌赢得比赛。
这个问题可以通过比较马匹的优势和劣势,并选择合适的策略来解决。
3. 鸡兔同笼:这是一个古代的动物问题,描述了一只笼子里关了若干只鸡和兔子,头数共计74个,脚数共计214只。
问笼中有几只鸡和兔子?这个问题可以通过设变量、列方程的方法求解。
4. 古代数学名题《海岛求恨本寓言图》:这是一种数学谜题,通过一幅图案来描述一个故事,要求按照图案中的要求解答问题。
这个题目需要观察图案,推理题目的意义,并给出答案。
这些中国古代名题都是以日常生活中的实际问题为背景,通过数学的方法解决,不仅考验了思维能力,还培养了人们的逻辑
思维能力和数学技巧。
这些问题也一直在民间广泛传播,成为经典的数学问题之一。
中国古代数学应用题
中国古代数学应用题
1. 一座高塔上有10个人,塔外站着另外10个人,塔上的每个人每分钟能够掉下一根香烟蒂。
如果塔上的人将所有的香烟蒂都掉给塔外的人,问需要多长时间才能将塔上的10个人全部掉下塔外?
解法:塔上的每个人每分钟能掉下一根香烟蒂,所以10个人一共能掉10根香烟蒂。
塔上一共有10根香烟蒂,所以只需要1分钟就能将塔上的人全部掉下塔外。
2. 有一座长满花的山,山的一侧有个属性石,据说每年夏天都会带来好运。
一个人打算爬上山去找到属性石,他每天能够爬上山的一半距离,但每天夜晚会滑下山的1/4距离。
山高1000米,问这个人需要多少天才能够爬到山顶?
解法:第一天,这个人爬上了山的一半,即500米。
然后到了夜晚,滑下山的1/4,即125米。
第二天,这个人再次爬上剩下的一半,即375米。
然后到了夜晚,滑下山的1/4,即93.75米。
以此类推,每天爬上的距离是前一天剩余距离的一半,然后滑下山的1/4。
当他的爬升距离超过山高1000米时,就到达山顶。
经过28天,他能够到达山顶。
3. 有一只马,它每分钟能够跑200米,而兔子每分钟能够跑50米。
现在这只马追赶兔子,跑上10分钟后,距离兔子的距离是多少?
解法:马每分钟比兔子多跑150米。
在跑上10分钟后,马比
兔子多跑了1500米。
所以距离兔子的距离是1500米。
注意:这些是一些基于中国古代数学的简单应用题,实际上古代的数学应用远不止这些。
中国古代数学在代数、几何、概率等领域都有独特的贡献和应用。
数学中的中国传统文化问题大全
数学中的中国传统文化一、算法问题1.用更相减损术求294和84的最大公约数时,需要做减法的次数为( )A.2 B.3C.4 D.5答案C解析(84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.2.如图所示的程序框图的算法思路来源于我国古代数学名着《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为( )A.4 B.2C.0 D.14答案B解析由题意输出的a是18,14的最大公约数2,故选B.3.用辗转相除法求459和357的最大公约数,需要做除法的次数是( )A.1 B.2C.3 D.4答案C解析∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,需要做除法的次数是3.4.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数f n(x)=a n x n+a n-1x n-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和n?n+1?2次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=+4x5-x4+3x3-5x当x=3时的值时,最先计算的是( )A.-5×3=-15B.×3+4=C.3×33-5×3=66D.×36+4×35=1答案B解析f(x)=+4x5-x4+3x3-5x=((((+4)x-1)x+3)x+0)x-5)x,然后由内向外计算,最先计算的是×3+4=.5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( )A.4,2 B.5,3C.5,2 D.6,2答案C解析∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.6.已知函数f(x)=6x6+5,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为( )A.21,6,2 B.7,1,2C.0,1,2 D.0,6,1答案D解析∵f(x)=6x6+5,多项式的最高次项的次数是6,∴要进行乘法运算的次数是6.要进行加法运算的次数是1,运算过程中不需要乘方运算.7.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于( )A.7 B.12C.17 D.34答案C解析第一次运算,a=2,s=2,n=2,k=1,不满足k>n;第二次运算,a=2,s=2×2+2=6,k=2,不满足k>n;第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17,故选C.8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为( )A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11答案D解析f(x)=x3-3x2+2x-11=((x-3)x+2)x-119.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是( )A.4 B.10C.16 D.33答案C解析函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,当x=2时,v0=3,v1=3×2-2=4,v2=4×2+2=10,v3=10×2-4=16.10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2++2的值,当x=-2时,v1的值为( )A.1 B.7C.-7 D.-5答案 C解析∵f(x)=x6-5x5+6x4+x2++2=(((((x-5)x+6)x+0)x+1)x+x+2,∴v0=a6=1, v1=v0x+a5=1×(-2)-5=-7.11.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6的值,当x=3时,v3的值为( )A.-486 B.-351C.-115 D.-339答案C解析f(x)=-6x4+5x3+2x+6=(((-6x+5)x+0)x+2)x+6,∴v0=a4=-6,v1=v0x+a3=-6×3+5=-13,v2=v1x+a2=-13×3+0=-39,v3=v2x+a1=-39×3+2=-115.12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所着的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为( )A.20 B.61C.183 D.548答案C解析由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?( )A.1 326 B.510 C.429 D.336答案B解析由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.14.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,乘法运算次数为____________.加法运算次数为________.答案 5 5解析∵f(x)=((((5x+4)x+3)x+2)x+1)x+1,∴乘法要运算5次,加法要运算5次15.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=________.答案6解析f(x)=x4+3x3+x+1=(((x+3)x)x+1)x+1,用秦九韶算法计算f(π)时,乘法运算与加法运算的次数和等于6.16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为ba和dc(a,b,c,d∈N*),则b+da+c是x的更为精确的不足近似值或过剩近似值.我们知道π=59…,若令3110<π<4915,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3110<π<165,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为________.答案22 717.我国古代数学名着《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在222…中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程2+x=x确定x=2,则1+11+11+…=________.答案1+52解析由题意,可令1+11+11+…=x,即1+1x=x,即x2-x-1=0,解得x=1+52(x=1-52舍),故1+11+11+…=1+52.18.用辗转相除法求840与1 764的最大公约数.答案 1 764=840×2+84,840=84×10+0,∴840与1 764的最大公约数是84.19.用更相减损术求440 与556的最大公约数.答案556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4,∴440与556的最大公约数4.20.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.答案f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)xv0=7,v1=7×3+6=27,v2=27×3+5=86,v3=86×3+4=262,v4=262×3+3=789,v5=789×3+2=2 369,v6=2 369×3+1=7 108,v7=7 108×3+0=21 324,∴f(3)=21 324,即当x=3时,函数值是21 324.21.(1)用辗转相除法求840与1 785的最大公约数;(2)用秦九韶算法计算函数f(x)=2x4+3x3+5x-4在x=2时的函数值.答案(1)1 785=840×2+105,840=105×8+0,∴840与1 785的最大公约数是105.(2)秦九韶算法如下:f(x)=2x4+3x3+5x-4=x(2x3+3x2+5)-4=x[x(2x2+3x)+5]-4=x{x[x(2x+3)]+5}-4,故当x=2时,f(x)=2×{2×[2×(2×2+3)]+5}-4=62.22.(1)用辗转相除法求779与247的最大公约数;(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3时的值.答案(1)779=247×3+38,247=38×6+19,38=19×2.故779与247的最大公约数是19;(2)把多项式改成如下形式:f(x)=2x5+4x4-2x3+8x2+7x+4=((((2x+4)x-2)x+8)x+7)x+4.按照从内到外的顺序,依次计算一次多项式当x=3时的值:v0=2,v1=v0x+4=2×3+4=10,v2=v1x-2=10×3-2=28,v3=v2x+8=28×3+8=92,v4=v3x+7=92×3+7=283,v5=v4x+4=283×3+4=853.所以当x=3时,多项式f(x)的值是853.23.(1)用辗转相除法求228与1 995的最大公约数;(2)用秦九韶算法求多项式f(x)=3x5+2x3-8x+5在x=2时的值.答案(1)1 995=228×8+171,228=171×1+57,171=57×3,因此57是1 995与228的最大公约数.(2)f(x)=3x5+2x3-8x+5=((((3x+0)x+2)x+0)x-8)x+5当x=2时,v0=3,v1=3×2=6,v2=6×2+2=14,v3=14×2=28,v4=28×2-8=48,v5=48×2+5=101,所以当x=2时,多项式的值是101.24.(1)用“更相减损术”求72和168的最大公约数;(2)用“辗转相除法”求98和280的最大公约数.答案(1)∵168-72=96,96-72=24,72-24=48,48-24=24,故72和168的最大公约数是24.(2)∵280=2×98+84,98=1×84+14,84=6×14,故98和280的最大公约数是14.25.用秦九韶算法求函数f(x)=x5+x3+x2+x+1当x=3时的函数值.答案f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1,当x=3时,v0=1,v1=v0×3+0=3;v2=v1×3+1=10;v3=v2×3+1=31;v4=v3×3+1=94;v5=v4×3+1=283,即x=3时的函数值为283.二、数列问题1.《九章算术》是我国古代的数学名着,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )钱钱钱钱答案B解析依题意设甲、乙、丙、丁、戊所得钱分别为a-2d,a-d,a,a+d,a+2d,则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,又a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则a -2d =a -2×(-a 6)=43a =43.2.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”( )答案 B解析 设第十等人得金a 1斤,第九等人得金a 2斤,以此类推,第一等人得金a 10斤, 则数列{a n }构成等差数列,设公差为d ,则每一等人比下一等人多得d 斤金, 由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+24d =4,解得d =778, ∴每一等人比下一等人多得778斤金. 3.《张丘建算经》是公元5世纪中国古代内容丰富的数学着作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布约有( ) A .尺 B .尺 C .尺 D .尺答案 A解析 设每天多织d 尺,由题意a 1=5,{a n }是等差数列,公差为d , ∴S 30=30×5+30×292d =390, 解得d ≈.4.《张丘建算经》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日,第五日,第八日所织之和为十五尺,问第九日所织尺数为( ) A .7 B .9 C .11 D .13答案 D解析 设第一天织a 1尺,从第二天起每天比第一天多织d 尺, 由已知得⎩⎪⎨⎪⎧7a 1+7×62d =21,a 1+d +a 1+4d +a 1+7d =15,解得a 1=-3,d =2,∴第九日所织尺数为a 9=a 1+8d =-3+8×2=13.5.古代数学着作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?” 意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据已知条件,可求得该女子第3天所织布的尺数为( )答案C解析由题意可得:每天织布的量组成了等比数列{a n},S5=5,公比q=2 ,a1?1-25?1-2=5,计算可得a1=531,所以a3=531×22=2031.6.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A.33% B.49%C.62% D.88%答案B解析由题意可得:每日的织布量形成等差数列{a n},且a1=5,a30=1,设公差为d,则1=5+29d,解得d=-4 29 .∴S10=5×10+10×92×(-429)=1 27029.S30=30×?5+1?2=90.∴该女子到第10日时,大约已经完成三十日织布总量的1 27029×190≈=49%.7.《张丘建算经》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )A.30尺B.90尺C.150尺D.180尺答案B解析由题意可得,每日的织布量形成等差数列{a n},且a1=5,a30=1,所以S30=30×?5+1?2=90.8.在我国古代着名的数学专着《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.9日B.8日C.16日D.12日答案A解析 由题意知,良马每日行的距离成等差数列, 记为{a n },其中a 1=103,d =13; 驽马每日行的距离成等差数列, 记为{b n },其中b 1=97,d =-;设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m ?m -1?×132+97m +m ?m -1?×?-?2=2×1 125,解得m =9(负值舍去).9.《九章算术》是我国古代第一部数学专着,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为( ) 升 升 升 升答案 A解析 自上而下依次设各节容积为a 1,a 2,…a 9,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧2?a 2+a 3?=33a 8=4,得⎩⎨⎧a 2+a 3=32,a 8=43,所以a 2+a 3+a 8=32+43=176(升).10.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .24里 B .48里 C .96里 D .192里答案 C解析 由题意可知此人每天走的步数构成以12为公比的等比数列,由题意和等比数列的求和公式可得a 1[1-?12?6]1-12=378,解得a 1=192,∴第二天此人走了192×12=96里.11.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( ) A .24里B .12里C .6里D .3里答案 C解析 记每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1?1-126?1-12=378,解得a 1=192,∴a 6=192×125=6.12.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .6斤 B .9斤 C .10斤 D .12斤答案 B解析 此问题构成一个等差数列{a n },设首项为2,则a 5=4,∴中间3尺的重量为3a 3=a 1+a 52×3=2+42×3=9(斤), 故选B.13.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( ) A .6斤 B .9斤 C .斤 D .12 斤答案 A解析 依题意,金箠由粗到细各尺构成一个等差数列, 设首项a 1=4,则a 5=2,由等差数列性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.14.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”( ) A .3 B .4 C .5 D .6答案 A解析 由题意设塔顶有a 盏灯,由题意由上往下数第n 层就有2n -1·a 盏灯,∴共有(1+2+4+8+16+32+64)a =381盏灯, 即1×?1-27?1-2a =381.解得a =3.15.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.( ) A .3 B .4 C .5 D .6答案 B解析 由题意可知,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列, 前n 天打洞之和为1-2n1-2=2n-1,同理,小老鼠前n 天打洞之和为1-?12?n1-12=2-12n -1,∴2n-1+2-12n -1=10,解得n ∈(3,4),取n =4. 即两鼠在第4天相逢.16.如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列{a n }的前4项,则{a n }的通项公式可以是( ) A .a n =3n -1B .a n =2n -1C .a n =3nD .a n =2n -1答案 A解析 着色的小三角形个数构成数列{a n }的前4项,分别为a 1=1,a 2=3,a 3=3×3=32,a 4=32×3,因此{a n }的通项公式可以是a n =3n -1.17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设该数列{a n }的首项为a 1,公差为d ,依题意⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1+7d =43,d =766,则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.18.华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示________?(如图)答案395解析图片中记录的是自然数乘以9的运算结果,左列是被乘数,右列是该数乘以9的积数,经过分析可知:其中▽代表1,?代表10,代表60.所以表示60×6+10×3+5×1=395.19.在我国南宋数学家杨辉所着的《详解九章算法》(1261年)一书中,用如图A所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的着作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),如图世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图 B.在杨辉三角中相邻两行满足关系式:C r n+C r+1n=C r+1n+1,其中n是行数,r∈N.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是________.1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…C0n C1n…C r n…C n-1n C n n图A1 C1n+1C0n1C1n+1C1n…1C1n+1C r n…1C1n+1C n-1n1C1n+1C n n图B答案1C1n+1C r n=1C1n+2C r n+1+1C1n+2C r+1n+1解析类比观察得,莱布尼茨三角形的每一行都能提出倍数1C1n+1,而相邻两项之和是上一行的两者相拱之数,所以类比式子C r n+C r+1n=C r+1n+1,有1C1n+1C r n=1C1n+2C r n+1+1C1n+2C r+1n+1.20.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面用点或用小石子表示数.他们研究过如图所示的三角形数,将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________.(用k 表示) 答案 (1)5 030 (2)5k ?5k -1?2解析 由题意可得a n =1+2+3+…+n =n ?n +1?2,n ∈N *,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15, 由上述规律可知:b 2k =a 5k =5k ?5k +1?2(k ∈N *), b 2k -1=a 5k -1=?5k -1??5k -1+1?2=5k ?5k -1?2,故b 2 012=b 2×1 006=a 5×1 006=a 5 030, 即b 2 012是数列{a n }中的第5 030项. 21.请认真阅读下列材料:“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如图1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如图2)1 1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1… … 图1 … … 图2请回答下列问题:(1)记S n 为图1中第n 行各个数字之和,求S 4,S 7,并归纳出S n ; (2)根据图2前5行的规律依次写出第6行的数. 答案 (1)S 4=8=23;S 7=64=26; Sn =2n -1.(2)图中每个数字都是其两脚的数字和, 故第6行为16 130 160 160 130 16.三、空间几何体1.我国古代数学名着《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( )寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) A .1 B .2 C .3 D .4 答案 C解析 如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸. ∵积水深9寸,∴水面半径为12(14+6)=10寸,则盆中水的体积为13π×9(62+102+6×10)=588π(立方寸).∴平地降雨量等于588ππ×142=3(寸).故选C.2.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V =112×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(注:1丈=10尺)( ) A .3 B . C . D .答案 A解析 由题意,圆柱体底面的圆周长48尺,高11尺, ∵圆堡瑽(圆柱体)的体积V =112×(底面的圆周长的平方×高), ∴V =112×(482×11)=2 112,设底面圆的半径为R ,∴⎩⎪⎨⎪⎧2πR =48,πR 2×11=2 112,∴π=3.3.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈立方尺,π≈3),则圆柱底圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺答案 B解析 设圆柱形谷仓底面半径为r 尺,由题意得,谷仓高h=403尺.于是谷仓的体积V=πr2·h≈2 000×,解得r≈9.∴圆柱底圆周长约为2πr≈54尺=5丈4尺.4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为( )答案B解析由题意知275L2h≈13πr2h?275L2≈13πr2,而L=2πr,代入得π≈258.5.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABCD、面ABFE、面CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是( )A.110 B.116C.118 D.120答案D解析过A作AP⊥CD,AM⊥EF,过B作BQ⊥CD,BN⊥EF,垂足分别为P,M,Q,N,将一侧的几何体放到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,∴V=15×8=120.故选D.6.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4π.后人导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则V方盖差V正等于( )答案C解析由题意,V方盖差=r3-18V牟=r3-18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r× r2-?22r?2=26r3,∴V方盖差V正=13r326r3= 2.7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )A.a,b B.a,cC.c,b D.b,d答案A解析由直观图可知,其正视图与侧视图完全相同,则其只能是圆,这时其俯视图就是正方形加对角线(实线).故选A.8.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4∶π,即V牟:V球=4∶π.也导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,则( ) A.V方盖差>V正B.V方盖差=V正C.V方盖差<V正D.以上三种情况都有可能答案A解析由题意,V方盖差=r3-18V牟=r3-18×4π×43πr3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r× r2-?22r?2=26r3,∴V方盖差>V正.9.我国古代数学名着《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)( )A.29尺B.24尺C.26尺D.30尺答案C解析 由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长242+102=26(尺).10.《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .28斛 C .36斛 D .66斛答案 B解析 设圆锥的底面半径为r ,则π2r =9,解得r =18π, 故米堆的体积为14×13×π×(18π)2×5≈45,∵1斛米的体积约为立方, ∴堆放的米有45÷≈28斛.11.《九章算术》是我国古代着名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB =1尺,弓形高CD =1寸,估算该木材镶嵌在墙中的体积约为( ) (注:1丈=10尺=100寸,π≈,sin °≈513) A .600立方寸 B .610立方寸 C .620立方寸 D .633立方寸答案 D 解析 如图,AB =10(寸),则AD =5(寸),CD =1(寸),设圆O 的半径为x (寸),则OD =(x -1)(寸), 在Rt△ADO 中,由勾股定理可得52+(x -1)2=x 2, 解得x =13(寸). ∴sin∠AOD =AD AO =513, 即∠AOD ≈°,则∠AOB =45°.则弓形¼ACB 的面积S =12×π4×132-12×10×12 ≈(平方寸).则该木材镶嵌在墙中的体积约为V =×100 =633(立方寸).故选D.12.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)答案41π解析由题意,该球形容器的半径的最小值为1236+4+1=412,∴该球形容器的表面积的最小值为4π·414=41π.13.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).(1)如果该沙漏每秒钟漏下 cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到.答案(1)开始时,沙漏上部分圆锥中的细沙的高为H=23×8=163,底面半径为r=23×4=83,V=13πr2H=13π×(83)2×163=,V÷=1 986(秒).所以沙全部漏入下部约需1 986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径为4,设高为H′,V=13π×42×H′=1 02481π,H′=6427≈.锥形沙堆的高度约为 cm.14.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.(2)若面DEF与面ABCD所成二面角的大小为π3,求DCBC的值.。
中国古代数学问题
一板凳鏊子问题板凳鏊子三十三,一百条腿都朝天,问几个板凳几个鏊子?板凳和鏊子(烙饼用的,有三条腿;板凳,四条腿)一共三十三个。
问几个板凳几个鏊子?二隔墙分银隔墙听得客分银,不知人数不知银。
七两分之多四两,九两分之少半两。
问多少银子多少人?(古时16 两1 斤)三一百馒头一百僧我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?译成白话文,其意思是:有100 个和尚分100 只馒头,正好分完。
如果大和尚一人分3只,小和尚3 人分一只,试问大小和尚各有几人?方法一,用方程设大和尚有x 人,则小和尚有(100-x)人,根据题意列得方程:3x+1/3(100 -x)=100解方程得:x=25小和尚:100-25=75 人方法二,鸡兔同笼法:(1)假设100 人全是大和尚,应吃馒头多少个? 3×100=300(个).(2)这样多吃了几个呢? 300-100=200(个).(3)为什么多吃了200 个呢?这是因为把小和尚当成大和尚。
那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?3-1/3=8/3(4)每个小和尚多算了8/3 个馒头,一共多算了200个,所以小和尚有:200÷8/3=75(人)大和尚:100-75=25(人)方法三,分组法:由于大和尚一人分3只馒头,小和尚3人分一只馒头。
我们可以把3个小和尚与1 个大和尚编为一组,这样每组4 个和尚刚好分4 个馒头,那么100个和尚总共分为100÷(3+1)=25 组,因为每组有1 个大和尚,所以有25 个大和尚;又因为每组有3个小和尚,所以有25×3=75 个小和尚这是《直指算法统宗》里的解法,原话是:”置僧一百为实,以三一并得四为法除之,得大僧二十五个。
”所谓“实”便是”“被除数”,“法”便是“除数”。
列式就是:100÷(3+1)=25,100-25=75。
有趣的中国古代数学故事
有趣的中国古代数学故事
以下是一些有趣的中国古代数学故事:
1. 赵爽的猜想:古代数学家赵爽提出了一个有趣的猜想,即两数之积等于两数之和与差的平方差。
这个猜想后来被数学家刘徽证明为正确,成为中国古代数学的重要成果之一。
2. 剪纸问题:古代数学家刘徽提出了一个有关剪纸的问题,即如何用一张正方形的纸剪出一个等边三角形。
这个问题一度困扰了数学家们,直到刘徽发现了一个巧妙的解法,利用了数学中的逼近法和比例关系。
3. 鸡兔同笼问题:这是一个有关代数方程问题的故事。
古代数学家张丘建提出了一个关于鸡兔总数和腿的关系的问题,即知道总腿数和总头数,如何确定鸡和兔的数量。
这个问题成为中国古代数学中的经典问题,也引发了许多数学家的研究和探讨。
4. 割圆问题:古代数学家刘徽提出了一个有关割圆问题的难题,即如何用规定的刀子割出已知长宽比的矩形。
他通过对割圆的问题进行几何变换和代数求解,得到了解决的方法,并且提出了一个著名的定理,即“正方形的对角线相等于边长的根号二倍”。
5. 数学家的雨伞:唐代数学家李冶因为研究数学问题而着迷,甚至连睡觉时都要把雨伞打开放在头顶,以便在有灵感时随时记录下来。
他的这种奇特举动成为了当时的一种笑谈,但也反映了他对数学事业的执着和热情。
这些古代数学故事展示了中国古代数学家们的智慧和创造力,同时也揭示了他们对数学的热爱和追求。
这些故事不仅带给我们乐趣,也让我们对古代数学的发展和成就有了更深刻的了解。
中国古代方程的有趣故事
中国古代方程的有趣故事在中国古代,方程是一个重要的数学问题。
虽然与现代的高等数学相比,古代的方程求解方法显得有些简陋,但是中国古代数学家们通过各种巧妙的思路和方法,解决了许多有趣的方程问题。
本文将介绍一些中国古代方程的有趣故事。
一. 古代巧妙解方程1. 割尺法解孙子定理方程孙子定理是中国古代解方程的经典方法之一。
它使用割尺法,通过画图和几何推理来求解方程。
这个方法以孙子命名,因为他在《孙子算经》一书中提到了这个方法。
孙子定理的一个有趣例子是求解“勾股数”的问题。
勾股数是指三个正整数a、b、c满足a² + b² = c²的数。
古代数学家通过割尺法发现了一些勾股数的特殊解,如(3,4,5)和(5,12,13)等。
这些解在很长一段时间内被广泛使用。
2. 陈九思法解不定方程陈九思是中国古代数学家陈景元的别名。
他提出了一种巧妙的方法来解决一类不定方程问题,被后人称为陈九思法。
陈九思法的关键思想是“取余式”和“求解式”。
通过巧妙的变换和观察,他将复杂的不定方程转化为简单的方程或同余方程,然后再求解得到结果。
这种方法在解决一些数学问题时非常有效,被广泛应用。
陈九思法让数学家们在解决问题时有了新的思路和工具,对古代方程学的发展起到了重要作用。
二. 古代方程故事的启示中国古代方程的有趣故事不仅给我们带来了快乐,还启示我们在解决问题时要注重巧妙的思路和创造性的方法。
古代数学家们虽然没有现代计算机和高级数学工具,但他们凭借智慧和勤奋,不断探索,创造出了许多独特的解题方法。
这些故事告诉我们,数学的美妙和魅力在于它的复杂性和多样性。
解决方程不仅需要严谨的逻辑思维,更需要灵活的动手能力和创造性的思维方式。
古代方程的故事还给我们带来了对数学智慧的深刻理解。
在解决问题时,我们应该注重整体思考和灵活运用各种数学方法。
只有通过不断学习和实践,我们才能更好地理解数学的奥秘,提高解题的能力。
三. 总结中国古代方程的有趣故事丰富了历史中的数学文化,展示了古代数学家们的智慧和创造力。
物不知其数问题出自一千六百年前我国古代数学名著
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知。
'正半月'暗指15.'除百零五'的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
70m+21n+15k(1≤m<3,1≤n<5,1≤k<7)
能同时满足'用3除余m、用5除余n、用7除余k'的要求。除以105取余数,是为了求合乎题意的最小正整数解。
我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?
一般地,
105m+196n+120k(1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数;(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
中国古代最著名的三道数学题
中国古代最著名的三道数学题比方说著名的勾股定理,这个定理在西方最早是由古希腊哲学家毕达哥拉斯发现的,所以也称为毕达哥拉斯定理,但据说这个定理在中国最早是由西周数学家商高发现的,他发现了“勾三、股四、弦五”的定理,比毕达哥拉斯早五百年。
虽然在近代史上,中国的数学成就远远没有像西方那样对世界进步产生深远影响,但中国古代的数学成就还是值得肯定的。
中国古代的数学著作为我们留下了很多经典讨论,其中有三个最著名的问题,一直到现在经久不衰。
一、鸡兔同笼问题这个数学问题出自南北朝时期的数学著作《孙子算经》。
这本书的作者是谁不知道,但可以确定的是这本书和《孙子兵法》肯定没关系。
《孙子算经》之所以也冠以“孙子“的名号,是因为这本书开篇序言第一句话引用了孙子的话:“孙子曰:夫算者,天地之经纬,群生之园首,五常之本末,阴阳之父母……”这本书里最著名的一个问题就是鸡兔同笼,我记得上小学那会,经常有这种类型的题。
这个问题的原文是这么说的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”就是说,有一群鸡和兔子在一个笼子里,头一共35个,脚一共94个,问有多少只鸡,多少只兔子。
我记得这种题目是以前学二元一次方程的入门题。
设鸡有x只,兔子有y 只,列个方程:x + y = 352x + 4y =94然后算出x=23,y=12,所以鸡有23只,兔子12只。
但是中国古人不懂二元一次方程,他们是怎么算的呢。
古人非常机智,他们的算法比列方程还简单。
鸡有两只脚,兔子有四只脚,他们假设让鸡抬起一只脚,让兔子抬起两只脚,这个时候笼子里的脚就会少一半,就是94/2=47只。
这个时候的笼子里,鸡是一只脚一个头,兔子是两只脚一个头,而头一共是35个,说明多出来的就是兔子的数量,所以47-35=12,兔子就是12只。
二、物不知数问题除了鸡兔同笼问题,《孙子算经》上另一个著名问题就是“物不知数问题”。
原文是这么说的:“有物不知其数,三三数之余二,五五数之余三,七七数之余二。
古代趣味数学
篇一:中国古代的趣味数学中国古代的趣味数学——简析几个典型的古代数学问题夏超(马克思主义教育学院思想政治教育专业学号:1012279)关键词:鸡兔同笼百鸡问题孙子定理数学在中国拥有悠久的历史,在古人的智慧中,我们可以发现数学之美,探寻数学之趣,数学的好玩之处,并不限于数学游戏。
数学中有些极具实用意义的内容,包含了深刻的奥妙,发人深思,使人惊讶。
中国古代的数学广泛应用于各个领域,对中国古代的农业、天文学等的发展作出了重大贡献。
其中的一些脍炙人口的趣味小问题也让我们在探究中发现数学之美。
1.鸡兔同笼问题鸡兔同笼问题是我国古代一道经典的数学趣题。
它记载于大约1500年前的《孙子算经》中,书中是这样描述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这句话的意思是:若干只鸡兔同在一个笼子里,从上面数,有三十五个头:从下面数,有九十四只脚。
求笼中各有几只鸡和兔?用解法一(假设法):已知鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,即,将兔子看做两只脚的鸡,鸡兔总的脚数是35×2=70(只),比题中说的94只要少24只。
可知这24只脚是兔子,因此有兔子24÷2=12(只)。
所以有鸡35-12=23(只)。
解:假设全是鸡: 35×2=70(只)比总脚数少:94-70=24(只)脚数的差:4-2=2(只)因此有兔子:24÷2=12(只)鸡:35-12=23(只)解法二(方程法):解:设兔有x只,则鸡有35-x只。
4x+2(35-x)=942x=2 4x=1235-12=23(只)故:有鸡23只,兔12只。
除此之外还有解法3:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法4(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) =兔的只数总只数-兔的只数=鸡的只数解法5:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数解法4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数6法7兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数简单的鸡兔同笼问题却能有如此多的解法,是不是很奇妙呢通过对一个简单的数学问题的剖析,你是否从中发现了探索的乐趣呢?在探索的过程中你是否体味到数学解题思想的变幻之美呢?2.百鸡问题百鸡问题记载于中国古代约5-6世纪成书的《张丘建算经》中,该问题导致的三元不定方程组开创了“一问多答的先例”这是过去中国古算书书中所没有的,体现了中国数学的发展。
中国古代数学问题
例5:今有共买物,人出八,盈三;人出七, 不足四。问人数、物价几何?
分析:几个人一起去购买物品,如果每人出8钱,则剩 余3钱;如果每人出7钱,则差4钱。问有多少人,物品 的价格是多少?
解:设有 x 人,根据题意列方程,得 8x-3=7x+4
解这个方程,得 x=7 8x-3=8 7-3=53(钱) 答:有 7 人,物品的价格是 53 钱.
《周 髀 算 经》
《 九 章 算 术》
《孙 子 算 经》
《海 岛 算 经》
例:《百僧百馒》
一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁?
意思是:
100个和尚分100个馒头, 大和尚 1人分 3个馒头, 大和尚 小和尚 3人分 1个馒头。 25;小 大、小和尚各有多少人? 和尚75.
例8:算筹是中国古代用来记数、列式和进行各种数与式
演算的一种工具.在算筹计数法中,以“立”,“卧”两
种排列方式来表示单位数目,表示多位数时,个位用立
式,十位用卧式,百位用立式,千位用卧式,以此类推.
《九章算术》的“方程”一章中介绍了一种用“算筹图”
解决一次方程组的方法.如图1,从左向右的符号中,前
设:上禾一秉为x斗 中禾一秉为y斗 下禾一秉为z斗
3x+2y+z=39 2x+3y+z=34 X+2y+3z=26
反思
1、列方程(方程组)解古算应用题, 第一步应该做什么?
2、你能总结列方程 (方程组) 解应用 题的一般步骤吗?
3、你认为列方程 (方程组) 解应用题 最关键的一步是什么?
寺庙朗朗,溪流畅畅, 龟 鹤共舞,4 0 头 扬, 鹤腿龟腿, 1 1 2 偎。 请问裟家,龟鹤几何?
数学中的传统文化问题大全
数学中的传统文化问题大全Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】数学中的中国传统文化一、算法问题1.用更相减损术求294和84的最大公约数时,需要做减法的次数为( )A.2 B.3C.4 D.5答案C解析(84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.2.如图所示的程序框图的算法思路来源于我国古代数学名着《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为( )A.4 B.2C.0 D.14答案B解析由题意输出的a是18,14的最大公约数2,故选B.3.用辗转相除法求459和357的最大公约数,需要做除法的次数是( )A.1 B.2C.3 D.4答案C解析∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,需要做除法的次数是3.4.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数f n(x)=a n x n+a n-1x n-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和n?n+1?2次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=+4x5-x4+3x3-5x当x=3时的值时,最先计算的是( )A.-5×3=-15B.×3+4=C.3×33-5×3=66D.×36+4×35=1答案B解析f(x)=+4x5-x4+3x3-5x=((((+4)x-1)x+3)x+0)x-5)x,然后由内向外计算,最先计算的是×3+4=.5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( )A.4,2 B.5,3C.5,2 D.6,2答案C解析∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.6.已知函数f(x)=6x6+5,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为( )A.21,6,2 B.7,1,2C.0,1,2 D.0,6,1答案D解析∵f(x)=6x6+5,多项式的最高次项的次数是6,∴要进行乘法运算的次数是6.要进行加法运算的次数是1,运算过程中不需要乘方运算.7.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于( )A.7 B.12C.17 D.34答案C解析第一次运算,a=2,s=2,n=2,k=1,不满足k>n;第二次运算,a=2,s=2×2+2=6,k=2,不满足k>n;第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17,故选C.8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为( )A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11答案D解析f(x)=x3-3x2+2x-11=((x-3)x+2)x-119.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是( )A.4 B.10C.16 D.33答案C解析函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,当x=2时,v0=3,v1=3×2-2=4,v2=4×2+2=10,v3=10×2-4=16.10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2++2的值,当x=-2时,v1的值为( ) A.1 B.7C.-7 D.-5答案 C解析∵f(x)=x6-5x5+6x4+x2++2=(((((x-5)x+6)x+0)x+1)x+x+2,∴v0=a6=1, v1=v0x+a5=1×(-2)-5=-7.11.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6的值,当x=3时,v3的值为( ) A.-486 B.-351C.-115 D.-339答案C解析f(x)=-6x4+5x3+2x+6=(((-6x+5)x+0)x+2)x+6,∴v0=a4=-6,v1=v0x+a3=-6×3+5=-13,v2=v1x+a2=-13×3+0=-39,v3=v2x+a1=-39×3+2=-115.12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所着的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为( )A.20 B.61C.183 D.548答案C解析由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天( )A.1 326 B.510 C.429 D.336答案B解析由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.14.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,乘法运算次数为____________.加法运算次数为________.答案 5 5解析∵f(x)=((((5x+4)x+3)x+2)x+1)x+1,∴乘法要运算5次,加法要运算5次15.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n =________.答案6解析f(x)=x4+3x3+x+1=(((x+3)x)x+1)x+1,用秦九韶算法计算f(π)时,乘法运算与加法运算的次数和等于6.16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为ba和dc(a,b,c,d∈N*),则b+da+c是x的更为精确的不足近似值或过剩近似值.我们知道π=59…,若令3110<π<4915,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3110<π<165,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为________.答案22 717.我国古代数学名着《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在222…中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程2+x=x确定x=2,则1+11+11+…=________.答案1+52解析由题意,可令1+11+11+…=x,即1+1x=x,即x2-x-1=0,解得x=1+52(x=1-52舍),故1+11+11+…=1+52.18.用辗转相除法求840与1 764的最大公约数.答案 1 764=840×2+84,840=84×10+0,∴840与1 764的最大公约数是84.19.用更相减损术求440 与556的最大公约数.答案556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4,∴440与556的最大公约数4.20.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.答案f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)xv0=7,v1=7×3+6=27,v2=27×3+5=86,v3=86×3+4=262,v4=262×3+3=789,v5=789×3+2=2 369,v6=2 369×3+1=7 108,v7=7 108×3+0=21 324,∴f(3)=21 324,即当x=3时,函数值是21 324.21.(1)用辗转相除法求840与1 785的最大公约数;(2)用秦九韶算法计算函数f(x)=2x4+3x3+5x-4在x=2时的函数值.答案(1)1 785=840×2+105,840=105×8+0,∴840与1 785的最大公约数是105.(2)秦九韶算法如下:f(x)=2x4+3x3+5x-4=x(2x3+3x2+5)-4=x[x(2x2+3x)+5]-4=x{x[x(2x+3)]+5}-4,故当x=2时,f(x)=2×{2×[2×(2×2+3)]+5}-4=62. 22.(1)用辗转相除法求779与247的最大公约数;(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3时的值.答案(1)779=247×3+38,247=38×6+19,38=19×2.故779与247的最大公约数是19;(2)把多项式改成如下形式:f(x)=2x5+4x4-2x3+8x2+7x+4=((((2x+4)x-2)x+8)x+7)x+4.按照从内到外的顺序,依次计算一次多项式当x=3时的值:v0=2,v1=v0x+4=2×3+4=10,v2=v1x-2=10×3-2=28,v3=v2x+8=28×3+8=92,v4=v3x+7=92×3+7=283,v5=v4x+4=283×3+4=853.所以当x=3时,多项式f(x)的值是853.23.(1)用辗转相除法求228与1 995的最大公约数;(2)用秦九韶算法求多项式f(x)=3x5+2x3-8x+5在x=2时的值.答案(1)1 995=228×8+171,228=171×1+57,171=57×3,因此57是1 995与228的最大公约数.(2)f(x)=3x5+2x3-8x+5=((((3x+0)x+2)x+0)x-8)x+5当x=2时,v0=3,v1=3×2=6,v2=6×2+2=14,v3=14×2=28,v4=28×2-8=48,v5=48×2+5=101,所以当x=2时,多项式的值是101.24.(1)用“更相减损术”求72和168的最大公约数;(2)用“辗转相除法”求98和280的最大公约数.答案(1)∵168-72=96,96-72=24,72-24=48,48-24=24,故72和168的最大公约数是24.(2)∵280=2×98+84,98=1×84+14,84=6×14,故98和280的最大公约数是14.25.用秦九韶算法求函数f(x)=x5+x3+x2+x+1当x=3时的函数值.答案f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1,当x=3时,v0=1,v1=v0×3+0=3;v2=v1×3+1=10;v3=v2×3+1=31;v4=v3×3+1=94;v5=v4×3+1=283,即x=3时的函数值为283.二、数列问题1.《九章算术》是我国古代的数学名着,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) 钱 钱 钱 钱答案 B解析 依题意设甲、乙、丙、丁、戊所得钱分别为a -2d ,a -d ,a ,a +d ,a +2d ,则由题意可知,a -2d +a -d =a +a +d +a +2d ,即a =-6d , 又a -2d +a -d +a +a +d +a +2d =5a =5,∴a =1,则a -2d =a -2×(-a 6)=43a =43.2.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤”( )答案 B解析 设第十等人得金a 1斤,第九等人得金a 2斤,以此类推,第一等人得金a 10斤, 则数列{a n }构成等差数列,设公差为d ,则每一等人比下一等人多得d 斤金,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+24d =4,解得d =778, ∴每一等人比下一等人多得778斤金. 3.《张丘建算经》是公元5世纪中国古代内容丰富的数学着作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布”已知1匹=4丈,1丈=10尺,估算出每天多织的布约有( ) A .尺 B .尺 C .尺 D .尺答案 A解析 设每天多织d 尺,由题意a 1=5,{a n }是等差数列,公差为d , ∴S 30=30×5+30×292d =390, 解得d ≈.4.《张丘建算经》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日,第五日,第八日所织之和为十五尺,问第九日所织尺数为( ) A .7 B .9 C .11 D .13答案 D解析 设第一天织a 1尺,从第二天起每天比第一天多织d 尺, 由已知得⎩⎪⎨⎪⎧7a 1+7×62d =21,a 1+d +a 1+4d +a 1+7d =15,解得a 1=-3,d =2,∴第九日所织尺数为a 9=a 1+8d =-3+8×2=13.5.古代数学着作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何” 意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少”根据已知条件,可求得该女子第3天所织布的尺数为( ) 答案 C解析 由题意可得:每天织布的量组成了等比数列{a n },S 5=5,公比q =2 ,a 1?1-25?1-2=5,计算可得a 1=531,所以a 3=531×22=2031. 6.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88%答案 B解析 由题意可得:每日的织布量形成等差数列{a n }, 且a 1=5,a 30=1,设公差为d ,则1=5+29d ,解得d =-429. ∴S 10=5×10+10×92×(-429)=1 27029. S 30=30×?5+1?2=90. ∴该女子到第10日时,大约已经完成三十日织布总量的1 27029×190≈=49%. 7.《张丘建算经》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( ) A .30尺 B .90尺 C .150尺 D .180尺答案 B解析 由题意可得,每日的织布量形成等差数列{a n }, 且a 1=5,a 30=1, 所以S 30=30×?5+1?2=90. 8.在我国古代着名的数学专着《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢( ) A .9日 B .8日 C .16日 D .12日答案 A解析 由题意知,良马每日行的距离成等差数列, 记为{a n },其中a 1=103,d =13; 驽马每日行的距离成等差数列, 记为{b n },其中b 1=97,d =-;设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m ?m -1?×132+97m +m ?m -1?×?-?2=2×1 125,解得m =9(负值舍去).9.《九章算术》是我国古代第一部数学专着,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少”该问题中第2节,第3节,第8节竹子的容积之和为( ) 升 升 升 升答案 A解析 自上而下依次设各节容积为a 1,a 2,…a 9,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧2?a 2+a 3?=33a 8=4,得⎩⎨⎧a 2+a 3=32,a 8=43,所以a 2+a 3+a 8=32+43=176(升).10.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .24里 B .48里 C .96里 D .192里答案 C解析 由题意可知此人每天走的步数构成以12为公比的等比数列,由题意和等比数列的求和公式可得a 1[1-?12?6]1-12=378,解得a 1=192,∴第二天此人走了192×12=96里.11.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( ) A .24里 B .12里 C .6里 D .3里答案 C解析 记每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1?1-126?1-12=378,解得a 1=192,∴a 6=192×125=6.12.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( )A.6斤B.9斤C.10斤D.12斤答案B解析此问题构成一个等差数列{a n},设首项为2,则a5=4,∴中间3尺的重量为3a3=a1+a52×3=2+42×3=9(斤),故选B.13.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A.6斤B.9斤C.斤D.12 斤答案A解析依题意,金箠由粗到细各尺构成一个等差数列,设首项a1=4,则a5=2,由等差数列性质得a2+a4=a1+a5=6,所以第二尺与第四尺的重量之和为6斤.14.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯”() A.3 B.4C.5 D.6答案A解析由题意设塔顶有a盏灯,由题意由上往下数第n层就有2n-1·a盏灯,∴共有(1+2+4+8+16+32+64)a=381盏灯,即1×?1-27?1-2a=381.解得a=3.15.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢”上述问题中,两鼠在第几天相逢.( )A .3B .4C .5D .6答案 B解析 由题意可知,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列, 前n 天打洞之和为1-2n1-2=2n-1,同理,小老鼠前n 天打洞之和为1-?12?n1-12=2-12n -1,∴2n-1+2-12n -1=10,解得n ∈(3,4),取n =4. 即两鼠在第4天相逢.16.如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列{a n }的前4项,则{a n }的通项公式可以是( )A .a n =3n -1B .a n =2n -1C .a n =3nD .a n =2n -1答案 A解析 着色的小三角形个数构成数列{a n }的前4项,分别为a 1=1,a 2=3,a 3=3×3=32,a 4=32×3,因此{a n }的通项公式可以是a n =3n -1.17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设该数列{a n }的首项为a 1,公差为d , 依题意⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1+7d =43,d =766,则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.18.华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示________(如图)答案395解析图片中记录的是自然数乘以9的运算结果,左列是被乘数,右列是该数乘以9的积数,经过分析可知:其中▽代表1,?代表10,代表60.所以表示60×6+10×3+5×1=395.19.在我国南宋数学家杨辉所着的《详解九章算法》(1261年)一书中,用如图A所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的着作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),如图世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图B.在杨辉三角中相邻两行满足关系式:C r n+C r+1n=C r+1n+1,其中n是行数,r∈N.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是________.1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…C0n C1n…C r n…C n-1n C n n图A1 21 21 316131 41121121415 120 130 120 15 16 130 160 160 130 16 1C 1n +1C 0n 1C 1n +1C 1n …1C 1n +1Cr n…1C 1n +1C n -1n 1C 1n +1C n n图B答案1C 1n +1Cr n=1C 1n +2C r n +1+1C 1n +2C r +1n +1解析 类比观察得,莱布尼茨三角形的每一行都能提出倍数1C 1n +1,而相邻两项之和是上一行的两者相拱之数,所以类比式子C r n +C r +1n =C r +1n +1, 有1C 1n +1Cr n=1C 1n +2C r n +1+1C 1n +2C r +1n +1. 20.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面用点或用小石子表示数.他们研究过如图所示的三角形数,将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________.(用k 表示) 答案 (1)5 030 (2)5k ?5k -1?2解析 由题意可得a n =1+2+3+…+n =n ?n +1?2,n ∈N *,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15, 由上述规律可知:b 2k =a 5k =5k ?5k +1?2(k ∈N *), b 2k -1=a 5k -1=?5k -1??5k -1+1?2=5k ?5k -1?2,故b 2 012=b 2×1 006=a 5×1 006=a 5 030, 即b 2 012是数列{a n }中的第5 030项. 21.请认真阅读下列材料:“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如图1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如图2)1 1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1……图1111 21 21 316131 4112112141 512013012015……图2请回答下列问题:(1)记S n为图1中第n行各个数字之和,求S4,S7,并归纳出S n;(2)根据图2前5行的规律依次写出第6行的数.答案(1)S4=8=23;S7=64=26;Sn=2n-1.(2)图中每个数字都是其两脚的数字和,故第6行为1613016016013016.三、空间几何体1.我国古代数学名着《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( )寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.1 B.2 C.3 D.4答案C解析如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.∵积水深9寸,∴水面半径为12(14+6)=10寸,则盆中水的体积为13π×9(62+102+6×10)=588π(立方寸).∴平地降雨量等于588ππ×142=3(寸).故选C.2.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V =112×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(注:1丈=10尺)( ) A .3 B . C . D .答案 A解析 由题意,圆柱体底面的圆周长48尺,高11尺, ∵圆堡瑽(圆柱体)的体积V =112×(底面的圆周长的平方×高), ∴V =112×(482×11)=2 112, 设底面圆的半径为R ,∴⎩⎪⎨⎪⎧2πR =48,πR 2×11=2 112,∴π=3.3.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈立方尺,π≈3),则圆柱底圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺答案 B解析 设圆柱形谷仓底面半径为r 尺, 由题意得,谷仓高h =403尺.于是谷仓的体积V=πr2·h≈2 000×,解得r≈9.∴圆柱底圆周长约为2πr≈54尺=5丈4尺.4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为( )答案B解析由题意知275L2h≈13πr2h?275L2≈13πr2,而L=2πr,代入得π≈258.5.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABCD、面ABFE、面CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是( )A.110 B.116C.118 D.120答案D解析过A作AP⊥CD,AM⊥EF,过B作BQ⊥CD,BN⊥EF,垂足分别为P,M,Q,N,将一侧的几何体放到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,∴V=15×8=120.故选D.6.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4π.后人导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则V方盖差V正等于( )答案C解析由题意,V方盖差=r3-18V牟=r3-18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r× r2-?22r?2=26r3,∴V方盖差V正=13r326r3= 2.7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )A.a,b B.a,cC.c,b D.b,d答案A解析由直观图可知,其正视图与侧视图完全相同,则其只能是圆,这时其俯视图就是正方形加对角线(实线).故选A.8.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4∶π,即V牟:V球=4∶π.也导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,则( )A.V方盖差>V正B.V方盖差=V正C.V方盖差<V正D.以上三种情况都有可能答案A解析由题意,V方盖差=r3-18V牟=r3-18×4π×43πr3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r× r2-?22r?2=26r3,∴V方盖差>V正.9.我国古代数学名着《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)( )A.29尺B.24尺C.26尺D.30尺答案C解析由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长242+102=26(尺).10.《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米有( )A.14斛B.28斛C.36斛D.66斛答案B解析设圆锥的底面半径为r,则π2r=9,解得r=18π,故米堆的体积为14×13×π×(18π)2×5≈45,∵1斛米的体积约为立方,∴堆放的米有45÷≈28斛.11.《九章算术》是我国古代着名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈=10尺=100寸,π≈,sin °≈5 13)A.600立方寸B.610立方寸C.620立方寸D.633立方寸答案D解析如图,AB =10(寸),则AD =5(寸),CD =1(寸),设圆O 的半径为x (寸),则OD =(x -1)(寸), 在Rt△ADO 中,由勾股定理可得52+(x -1)2=x 2, 解得x =13(寸). ∴sin∠AOD =AD AO =513, 即∠AOD ≈°,则∠AOB =45°.则弓形ACB 的面积S =12×π4×132-12×10×12≈(平方寸).则该木材镶嵌在墙中的体积约为V =×100 =633(立方寸). 故选D.12.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、 前后完全对称.从外表上看,六根等长的正四棱柱体分成三组, 经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)答案 41π解析 由题意,该球形容器的半径的最小值为1236+4+1=412, ∴该球形容器的表面积的最小值为4π·414=41π. 13.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).(1)如果该沙漏每秒钟漏下 cm 3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到.答案 (1)开始时,沙漏上部分圆锥中的细沙的高为H =23×8=163,底面半径为r =23×4=83,V =13πr 2H =13π×(83)2×163=, V ÷=1 986(秒).所以沙全部漏入下部约需1 986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径为4, 设高为H ′,V =13π×42×H ′=1 02481π, H ′=6427≈.锥形沙堆的高度约为 cm.14.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.。
中国古代的趣味数学
中国古代的趣味数学——简析几个典型的古代数学问题夏超(马克思主义教育学院思想政治教育专业学号:1012279)关键词:鸡兔同笼百鸡问题孙子定理数学在中国拥有悠久的历史,在古人的智慧中,我们可以发现数学之美,探寻数学之趣,数学的好玩之处,并不限于数学游戏。
数学中有些极具实用意义的内容,包含了深刻的奥妙,发人深思,使人惊讶。
中国古代的数学广泛应用于各个领域,对中国古代的农业、天文学等的发展作出了重大贡献。
其中的一些脍炙人口的趣味小问题也让我们在探究中发现数学之美。
1.鸡兔同笼问题鸡兔同笼问题是我国古代一道经典的数学趣题。
它记载于大约1500年前的《孙子算经》中,书中是这样描述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这句话的意思是:若干只鸡兔同在一个笼子里,从上面数,有三十五个头:从下面数,有九十四只脚。
求笼中各有几只鸡和兔?用解法一(假设法):已知鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,即,将兔子看做两只脚的鸡,鸡兔总的脚数是35×2=70(只),比题中说的94只要少24只。
可知这24只脚是兔子,因此有兔子24÷2=12(只)。
所以有鸡35-12=23(只)。
解:假设全是鸡: 35×2=70(只)比总脚数少:94-70=24(只)它们脚数的差:4-2=2(只)因此有兔子:24÷2=12(只)鸡:35-12=23(只)解法二(方程法):解:设兔有x只,则鸡有35-x只。
4x+2(35-x)=942x=24x=1235-12=23(只)故:有鸡23只,兔12只。
除此之外还有解法3:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法4(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法5:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数解法4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数6解法7兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数一个简单的鸡兔同笼问题却能有如此多的解法,是不是很奇妙呢? 通过对一个简单的数学问题的剖析,你是否从中发现了探索的乐趣呢?在探索的过程中你是否体味到数学解题思想的变幻之美呢?2.百鸡问题百鸡问题记载于中国古代约5-6世纪成书的《张丘建算经》中,该问题导致的三元不定方程组开创了“一问多答的先例”这是过去中国古算书书中所没有的,体现了中国数学的发展。
中国古代方程的有趣故事
中国古代方程的有趣故事引言在中国古代,数学是一门广为人知的学科,古代数学家们为了解决实际生活中的问题,推导出了许多方程式。
这些方程式不仅有着严密的推演过程,还蕴含着许多有趣的故事。
本文将介绍一些古代中国方程的有趣故事,带你领略古代数学家们智慧的光芒。
千里马问题古代中国著名的方程问题之一是千里马问题。
这个问题可以追溯到南北朝时期的数学家祖冲之。
他曾提出如下问题:假设一批白马中有千里马,它们的速度快于普通马,我们如何通过一次竞赛,找出白马中的千里马呢?祖冲之的解决方法非常巧妙,他通过给每匹马标记序号,并安排它们参加一次竞赛,比赛中每匹马只跑一次。
确定冠军后,他观察冠军在比赛中与每匹马的成绩。
如果一匹马的名次都比冠军的名次差,则该匹马是千里马。
这个问题的解决方法在当时备受赞誉,不仅展示了祖冲之的智慧,也启发了后来数学家们对方程问题的探索。
《海岛问题》与《围魏救赵》古代中国的数学家刘徽和张丘建提出了两个极富智慧的方程问题:《海岛问题》和《围魏救赵》。
《海岛问题》《海岛问题》是一个关于数学归纳法的问题。
问题描述如下:某个海域中有若干个岛屿,任意两个岛屿之间都能够通过船只直接抵达。
现在要在这些岛屿之间修建桥梁,使得从任意一个岛屿出发,能够通过桥梁到达其他所有岛屿,但桥梁不能构成闭环。
那么,最少需要修建多少座桥梁才能满足条件?通过数学推理,刘徽给出了最少桥梁数的公式。
这个问题的解决方法非常有启发性,使人们开始关注到了数学归纳法的重要性。
《围魏救赵》《围魏救赵》是中国战国时期的一项军事计算问题。
据传,魏国围困了赵国的都城邯郸,而赵国的救兵需要尽快赶到邯郸解围。
问题是,如何安排途中的接力站点,使得最快的救兵能够在最短时间内到达目的地?张丘建通过方程推导,给出了解决这个问题的方法。
他根据救兵的速度和途中的接力站点,通过方程求解得出了最佳的接力站点位置和交接时间。
这个问题的机智解决展示了古代中国数学家的智慧和实用性思维。
趣谈中国古代数学中的方程问题
趣谈中国古代数学中的方程问题1. 中国古代数学方程问题简介:中国古代数学方程问题涉及到数学中的几何、代数、概率等多个方面,主要用于解决实际问题。
古代中国数学家们曾经提出了许多有关方程的问题,其中有一些是早在公元前3世纪的汉字书籍中就有的,而有些则是在公元前2世纪的秦汉时期出现的。
其中最有名的是《九章算术》,它收集了许多关于方程的问题,包括线性方程、二次方程、立方方程、四次方程等。
另外,《算学启蒙》、《算经》、《算学九章》等书籍也收集了许多关于方程的问题。
这些古代数学家们曾经提出了许多有关方程的问题,并且提出了一些有效的解决方案,这些方案可以帮助人们解决实际问题。
2. 清朝著名数学家张世英的方程解法。
张世英是清朝著名的数学家,他在古代数学中的方程解法被广泛应用。
他的著作《算学源流》中,提出了一种新的方程解法,即“三角函数”,它可以用来解决更复杂的方程问题。
此外,他还提出了“三角函数的反函数”,它可以用来解决更复杂的方程问题,比如求解高阶方程的根。
他还提出了“三角函数的反函数的反函数”,它可以用来解决更复杂的方程问题,比如求解高阶方程的根。
此外,他还提出了“三角函数的反函数的反函数的反函数”,它可以用来解决更复杂的方程问题,比如求解高阶方程的根。
此外,他还提出了“三角函数的反函数的反函数的反函数的反函数”,它可以用来解决更复杂的方程问题,比如求解高阶方程的根。
张世英还提出了“幂函数”,它可以用来解决更复杂的方程问题,比如求解高阶方程的根。
此外,他还提出了“多项式函数”,它可以用来解决更复杂的方程问题,比如求解高阶方程的根。
张世英的方程解法不仅可以用来解决古代数学中的方程问题,而且还可以用来解决现代数学中的方程问题。
3. 明朝数学家黄宗羲的方程求解。
明朝时期,数学家黄宗羲发现了一种新的方法来解决方程问题,即“等式求解”。
他将方程分解为两个等式,然后将两个等式的结果相加,从而得出方程的最终解。
黄宗羲的方法可以解决多元一次方程,而且可以解决一元二次方程。
2022年人教版数学中考复习专题练习——中国古代数学问题
2022年人教版数学中考复习专题练习中国古代数学问题4.(2020·临沂) 《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()6.(2021·深圳) 《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x 元,一亩坏田为y 元,根据题意列方程组得( )⎩⎨⎧=+=+48533864.y x y x A ⎩⎨⎧=+=+38534864.x y x y B ⎩⎨⎧=+=+38354864.y x y x C ⎩⎨⎧=+=+38534864.y x y x D 8.(2019·乐山) 《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )A .1 ,11B .7 ,53C .7 ,61D .6 ,509.(2019·长沙) 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )⎩⎨⎧-=+=15.05.4.x y x y A ⎩⎨⎧-=+=125.4.x y x y B ⎩⎨⎧+=-=15.05.4.x y x y C ⎩⎨⎧-=-=125.4.x y x y D10.(2018·广州) 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y两,根据题意得()12.(2019·泰安) 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x两,每枚白银重y两,根据题意可列方程组为 .13.(2021·内蒙古通辽)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是 .14.(2019·上海) 《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题9:我国古代数学名著《孙子算经》中记载 了一道题,大意是:求100匹马恰好拉了100片 瓦, 已知1匹大马能拉3片瓦,3匹小马能拉1片 瓦,问有多少匹大马、多少匹小马? 解:若设大马有x匹, 小马有y匹,那么可列方程组为
练习: “我问开店李三公,众客都来到店中, 一房七客多七客,一房九客一房空.” 那么有多少间房,有多少位客人?
300x+500/7 y=10000
例7.中国古代的数学专著《九章算术》有方程 问题:“五只雀、六只燕,共重一斤(等于16 两)雀重燕轻.互换其中一只,恰好一样重”, 则雀、燕的重量各为多少两?
例8:算筹是中国古代用来记数、列式和进行各种数与式 演算的一种工具.在算筹计数法中,以“立”,“卧”两 种排列方式来表示单位数目,表示多位数时,个位用立 式,十位用卧式,百位用立式,千位用卧式,以此类推. 《九章算术》的“方程”一章中介绍了一种用“算筹图” 解决一次方程组的方法.如图1,从左向右的符号中,前 两个符号分别代表未知数x,y的系数.因此,根据此图 可以列出方程:x+10y=26.请你根据图2列出方程 组 .
2、鸡兔同笼 今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
今有雉 兔同笼, 上有三十五头, 鸡头+兔头=35 下有九十四足, 鸡脚+兔脚=94 问鸡兔各几何?
(鸡)
法 2: 解:设鸡有x只,则兔有(35- x )只,由题意可列方程 为:
2x+4 (35 - x ) = 94 解此方程得: X=23 35 - x=12
12、清明巡园
解:设大船有x只, 则小船有(8- x )只, 由题意得 6x+4 (8- x )=38
清明巡园,共坐八船,
大船乘6人 小船乘4人
大船满六,满四小船,
38 学子, 满船坐观。
请问客家,大小几船?
学后深思
1、你认为列方程解古代算题的
障碍是什么?
答:读不懂文言文。
2、你认为列方程解应用题的 关键是什么?
古代数学类应用题
《周 髀 算 经》
《 九 章 算 术》
《孙 子 算 经》
《海 岛 算 经》
例:《百僧百馒》
一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁?
意思是:
100个和尚分100个馒头, 大和尚 1人分 3个馒头, 小和尚 3人分 1个馒头。 大、小和尚各有多少人?
大和尚 25;小 和尚75.
解:良田买了 x 亩,则薄田买了(100-x)亩,根据题意列方程,得
500 300x+ (100-x)=10000 7
解这个方程,得
x=12.5
100-x=100-12.5=87.5(亩) 答:良田买了 12.5 亩,薄田买了 87.5 亩.
法2: 解:设购买善田X亩 ,购买恶田Y亩
X+y=100
解:设有 x 人,根据题意列方程,得 8x-3=7x+4 解这个方程,得 x=7 8x-3=8 7-3=53(钱) 答:有 7 人,物品的价格是 53 钱.
例6:今有善田一亩,价三百;恶田七亩,价五 百.今并买一顷,价钱一万,问善田、恶田各几 何?
分析:用300钱可以买1亩良田,用500钱可以买7亩薄田. 现在用10000钱买了1顷土地,问良田、薄田各买了多少亩? 等量关系:买良田用的钱+买薄田用的钱=10000
将x=36代入方程左边,得井深=8 尺 。
答:绳长36尺,井深8尺。
探究新解法
等量关系: (井深+4)× 3=绳长 (井深+1)× 4=绳长
解:设 井深 x尺,则由题意得 3(x +4)=4(x +1) x=8 将x=8代入方程左边得绳长=36 答:绳长36尺,井深8尺。
例4 、
《勤妇荡杯》
妇女河上荡杯,津吏问“杯何以多?” 妇人曰: “有客。”津吏曰:“客几何?” 妇人曰:“两 人共饭,三人共羹,四人共肉,凡用杯六十五。不 知客几何?”
题 目 大 意 是 :
一个妇女在河边洗碗,河官问:“洗多少碗? 有多少客 ?”妇女答:“洗 65 只碗,客人 二人共用一只饭碗,三人共用一只汤碗,四 人共用一只肉碗。你说有多少客人用餐?”
60
例5:今有共买物,人出八,盈三;人出七, 不足四。问人数、物价几何?
分析:几个人一起去购买物品,如果每人出8钱,则剩 余3钱;如果每人出7钱,则差4钱。问有多少人,物品 的价格是多少?
例:周瑜寿属 而立之年督东吴,早逝英年两位数; 十比个位正小三,个位六倍与寿符; 哪位同学算得快,多少年寿属周瑜?
设个位数字为x,十位数字y
x-y=3 6x=x+10y 36
例10:《九章算术》中卷八第一题:“今有上禾 三秉,中禾二秉,下禾一秉,实三十九斗;上禾 二秉,中禾三秉,下禾一秉,实三十四斗;上禾 一秉,中禾二秉,下禾三秉,实二十六斗.问上 中下禾实一秉各几何?
清明巡园,共坐八船, 大船满六,满四小船,
大船乘6人 小船乘4人
38 学子, 满船坐观。
请问客家,大小几船?
寺庙朗朗,溪流畅畅, 龟鹤共舞,4 0 头 扬, 鹤腿龟腿,1 1 2 偎。 请问裟家,龟鹤几何?
11、龟鹤共 舞 解:设鹤有x只,
则龟有(40-x)只, 由题意得 2x+4(40-x)=112
设:上禾一秉为x斗 中禾一秉为y斗 下禾一秉为z斗
3x+2y+z=39 2x+3y+z=34 X+2y+3z=26
反思
1、列方程(方程组)解古算应用题, 第一步应该做什么? 2、你能总结列方程 (方程组) 解应用 题的一般步骤吗?
3、你认为列方程 (方程组) 解应用题 最关键的一步是什么?
寺庙朗朗,溪流畅畅, 龟 鹤共舞,4 0 头 扬, 鹤腿龟腿, 1 1 2 偎。 请问裟家,龟鹤几何?
答:笼中有鸡23只,兔12只。
例 3:
《折绳测井》
以绳测井。若将绳三折测之,绳多四 尺;若将绳四折测之,绳多一尺。绳 长、井深各几何?
题 目 大 意 是 :
用绳子测水井深度,如果将绳子折成 三等份,井外余绳4尺;如果将绳子折 成四等份,井外余绳1尺。问绳长、井 深各是多少尺?
等量关系:
1 绳长的 3 — 4 = 井深 1 绳长的 4 — 1 = 井深 解:设绳长x尺,则由题意得 x x — 4= — 1 3 4 x = 36
答:找等量关系