【小学数学】小学数学六年级上册考试必考知识点汇总

合集下载

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。

2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数.所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。

的27×512.27 表示: 512 是多少。

(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

六年级上册必考知识点归纳总结

六年级上册必考知识点归纳总结

六年级上册必考知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义是把相同的数或单位“1”相加,求和。

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3. 乘法运算定律推广到分数:分数乘法也适合乘法交换律、结合律、分配律。

二、分数除法1. 分数除法的意义:与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

2. 分数除法的计算法则:除以一个数(0除外),等于乘上这个数的倒数。

3. “四则运算”中的“除法运算”:在混合运算中,先算括号内的,再算乘除法,最后算加减法。

三、比和比例1. 比的意义和性质:两个数相除又叫做两个数的比。

比是表示两个量相除的关系。

比的性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

2. 比例的意义和性质:表示两个比相等的式子叫做比例。

比例的性质:内项之积等于外项之积。

3. 化简比:根据比的基本性质,把比的前项和后项都乘或除以同一个数(0除外),比值不变。

4. 解比例:解比例的意义在于可以把一个难以解决的比较复杂的问题转化成一个易于解决的一元一次方程,然后解这个方程即可得出所求的比或比例值。

5. 正比例和反比例的意义:两个量中相对应的两个数的商一定,这两个量就成正比例;两个量中相对应的两个数的积一定,这两个量就成反比例。

6. 用字母表示数:用字母表示数可以简明地表达数量关系,同时也可以使一些与数量关系密切相关的性质更直观、更简洁地表达出来。

7. 用字母表示常见的数量关系、运算定律和性质、几何形体的周长、面积、体积公式。

309 六年级数学上册重点知识归纳

309 六年级数学上册重点知识归纳

六年级数学上册重点知识归纳
六年级数学上册的重点知识归纳如下:
圆的周长和面积。

掌握圆的周长公式:C=πd或C=2πr,圆的面积公式:S=πr²。

百分数的应用。

理解各种百分数的意义是解答百分数应用题的基础。

分数乘法。

分数乘法的计算法则,要注意分母不变,分子乘整数,然后约分。

分数乘法是小学数学的重要内容,也是学生学习的难点。

位置与方向。

根据方向和距离确定物体位置的方法是本单元的教学重点。

分数乘法混合运算。

掌握分数乘法混合运算的运算顺序,会进行分数乘法混合运算,并能运用分数乘法运算解决实际问题。

圆面积的应用。

求圆的部分的周长和面积时,可以根据圆的半径、周长和面积公式直接解题。

观察物体。

了解常见的两个垂直方向(正面和上面)观察到的几何图形特点是本单元的教学重点。

可能性。

通过本单元的学习使学生感受并描述简单事件发生的等可能性以及游戏规则的公平性。

这些知识点在六年级数学上册教材中占据着重要的地位,对于学生来说具有一定的难度和重要性,因此需要学生认真学习和掌握。

小学六年级上册数学必考知识点

小学六年级上册数学必考知识点

小学六年级上册数学必考知识点1.圆心:圆任意两条对称轴的交点为圆心。

注:圆心一般符号o表示。

2.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

3.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的排序法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘坐整数:数形融合、转变化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1除去以这个数,比如0.25 ,1/0.25等同于4 ,所以0.25的倒数4 ,因为乘积就是1的两个数互为倒数。

分数、整数也都采用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数乘法排序法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数乘法的意义:与整数乘法的意义相同,都就是未知两个因数的积与其中一个因数谋另一个因数。

六年级数学上册知识点总结

六年级数学上册知识点总结

六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。

其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。

下面将对这些知识点进行总结。

一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。

需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。

2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。

此外,还会接触到小数与整数之间的运算和关系。

3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。

此外,还需要掌握分数的化简和比较大小。

4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。

5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。

6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。

这部分内容主要锻炼学生的应用能力和问题解决能力。

二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。

2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。

3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。

学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。

三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。

六年级上册数学知识点总结

六年级上册数学知识点总结

六上数学知识点总结一、数的认识1.1 整数1.理解整数的概念,掌握整数的分类:自然数、整数、负整数。

2.掌握整数的性质:加法、减法、乘法、除法。

3.掌握整数的运算规律:结合律、交换律、分配律。

1.2 小数1.理解小数的概念,掌握小数的构成:整数部分、小数点、小数部分。

2.掌握小数的性质:小数的末尾添上“0”或去掉“0”小数的大小不变。

3.掌握小数的运算规律:加法、减法、乘法、除法。

1.3 分数1.理解分数的概念,掌握分数的构成:分子、分母、分数线。

2.掌握分数的性质:分数的基本性质、分数与除法的关系。

3.掌握分数的运算规律:加法、减法、乘法、除法。

二、数的运算2.1 加减法1.理解加减法的概念,掌握加减法的运算规律。

2.掌握加减法的运算顺序:同级运算从左到右,有括号的先算括号里面的。

2.2 乘除法1.理解乘除法的概念,掌握乘除法的运算规律。

2.掌握乘除法的运算顺序:两级运算先算乘除,同级运算从左到右,有括号的先算括号里面的。

2.3 混合运算1.理解混合运算的概念,掌握混合运算的运算顺序。

2.能够正确计算混合运算,注意运算符号和括号的使用。

三、几何初步3.1 平面图形的认识1.理解平面图形的概念,掌握常见平面图形的特征:三角形、四边形、五边形、六边形。

2.掌握平面图形的分类:三角形、四边形、五边形、六边形。

3.2 平面图形的面积1.理解平面图形面积的概念,掌握平面图形面积的计算方法。

2.掌握三角形的面积计算公式:底×高÷2。

3.掌握四边形的面积计算公式:底×高。

3.3 立体图形的认识1.理解立体图形的概念,掌握常见立体图形的特征:正方体、长方体、圆柱、圆锥。

2.掌握立体图形的分类:正方体、长方体、圆柱、圆锥。

3.4 立体图形的体积1.理解立体图形体积的概念,掌握立体图形体积的计算方法。

2.掌握正方体体积计算公式:棱长×棱长×棱长。

3.掌握长方体体积计算公式:长×宽×高。

苏教版小学数学六年级上册知识点汇总

苏教版小学数学六年级上册知识点汇总

苏教版小学数学六年级上册知识点汇总
数的认识
- 了解自然数、整数、分数的概念及其表示方法
- 掌握1以内和100以内的数的认识和比较
加法运算
- 熟练掌握两位数加一位数的运算方法
- 正确使用进位和退位的方法进行加法运算
- 能够解决简单的应用问题
减法运算
- 掌握两位数减一位数的运算方法
- 正确使用退位的方法进行减法运算
- 能够解决简单的应用问题
乘法运算
- 熟练掌握两位数乘一位数的运算方法
- 掌握乘法的交换律和分配律
- 能够解决简单的应用问题
除法运算
- 理解除法的概念和运算方法
- 熟练掌握两位数除一位数的运算方法- 能够解决简单的应用问题
小数
- 了解小数的概念
- 熟练掌握小数的读写方法
- 能够进行简单的小数的加减运算
量和单位
- 掌握长度、重量、容量的单位及其换算- 能够进行简单的单位换算计算
成倍数的应用
- 理解倍数的概念
- 掌握找规律、用倍数计算的方法
- 能够解决简单的倍数应用问题
坐标和图形
- 了解平面直角坐标系
- 掌握点的坐标及其在平面直角坐标系中的表示
- 能够绘制简单的图形
数据的收集和整理
- 能够用调查问卷的方式收集数据
- 掌握数据的整理和分类方法
- 能够用表格和图形展示数据
以上是苏教版小学数学六年级上册的知识点汇总,希望能对你的学习有所帮助!。

小学六年级上册数学知识点【三篇】

小学六年级上册数学知识点【三篇】

【导语】如果说,⽣命的历程是⼀条航线,它向何处延伸取决于罗盘,那么,最紧要的,便是认清罗盘上的指针。

以下是为⼤家整理的《⼩学六年级上册数学知识点【三篇】》供您查阅。

圆 ⼀、认识圆 1、圆的定义:圆是由曲线围成的⼀种平⾯图形。

2、圆⼼:将⼀张圆形纸⽚对折两次,折痕相交于圆中⼼的⼀点,这⼀点叫做圆⼼。

⼀般⽤字母O表⽰。

它到圆上任意⼀点的距离都相等. 3、半径:连接圆⼼到圆上任意⼀点的线段叫做半径。

⼀般⽤字母r表⽰。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆⼼并且两端都在圆上的线段叫做直径。

⼀般⽤字母d表⽰。

直径是⼀个圆内最长的线段。

5、圆⼼确定圆的位置,半径确定圆的⼤⼩。

6、在同圆或等圆内,有⽆数条半径,有⽆数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。

⽤字母表⽰为:d=2r或r= 8、轴对称图形: 如果⼀个图形沿着⼀条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

(经过圆⼼的任意⼀条直线或直径所在的直线) 9、长⽅形、正⽅形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1⼀条对称轴的图形有:⾓、等腰三⾓形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长⽅形 只有3条对称轴的图形是:等边三⾓形 只有4条对称轴的图形是:正⽅形; 有⽆数条对称轴的图形是:圆、圆环。

⼆、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。

⽤字母C表⽰。

2、圆周率实验: 在圆形纸⽚上做个记号,与直尺0刻度对齐,在直尺上滚动⼀周,求出圆的周长。

发现⼀般规律,就是圆周长与它直径的⽐值是⼀个固定数(π)。

3.圆周率:任意⼀个圆的周长与它的直径的⽐值是⼀个固定的数,我们把它叫做圆周率。

⽤字母π(pai)表⽰。

(1)、⼀个圆的周长总是它直径的3倍多⼀些,这个⽐值是⼀个固定的数。

人教版小学六年级数学上册全册知识点汇总

人教版小学六年级数学上册全册知识点汇总

人教版小学六年级数学上册全册知识点汇总第一单元分数乘法一、分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)二、分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

三、积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

四、分数乘法混合运算:1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、倒数的意义(乘积为1的两个数互为倒数)1、倒数是两个数的关系,它们互相依存,不能单独存在。

小学六年级上册数学公式详细整理汇总+重点知识点汇总

小学六年级上册数学公式详细整理汇总+重点知识点汇总

小学六年级上册数学公式详细整理汇总+重点知识点汇总小学六年级上册数学公式详细整理汇总一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:即围绕物体一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a?a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积①长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积①长方体的体积=长×宽×高 V=abh②正方体的体积=棱长×棱长×棱长 V=a×a×a=a3③圆柱的体积=底面积×高V=sh=πr2h④圆锥的体积=底面积×高÷3 V=1/3sh= 1/3πr2h 【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。

新课标小学六年级数学上册知识点总结及复习要点

新课标小学六年级数学上册知识点总结及复习要点

新课标小学六年级数学上册知识点总结及复习要点一、数与代数(一)分数与百分数1分数的性质定义:分数表示部分与整体的关系,其值由分子和分母共同决定。

性质:分子相同时,分母越大,分数越小;分母相同时,分子越大,分数越大。

此外,分数还有等值性质,即分子、分母可以同时乘以或除以同一个非零数,分数值不变。

例子:比较分数3/4和6/8。

虽然它们的分子和分母都不同,但通过等值性质,我们可以发现3/4=6/8,因为它们都可以简化为3/4。

2分数的运算加减法则:同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按同分母分数相加减的法则进行计算。

乘除法则:分数乘以整数,分母不变,分子乘以整数;分数乘分数,用分子乘分子,分母乘分母;分数除以整数(0除外),等于分数乘以这个整数的倒数;分数除以分数,等于被除数乘以除数的倒数。

例子:计算1/2 + 1/3。

首先通分,得到3/6 + 2/6 = 5/6。

3百分数的理解与应用定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

性质:百分数可以方便地用于比较不同量纲的数据,如比较不同产品的合格率、增长率等。

转换:百分数可以方便地转换为小数和分数,反之亦然。

例如,25%等于0.25或1/4。

例子:某班有50名学生,其中40名通过了数学考试。

求该班的通过率。

根据百分数的定义,通过率= (通过的学生数/ 总学生数) ×100% = (40 / 50) ×100% = 80%。

(二)整数与小数1整数的性质定义:整数是包括正整数、零和负整数的数集。

运算:整数可以进行加、减、乘、除等基本运算,遵循相应的运算法则。

例子:计算3 + 5 - 2 = 6。

2小数的性质定义:小数是表示分数的一种形式,由整数部分和小数部分组成。

性质:小数可以表示分数和非整数的有理数,具有十进制的特点。

运算:小数可以进行加、减、乘、除等基本运算,需要注意小数点对齐和进位或退位。

小学六年级数学上册必考公式汇总(全)

小学六年级数学上册必考公式汇总(全)

小学六年级数学上册必考公式汇总(全)几何公式长方形的周长=(长+宽)×2C=(a+b)×2长方形的面积=长×宽S=ab正方形的周长=边长×4C=4a正方形的面积=边长×边长S=a.a=a三角形的面积=底×高÷2S=ah÷2三角形的内角和=180度平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的直径=半径×2(d=2r)圆的半径=直径÷2(r=d÷2)圆的周长=圆周率×直径=圆周率×半径×2C=πd =2πr圆的面积=圆周率×半径×半径S=πr×r长方体的体积=长×宽×高V=abh正方体的体积=棱长×棱长×棱长V=aaa圆柱的侧面积:圆柱的侧面积等于底面的周长乘高S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积S=ch+2s=ch+2πr×r圆柱的体积:圆柱的体积等于底面积乘高V=Sh圆锥的体积=1/3底面×积高V=1/3Sh单位换算1公里=1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克=1000克=1公斤=2市斤1公顷=10000平方米1亩=666.666平方米1升=1立方分米=1000毫升1毫升=1立方厘米1元=10角1角=10分1元=100分1世纪=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分=3600秒1分=60秒数量关系每份数×份数=总数总数÷每份数=份数总数÷份数=每份数1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数速度×时间=路程路程÷速度=时间路程÷时间=速度单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数特殊问题相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题(1)一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷ 2水流速度=(顺流速度-逆流速度)÷ 2(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)工程问题工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间1÷工作时间=单位时间内完成工作总量的几分之几1÷单位时间能完成的几分之几=工作时间。

【小学数学】人教版六年级数学上册考点、重点、难点大汇总

【小学数学】人教版六年级数学上册考点、重点、难点大汇总

【小学数学】人教版六年级数学上册考点、重点、难点大汇总一、分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子;分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子;分母相乘的积做分母。

3、为了计算简便;能约分的要先约分;再计算。

注意:当带分数进行乘法计算时;要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数;积大于这个数。

一个数(0除外)乘小于1的数(0除外);积小于这个数。

一个数(0除外)乘1;积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律;对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a +b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法);求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。

4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。

2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。

3. 分数:表示部分的数,如1/2、3/4、5/6等。

4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。

5. 百分数:表示百分之几的数,如20%、50%、80%等。

6. 四则运算:加法、减法、乘法、除法。

7. 混合运算:将四则运算按照一定的顺序进行计算。

二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。

2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。

3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。

三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。

2. 重量:表示物体的重量,单位有克、千克、吨等。

3. 容量:表示物体的容积,单位有毫升、升、立方米等。

4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。

5. 货币:表示货币的价值,单位有元、角、分等。

四、几何图形1. 点:没有大小和形状的物体。

2. 线:没有宽度和厚度的物体,可以无限延伸。

3. 面:由线段围成的封闭图形。

4. 三角形:由三条边组成的图形,有三个角和三个顶点。

5. 四边形:由四条边组成的图形,有四个角和四个顶点。

6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。

7. 正方形:四边相等且四个角都是直角的四边形。

8. 长方形:对边相等且四个角都是直角的四边形。

9. 平行四边形:对边相等且相邻两边平行的四边形。

10. 梯形:有一对边平行的四边形。

11. 菱形:四条边相等且对角线互相垂直的四边形。

12. 矩形:四个角都是直角的平行四边形。

13. 圆环:由两个同心圆组成的图形。

14. 扇形:由圆心和圆上两点组成的图形。

15. 椭圆:由两个焦点和两条准线组成的图形。

小学六年级上册数学必考知识点总结(必备4篇)

小学六年级上册数学必考知识点总结(必备4篇)

小学六年级上册数学必考知识点总结(必备4篇)小学六年级上册数学必考知识点总结第1篇分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

【数学】小学六年级上下册数学知识点归纳

【数学】小学六年级上下册数学知识点归纳

小学六年级数学上下册知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

小学六年级数学上册知识点汇总

小学六年级数学上册知识点汇总

小学六年级数学上册知识点汇总2023年,小学六年级数学上册的教学内容不断提升,旨在帮助学生更好地掌握基础数学知识并拓展其应用能力。

下面将对小学六年级数学上册的知识点进行汇总,方便大家进行学习。

1. 整数与负数在小学四年级时,我们学习了正整数和自然数的概念,而在小学六年级时,我们将进一步扩展概念,学习整数和负数。

在这一部分我们会学习如何比较大小、加减、绝对值等基本计算,同时我们还会学习应用领域,如海拔、温度等。

2. 几何图形在小学六年级数学上册,我们将拓展对几何图形的认识,包括平行四边形、梯形、等腰三角形、直角三角形等。

通过学习这些图形,我们可以更好地理解它们的性质和特征,解决各种几何问题。

3. 用特殊方法解决加减法问题在小学六年级数学上册中,我们将学习一些特殊的加减法计算方法,如移项法、颠倒相减法等。

这些方法有助于我们更快地解决一些加减法问题,提高计算效率。

4. 时针和分针的角度问题在小学六年级数学上册中,我们还将学习如何计算时针和分针的夹角,以及如何判断指针所在的位置。

在这一部分,我们需要学习正反时针方向、圆周角等概念,并灵活运用这些概念求解问题。

5. 用单位分数表示分数在小学六年级数学上册中,我们将学习如何用单位分数表示分数。

这个概念看上去有些抽象,但实际上其原理十分简单,只需要将分数化为分数分子为1的若干项加总得到即可。

6. 数据分析在小学六年级数学上册中,我们还将学习如何进行数据分析。

我们需要学习分组频数、中位数、众数等基本概念,以及如何制作表格、图表、直方图等方式进行数据表达和呈现。

7. 分式在小学六年级数学上册中,我们将学习分式的基本概念和应用。

这是一样非常重要的学习内容,分式的应用广泛而且有着重要的应用价值。

小学六年级数学上册的知识点汇总到这里,在学习这些知识的过程中需要我们多多练习,提高自己的数学应用能力。

同时,我们也需要与老师、同学一起进行交流,共同解决学习中遇到的问题和疑惑。

数学六年级上册必考知识点

数学六年级上册必考知识点

数学六年级上册必考知识点在数学学科中,数学常常被认为是一门需要不断掌握基础知识并建立逻辑思维的学科。

在六年级的数学学习中,有一些必考的知识点非常重要,下面将为大家详细介绍这些知识点。

1. 整数运算整数是六年级数学中的重点内容之一。

学生需要熟练掌握整数的概念及运算法则,包括整数的加法、减法、乘法和除法。

需要注意的是,在整数的除法中,要特别注意0作为除数的情况。

2. 分数的加减分数的加减是一个较为复杂的知识点,但也是必考内容。

学生需要理解分数的概念,掌握分数的加法和减法运算法则。

此外,还需要能够将分数化简为最简形式,并能够将带分数转化为假分数或相反操作。

3. 小数的运算小数是六年级数学中的另一个重要内容。

学生需要熟练掌握小数的加法、减法、乘法和除法运算法则,并能够运用到实际问题中。

在小数的除法运算中,同样要注意0作为除数的情况。

4. 算式计算在六年级数学中,会出现一些带有计算符号的算式,如加减乘除混合运算、括号运算等。

学生需要通过对这些算式的计算,培养他们的运算能力和推理能力。

同时,还需要注意运算的顺序和运算法则,避免出现错误。

5. 数量关系数量关系是六年级数学中的重要考点之一。

学生需要通过观察、比较和计算等方式,探索和描述事物之间的数量关系。

这包括数列的规律、面积和体积的计算等内容。

学生还需要学会运用逻辑思维,解决相应的问题。

6. 图形与几何图形与几何是数学中的一项重要内容,也是六年级必考的知识点。

学生需要熟练掌握基本的几何图形,如:矩形、正方形、三角形等的特征和性质,并能够进行简单的计算。

同时,还需了解图形的坐标和对称等概念。

7. 数据的处理六年级数学中的数据处理也是必考的知识点。

学生需要通过观察、统计和分析等方式,处理和描述数据的变化和关系。

这包括了图表的读取、单位的换算、平均数的计算等内容。

学生需要掌握相应的方法和技巧,提高数据分析能力。

通过掌握以上六年级上册必考知识点,学生将能够更好地理解数学概念,并能够灵活运用于解决实际问题中。

六年级数学上册必背知识点

六年级数学上册必背知识点

六年级数学上册必背知识点
六年级数学上册必背知识点包括:
1. 分数乘法:掌握分数乘法的计算方法,理解分数乘法的意义,能够熟练进行分数乘法运算。

2. 位置与方向:了解方向和位置的概念,掌握如何描述物体的位置和方向,能够在实际生活中应用这些知识。

3. 分数除法:理解分数除法的意义,掌握分数除法的计算方法,能够熟练进行分数除法运算。

4. 比:了解比的概念,掌握如何求比值和化简比,能够在实际生活中应用这些知识。

5. 圆:了解圆的基本性质,掌握圆的周长和面积的计算方法,能够在实际生活中应用这些知识。

6. 百分数:理解百分数的概念,掌握百分数的计算方法,能够在实际生活中应用这些知识。

7. 扇形统计图:了解扇形统计图的特点和作用,掌握如何绘制扇形统计图,能够在实际生活中应用这些知识。

8. 鸡兔同笼问题:了解鸡兔同笼问题的特点和解决方法,能够在实际生活中应用这些知识。

9. 负数:理解负数的概念和性质,掌握负数的计算方法,能够在实际生活中应用这些知识。

10. 圆柱与圆锥:了解圆柱和圆锥的基本性质和计算方法,能够在实际生活中应用这些知识。

以上是六年级数学上册必背知识点,希望能够帮助到您。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册期末复习要点分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数;不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数;不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘;分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘;计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子;分母相乘的积做分母。

(分子乘分子;分母乘分母)(1)如果分数乘法算式中含有带分数;要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分;是把分子、分母中;两个可以约分的数先划去;再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数;这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外);分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数;积大于这个数。

a×b=c,当b >1时;c>a。

一个数(0除外)乘小于1的数;积小于这个数。

a×b=c,当b <1时;c<a(b≠0)。

一个数(0除外)乘等于1的数;积等于这个数。

a×b=c,当b =1时;c=a 。

在进行因数与积的大小比较时;要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同;先乘、除后加、减;有括号的先算括号里面的;再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系;它们互相依存;不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a、b互为倒数。

3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数;再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身;因为1×1=10没有倒数;因为任何数乘0积都是0;且0不能作分母。

5、真分数的倒数是假分数;真分数的倒数大于1;也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)已知单位“1”的量;求单位“1”的量的几分之几是多少;用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中;分率前面的量就是单位“1”对应的量;或者“占”“是”“比”字后面的量是单位“1”。

3、什么是速度?速度是单位时间内行驶的路程。

速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位;每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙位置与方向(二)1、什么是数对?数对:由两个数组成;中间用逗号隔开;用括号括起来。

括号里面的数由左至右为列数和行数;即“先列后行”。

数对的作用:确定一个点的位置。

经度和纬度就是这个原理。

2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点;建立方向标;确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时;观测点不同;叙述的方向正好相反;而度数和距离正好相等。

相对位置:东--西;南--北;南偏东--北偏西。

分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算;已知两个数的积与其中一个因数;求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外);等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时;被除数一定不能变;“÷”变成“×”;除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:①除以大于1的数;商小于被除数:a÷b=c 当b>1时;c<a (a≠0)②除以小于1的数;商大于被除数:a÷b=c 当b<1时;c>a (a≠0 b≠0)③除以等于1的数;商等于被除数:a÷b=c 当b=1时;c=a三、分数除法混合运算1、混合运算用梯等式计算;等号写在第一个数字的左下角。

2、运算顺序:①连除:同级运算;按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数;等于乘上这几个数的积”的简便方法计算。

加、减法为一级运算;乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减;有括号的先算括号里面;再算括号外面。

(a±b)÷c=a÷c±b÷c比比:两个数相除也叫两个数的比1、比式中;比号(∶)前面的数叫前项;比号后面的项叫做后项;比号相当于除号;比的前项除以后项的商叫做比值。

连比如:3:4:5读作:3比4比52、比表示的是两个数的关系;可以用分数表示;写成分数的形式;读作几比几。

例:12∶20= =12÷20= =0.6 12∶20读作:十二比二十区分比和比值:比值是一个数;通常用分数表示;也可以是整数、小数。

比是一个式子;表示两个数的关系;可以写成比;也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外);比值不变。

4、化简比:化简之后结果还是一个比;不是一个数。

(1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比;用前项后项同时乘分母的最小公倍数;再按化简整数比的方法来化简。

也可以求出比值再写成比的形式。

(3)、两个小数的比;向右移动小数点的位置;也是先化成整数比。

5、求比值:把比号写成除号再计算;结果是一个数(或分数);相当于商;不是比。

6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外);商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外);分数的大小不变。

分数除法和比的应用1、已知单位“1”的量用乘法。

2、未知单位“1”的量用除法。

3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

5、画线段图:(1)找出单位“1”的量;先画出单位“1”;标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

两个量的关系画两条线段图;部分和整体的关系画一条线段图。

圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观;易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后;折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里;有无数条半径;且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里;有无数条直径;且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆;等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆;圆环6、画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长;周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值;叫做圆周率;用字母π表示。

即:圆周率π = 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数;3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍;周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份;剪开拼成长方形;份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形;在面积相等的情况下;圆的周长最短;而长方形的周长最长;反之;在周长相等的情况下;圆的面积则最大;而长方形的面积则最小。

周长相同时;圆面积最大;利用这一特点;篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍;圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4、环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。

因为两条直跑道长度相等;所以;起跑线不同;相邻两条跑道起跑线也不同;间隔的距离是:2×π×跑道宽度。

一个圆的半径增加a厘米;周长就增加2πa厘米。

相关文档
最新文档