全国2020年中考数学真题分类汇编 第5讲 一次方程(组)(无答案)

合集下载

2019-2020(-1)年中考数学真题分类汇编 第5讲 一次方程(组)(无答案)

2019-2020(-1)年中考数学真题分类汇编 第5讲 一次方程(组)(无答案)
解:设合伙买鸡者有x人,鸡价为y文钱.1分
根据题意可得方程组 ,3分
解得 .5分
答:合伙买鸡者有9人,鸡价为70文钱.6分
解:
知识点6二元一次方程(组)的应用
(2018深圳)9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人。若一共480个学生刚好住满,设有大房间 个,小房间 个,则所列方程组正确的是( )
A. B. C. D.
(2018河南)6.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()
(2018河北)有三种不同质量的物体,“ ”“ ”“ ”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()
A. B.
C. D.
知识点2一元一次方程的解
知识点3一元一次方程的解法
(2018淮安)12.若关于x,y的二元一次方程3x﹣ay=1有一个解是 ,则a=_______.
解:设1个大桶、1个小桶分别可以盛酒 斛, 斛,则
解这个方程组,得
答:1个大桶、1个小桶分别可以盛酒 斛, 斛.
(2018长沙)
(2018海南)
(2018白银)21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.

中考数学第5 讲 一次方程(组)及其应用

中考数学第5 讲 一次方程(组)及其应用
y=1
代入消元法: 解:由②得___x_=__-__2_y___________________③; 将③代入①得__3_(_-__2_y_)_-__2_y_=__-__8_______,解得__y_=__1_____.
将___y_=__1_____代入③得_____x_=__-__2______. 则原方程组的解为__x_=__-__2_________________.
解:去分母,得:6x-3(x-2)=6+2(2x-1),(1 分) 去括号,得:6x-3x+6=6+4x-2,(2 分) 移项,得:6x-3x-4x=6-6-2,(3 分) 合并同类项,得:-x=-2,(4 分) 系数化为 1,得:x=2.(5 分)
1. 已知关于 x 的一元一次方程(3-a)x-x+2-a=0 的解是13 的倒数, 则 a 的值为( D ) A. -2 B. -1 C. 1 D. 2
y=1
二元一次方程组的解法 (1)基本思想:消元,即二元一次方程组一元一次方程. (2)方法:代入消元法、加减消元法. ①若方程组中有一个未知数的系数为1或-1,常用代入消元法;②若方程 组中某个未知数的系数相等或互为相反数或成倍数关系,常用加减消元 法.
4. (2019·菏泽)已知xy==3-,2 是方程组abxx++bayy= =- 2,3 的解,则 a+b 的值 是( A ) A. -1 B. 1 C. -5 D. 5
50x+10y=30
7. (2020·南京)已知 x,y 满足方程组
x+3y=-1, 2x+y=3,
则 x+y 的值为__1__.
8. (2019·宿迁)下面3个天平左盘中“△”“□”分别表示两种质量 不同的物体,则第三个天平右盘中砝码的质量10为____.

2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用

2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用
(1)该超市采购员发现,购进2盒甲品牌月饼和1盒乙品牌月饼共需120元,购进
1盒甲品牌月饼和3盒乙品牌月饼共需185元.求甲、乙两种品牌月饼每盒的
进价分别为多少元;
(2)该超市购进甲、乙两种品牌月饼若干盒进行销售,若乙品牌月饼每盒的
售价比甲品牌月饼每盒的售价的2倍少40元,且4盒甲品牌月饼和3盒乙品牌
性质2
同一个数(或式)(除数
或除式不能为0),所得
结果仍是等式
拓展
公式表达
如果a=b,那么ac=
______
bc

如果a=b,那么 =


(d≠0)
___________

对称性:如果a=b,那么b=a.
传递性:如果a=b,b=c,那么a=c
在解方程中的应用
去分母(此时c≠0)
系数化为1
根据等式的性质2变形时,需考虑等式两边同乘的数为0时,该等式是否仍成
共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数
为( B )
A.25
B.75
C.81
D.90
答案
1.[学科融合]在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻

R之间有以下关系:I= ,去分母得IR=U,那么其变形的依据是(

B )
A.等式的性质1
B.等式的性质2
C.分式的基本性质
解:(1)设参加此次研学活动的师生人数是x,原计划租用y辆45座客车.
= 600,
45+15 = ,
根据题意,得ቊ
解得ቊ
= 13.
60(-3) = ,
答:参加此次研学活动的师生人数是600,原计划租用13辆45座客车.

2020版中考数学总复习优化设计:第5讲-一次方程组及其应用ppt课件全集2

2020版中考数学总复习优化设计:第5讲-一次方程组及其应用ppt课件全集2
������ + ������ + 1 = 1, ������ = -1.
方法点拨利用二元一次方程的定义,构造二元一次方程组.方程
组的解适合方程组的每一个方程,把它代入原方程组.
考法1
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
二元一次方程(组)的解法 解二元一次方程组的基本思路是通过消元,将二元一次方程组转 化为一元一次方程.最常见的消元方法有代入消元法和加减消元法, 具体应用时,要结合方程组的特点,灵活选用消元方法.如果出现未 知数的系数为1或-1,那么宜用代入消元法解;如果出现同一未知数 的系数成倍数关系或系数较复杂,那么宜用加减消元法解.
考法1
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
解法一设大和尚有x人,则小和尚有(100-x)人,
根据题意,得 3x+1030-������=100,
解得x=25,
则100-x=100-25=75(人).
所以大和尚有25人,小和尚有75人.
故选A.
解法二设大和尚有x人,小和尚有y人,
根据题意,得
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
二元一次方程(组)的有关概念 含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次 方程. 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组 的解.方程组的解,一定使方程组中每个方程的左右是相等的.在已 知一组对应值是方程组的解时可直接代入方程得到以待定系数为 未知数的方程(组).
������ + ������ = 100,

2020-2022中考湖北专用专题05 一次方程与一次方程组(原卷版)

2020-2022中考湖北专用专题05  一次方程与一次方程组(原卷版)

专题05 一次方程与一次方程组一.选择题1.(2022•十堰)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,那么可列方程为( )A .10x+3(5﹣x )=30B .3x+10(5﹣x )=30C .x 10+30−x 3=5D .x 3+30−x 10=52.(2022•随州)我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为( )A .150(12+x )=240xB .240(12+x )=150xC .150(x ﹣12)=240xD .240(x ﹣12)=150x3.(2021•武汉)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .8(x ﹣3)=7(x+4)B .8x+3=7x ﹣4C .y−38=y+47D .y+38=y−474.(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =15.(2020•随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A .{x +y =352x +4y =94B .{x +y =354x +2y =94C .{2x +y =35x +4y =94D .{x +4y =352x +y =946.(2020•襄阳)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x 匹,大马有y 匹,则下列方程组中正确的是( )A .{x +y =100y =3xB .{x +y =100x =3yC .{x +y =10013x +3y =100D .{x +y =10013y +3x =100 7.(2021•荆门)我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x 尺,绳子长为y 尺,则下面所列方程组正确的是( )A .{y =x +4.512y =x −1 B .{y =x −4.512y =x +1 C .{y =x +4.52y =x −1 D .{y =x −4.52y =x +18.(2021•宜昌)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A .{y =8x −3y =7x +4B .{y =8x +3y =7x +4C .{y =8x −3y =7x −4D .{y =8x +3y =7x −49.(2022•宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .2210.(2022•武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12二.填空题11.(2020•随州)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为 .12.(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .13.(2020•仙桃)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 场.14.(2021•仙桃)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)15.(2022•仙桃)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨.16.(2022•随州)已知二元一次方程组{x +2y =42x +y =5,则x ﹣y 的值为 .三.解答题17.(2022•荆州)已知方程组{x +y =3①x −y =1②的解满足2kx ﹣3y <5,求k 的取值范围. 18.(2020•黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?19.(2020•黄石)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.20.(2021•黄石)我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:(1)笼中鸡、兔各有多少只?(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?。

2020年中考数学复习解答题专项训练---方程(组)和不等式的实际应用(无答案))

2020年中考数学复习解答题专项训练---方程(组)和不等式的实际应用(无答案))

方程(组)和不等式的实际应用一、一元一次方程的应用1.(2019∙安徽)为实施乡村振兴战略,解决某山区老百姓出行难问题,当地政府决定修建一条高速公路。

其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工。

甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米。

已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?2.(2019∙岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积600多亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的1,求休闲小广场总面积最3多为多少亩?3.(2019∙甘肃)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?二、二元一次方程组的应用1.(2019∙淄博)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A、B两种产品在欧洲市场热销,今年第一季度这两种产品的销售额为2060万元,总利润为1020万元(利润=售价-成本),其每件产品的成本和售价信息如问该公司这两种产品的销售件数分别是多少?2.(2019∙百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时。

(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?3.(2019∙广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同。

专题05 一次方程(组)与一元二次方程中考数学真题分项汇编原卷版)

专题05 一次方程(组)与一元二次方程中考数学真题分项汇编原卷版)

专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9- B .3-或9 C .3或6- D .3-或6 2.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( )A .4-B .14-C .14D .410.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =- 11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --=12.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .21cm 4C .4cmD .5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( ) A .5 B .6 C .7 D .815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( ) A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯16.(2022·广西)方程3x =2x +7的解是( )A .x =4B .x =﹣4C .x =7D .x =﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y -=⎧⎨-=⎩19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( ) A .1 B .2 C .3 D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( ) A .30(1+x )2=50 B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题 21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____. 22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________. 29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则表示的方程是_______. 36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a 之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m ,宽为38 m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m 2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22(23)(32)x x +=+49.(2022·贵州贵阳)(1)a ,b 两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a _______b ,ab _______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x 2+2x −1=0;②x 2−3x =0;③x 2−4x =4;④x 2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|223-⎛⎫-+- ⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.。

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用
返回
数学
考点2 二元一次方程组及其应用
3.(2021 金华)已知 x=2,是方程 3x+2y=10 的一个解,则 m 的值 y=m
是2 .
返回
数学
4.(2021 眉山)解方程组: 3x-2y+20=0, 2x+15y-3=0.
解:方程组整理得 3x-2y=-20① ,①×15+②×2 得 49x=-294, 2x+15y=3②
第一部分 数与代数
第二章 方程与不等式
第5讲 一次方程(组)及应用
数学
目录
01 命题分析
02 课前预习
03 考点梳理
04 课堂精讲
05 广东中考
06
新题速递(创新思维题)——全国视野
数学
命题分析
广东省卷近年中考数学命题分析
命题点 2021 2020 2019 2018 2017 2016
解一元一次
由题意得 x+y=55 .解得 x=5.9 .
y=9x-4
y=49.1
答:港珠澳大桥的桥梁长度和隧道长度分别为 49.1 km 和
5.9 km.
返回
数学
广东中考
6.(2013深圳)某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2 000元,则标价为 2 750 元.
返回
数学
若 a=b,则a = b(d≠0).
dd
(2)解法的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数
化为1.
返回
数学
2.解下列方程: (1)4x-2=3-x; x=1
(2)x+2 = x.
54
x=8

2020中考数学一轮复习一元一次方程及其应用一次方程组及其应用

2020中考数学一轮复习一元一次方程及其应用一次方程组及其应用

第5讲:一元一次方程及其应用一、复习目标1、准确地理解方程、方程的解、解方程和一元一次方程等概念。

2、熟练地掌握一元一次方程的解法。

3、能以一元一次方程为工具解决一些简单的实际问题。

二、课时安排1课时三、复习重难点1、根据具体问题中的数量关系列出一元一次方程并求解。

2、寻找等量关系,直接、间接设元。

四、教学过程(一)知识梳理一元一次方程解的概念1、什么是方程?方程和等式的区别是什么?2.什么是一元一次方程?它的标准形式和最简形式是什么?一元一次方程是只指含有未知数,且未知数的最高次数是的方程。

它的标准形式是:它的最简形式是:3.什么是方程的解,什么是解方程?解一元一次方程的一般步骤有哪些?它的根据是什么?1、:不要漏乘分母为1的项。

2、:注意符号全套资料联系QQ/微信:14032256583、:①将含有未知数的项移到等式的一边;将常数项移到另一边;②注意“变号”4、(乘法分配律的逆用)5、:除以一个数等于乘以这个数的倒数。

等式的性质等式有哪些性质,并以字母形式表示出来 等式性质1:如果a=b ,那么: a+c=等式性质2:如果a=b ,那么:ac= ,a/c= (c ≠0) (二)题型、方法归纳考点一、考查一元一次方程解的概念技巧归纳:1、主要是在考查方程的解的定义的基础上求方程中参数的值2、未知数的系数化为 1,就是在方程两边同时除以未知数的系数或同时乘未知数的系数的倒数.考点二 含字母系数的一元一次方程技巧归纳:含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a 、b 的值没有明确给出时,则要对a 、b 的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x =ba当a =0,b =0时,方程的解为无数个;当a =0,b≠0时,方程无解.考点三、求增长率问题技巧归纳:在解这一类题目时关键要找好“单位1”考点四、打折销售问题技巧归纳:列方程解应用题关键在于审题,抓住关键词,找出已知量、未知量以及它们之间的相等关系,然后设未知数,列方程,解答.考点五、利用一元一次方程技巧归纳:列方程解应用题关键在于审题,抓住关键词,找出已知量、未知量以及它们之间的相等关系,然后设未知数,列方程,解答.(三)典例精讲例1已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是解析:由题意知道方程的解是x=m,根据方程的解的定义,把m x =代入方程234=-m x 得:234=-m m ,所以2=m .例2.已知关于 x 的方程 2x +a -9=0 的解是 x =2,则 a 的值为 ( D) A. 2 B. 3 C. 4 D.5例3、若 x =2 是关于 x 的方程 2x +3m -1=0 的解,则 m 的值为______-1_____. 例4 解关于x 的方程: 2a(a -4)x +4(a +1)x -2a =a 2+4x原方程整理得:a(2a-4)x=a(a+2)①当a≠0,a≠2时方程有唯一解,x2 24aa+ =-②当a=0时,方程有无数个解;③当a=2时,方程无解.含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a、b的值没有明确给出时,则要对a、b的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x=ba;当a=0,b=0时,方程的解为无数个;当a=0,b≠0时,方程无解.全套资料联系QQ/微信:1403225658例5 2009年全国教育计划支出1980亿元,比2008年增加380亿元,则2009年全国教育经费增长率为。

2020-2021中考数学专题分类卷 专题五 一次方程(组)(真题篇)

2020-2021中考数学专题分类卷  专题五  一次方程(组)(真题篇)

拓展训练 2020年中考数学专题分类卷 专题五 一次方程(组)(真题篇)一、选择题1.(2017·杭州)设x ,y ,c 是实数( )A .若x=y ,则x+c= y-cB .若x=y ,则xc=ycC .若x=y ,则c y c =xD .若c y c 32x =,则2x=3y2.(2016·株洲)在解方程21331x +=+-x x 时,方程两边同时乘以6,去分母后,正确的是( )A .2x-1+6x=3(3x+1)B .2(x-1)+6x=3(3x+1)C .2(x-1)+x=3(3x+1)D .(x-1)+x=3(x+1)3.(2018·南通)若代数式4x-5与21-x 2的值相等,则x 的值是( ) A .1 B .23C .32D .24.(2018·南通)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是( )A .2B .3C .4D .55.(2015·河北)利用加减消元法解方程组下列做法正确的是( ) A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.(2018·桂林)若0212x 3=-++--y x y ,则x ,y 的值为( )A .B .C .D .7.(2016·宁夏)已知x ,y 满足方程组则x+y 的值为( )A .9B .7C .5D .3 8.(2018·北京)方程组的解为( )A .B .C .D .9.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2(106+x)B .518-x=2×106C .518- x=2(106+x)D .518+x=2(106-x)10.(2018·义乌)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .4二、填空题11.(2018·吴兴)已知x=2是关于x 的方程a(x+1)=21a+x 的解,则a 的值是____.12.(2015·嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为___.13.(2016·宜宾)今年“五一”节,A 、B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组_______.14.(2017·枣庄)已知是方程组的解,则a ²-b ²=_________.15.(2018·兴化)已知关于x ,y 的二元一次方程组的解互为相反数,则k 的值是___________. 16. (2017·长沙)方程组的解是___________.17.(2018·舟山)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排______名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题18.解下列方程或方程组:(1) (2017·武汉)4x-3=2( x-1); (2) (2016·贺州)54306x =--x ;(3) (2018·聊城); (4)(2018·荆州)19.(2016·邰阳)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)求A ,B 两种品牌的足球的单价;(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.真题篇1.B 2.B3.B 解析:根据题意得:2125-x 4-=x ,去分母得:8x-10=2x-1,解得:23x =.故选B .4.B 解析:设该队获胜x 场,则负了(6-x )场,根据题意得:3x+(6-x )=12,解得:x=3.答:该队获胜3场,故选B . 5.D 解析:利用加减消元法解方程组⎩⎨⎧=--=+②①,63x 5,105x 2y y 要消去x ,可以将①×(-5)+②×2.故选D .6.D 解析:由题意可知:⎩⎨⎧=-+=--②①02x 012x 3y y 解得⎩⎨⎧==11x y 故选D .7.C 解析:⎩⎨⎧=-=+②,①,82x 3126x y y①+②得:4x+4y=20,则x+y=5,故选C .8.D 解析:⎩⎨⎧=-=-②①148x 33x y y ,①×3-②得:5y=-5,即y= -1,将y=-1代入①得:x=2.则方程组的解为⎩⎨⎧-==12x y ;故选D9.C10.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x 根,1米长的y 根,由题意得,2x+y=5,因为x ,y 都是正整数,所以符合条件的解为:⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.1,2,3,1x ,5,0x y x y y则共有3种不同截法,故选C . 11.54 12.8133 13.⎩⎨⎧=+=+2535,162x 3y x y14. 1 解析:∵⎩⎨⎧-==3,2x y 是方程组⎩⎨⎧=+=+3,2ax ay bx by 的解,∴⎩⎨⎧=-=,②①33b 22,3b -2a a①-②,得51a -=-b ,①+②,得a+b= -5,∴a ²-b ²=(a+b)(a-b)()1515=⎪⎭⎫ ⎝⎛-⨯-=15.-1 解析:解方程组⎩⎨⎧-=+=+②①,12x ,3x 2y k y①-②得x+y=k+1.∵x 与y 互为相反数,∴x+y=0,∴k+1=0,∴k= -1.16.⎩⎨⎧==0,1x y 解析:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,所以方程组的解为⎩⎨⎧==.0,1x y17. 120 解析:设应该安排x 名工人缝制衣袖,y 名工人缝制衣身,z 名工人缝制衣领,才能使每天缝制出的衣袖、衣身、衣领正好配套,依题意有⎩⎨⎧==++,1:1:212:15:10,210x z y x z y ,解得⎪⎩⎪⎨⎧===.50,40,120x z y .故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.18.解:(1)方程去括号得:4x-3=2x-2,移项合并得:2x=1,解得:21x =;(2)去分母得:2x-3( 30-x)=60,去括号得:2x-90+3x=60,移项合并得:5x=150,解得:x=30; (3)⎩⎨⎧=+=-②①,4x 2,5x y y ①+②得:3x=9,即x=3,把x=3代入①得:y= -2,则方程组的解为⎩⎨⎧-==;2,3x y (4)⎩⎨⎧=+-=-②①,73x ,12x 3y y ②×3 -①得:11y=22,即y=2,把y=2代入②得:x=1,则方程组的解为⎩⎨⎧==.2,1x y 19.解:(1)设A 品牌的足球单价为x 元,B 品牌的足球单价为y 元,依题意得:⎩⎨⎧=+=+,36024,3803x 2y x y 解得⎩⎨⎧==.100,40x y 答:A 品牌的足球单价为40元,B 品牌的足球单价为100元;(2)依题意得:20×40+2×100=1 000(元).答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1 000元.。

2020中考数学知识梳理系统复习:第5讲 一次方程(组)【含练习题,无答案】

2020中考数学知识梳理系统复习:第5讲 一次方程(组)【含练习题,无答案】

2020中考数学知识梳理·系统复习:第5讲一次方程(组)1.等式的性质1、判断下列各题的推导是否正确?为什么 (1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,所以a >-4; (3)因为4a >4b ,所以a >b ; (4)因为-1>-2,所以-a-1>-a-2; (5)因为3>2,所以3a >2a .2、设a >b ,用“<”或“>”填空并口答是根据哪一条不等式基本性质。

(1) a - 3____b - 3; (2)a ÷3____b ÷3 (3) 0.1a____0.1b; (4) -4a____-4b(5) 2a+3____2b+3; (6) (m 2+1) a ____ (m 2+1)b (m 为常数) 3、练习: 已知a <0,用“<”或“>”号填空:(1)a+2 ____2; (2)a-1 _____-1; (3)3a______ 0; (4)-a/4______0; (5)a 2_____0; (6)a 3______0 (7)a-1______0; (8)|a|______0. 4、判断(1)∵a < b ∴ a -b < b -b (2)∵a < b ∴ 33b a <(3)∵a < b ∴ -2a < -2b (4)∵-2a > 0 ∴ a > 0 (5)∵-a < 0 ∴ a < 35、已知x < y ,下列哪些不等式成立?(1) x – 3 < y – 3 (2)- 5 x < - 5 y(3) - 3 x +2 < - 3 y + 2 (4)- 3 x + 2 > - 3y + 2 6、填空(1) ∵ 2a < 3a , ∴a 是____数(2) ∵ ax < a 且 x > 1 , ∴a 是____数 (3) ∵ , ∴a 是 数7.利用不等式的性质解下列不等式,并把它的解集在数轴上表示出来(解未知数为x 的不等式,就是要使不等式逐步化为x a 或X a 的形式) (1)x +4>3 (2) 7x ≥ 6x +332a a >2.方程的基本概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程.(2)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程.(3)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.(4)二元一次方程组的解:二元一次方程组的两个方程的公共解.3.一元一次不等式组的应用1、你能找出下列语句中的不等关系吗?(1)小明家五月份的电费不超过50元;小华家五月份的电费不足100元;小明家五月份电费50 ;小华家五月份的电费100;(2)小红星期天去逛街时带的钱不足200元,她花X元给自己买了一条裙子;小红带的钱数200,x的取值范围。

专题05 一次方程(组)及其应用-2020年中考数学全面复习系列讲座(通用版)

专题05 一次方程(组)及其应用-2020年中考数学全面复习系列讲座(通用版)

方法
命题角度 2 一次方程(组)的实际应用
一次方程(组)的应用题中等量关系的寻找方法 1.对于一次方程(组)的实际应用题,一般可从以下三个方面寻找等量关系.
(1)熟记常见数量关系,根据常见数量关系找等量关系,如:工程问题、行程问 题等. (2)根据公式找等量关系,如周长、面积、体积等. (3)在有倍数、和差关系的应用题中建立等量关系,这类题目中常有“一共 是……”,“比……多(少)”,“是……的几倍”,“比……的几倍多(少)” 等. 2.对于几何应用题,等量关系一般隐藏在图形的性质中,如矩形的对边相等,正 方形的四边相等.
一次方程(组)的应用
2.常见的关系式
基本关系式:路程=速度×时间.
行程问题
相遇问题:甲走的路程+乙走的路程=总路程. 追及问题:同地不同时出发:前者走的路程=后者走的路程;同时不
同地出发:慢者走的路程+两地间距离=快者走的路程.
储蓄问题 本金×利率×期数=利息,本金+利息=本息和.
销售问题
总价=单价×数量,利润率= 利润率×成本.
6.[2019山东烟台]亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作 .
某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若 干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空 出2个座位. (1)该大学计划调配36座新能源客车多少辆?共有多少名志愿者? (2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两
考点1 考点2 考点3
3.解二元一次方程组的基本思想是“消元” 消去其中一个未知数,把解二元一次方程组转化成 方法有代入消元法和加减消元法.
解一元一次方程 .具体

2020中考数学试题汇编(一次方程(组))

2020中考数学试题汇编(一次方程(组))

中考数学试题汇编(一次方程(组))一、选择题1、(2020最新模拟陕西课改)中国人民银行宣布,从2020最新模拟年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2020最新模拟年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( )CA .50005000 3.06%x -=⨯B .500020%5000(1 3.06%)x +⨯=⨯+C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯2、(2020最新模拟浙江丽水)方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( )BA .310x = B . 5x = C . 35x =- D . 5x =-3、(2020最新模拟江苏苏州)方程组379475x y x y +=⎧⎨-=⎩的解是 ( )DA .21x y =-⎧⎨=⎩B .237x y =-⎧⎪⎨=⎪⎩C .237x y =⎧⎪⎨=-⎪⎩D .237x y =⎧⎪⎨=⎪⎩4、(2020最新模拟湖南株州)二元一次方程组320x y x y -=-⎧⎨+=⎩的解是:( ) AA. 12x y =-⎧⎨=⎩ B. 12x y =⎧⎨=-⎩ C. 12x y =-⎧⎨=-⎩ D. 21x y =-⎧⎨=⎩ 5、(2020最新模拟山东淄博)若方程组 2313,3530.9a b a b -=⎧⎨+=⎩ 的解是 8.3,1.2,a b =⎧⎨=⎩ 则方程组 2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( )A(A ) 6.3,2.2x y =⎧⎨=⎩ (B )8.3,1.2x y =⎧⎨=⎩ (C )10.3,2.2x y =⎧⎨=⎩ (D )10.3,0.2x y =⎧⎨=⎩ 6、(2020最新模拟广州)以11x y =⎧⎨=-⎩为解的二元一次方程组是( )C A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩D .02x y x y +=⎧⎨-=-⎩ 7、(2020最新模拟四川东山)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )DA.14016615x y x y +=⎧⎨+=⎩ B.14061615x y x y +=⎧⎨+=⎩ C.15166140x y x y +=⎧⎨+=⎩ D.15616140x y x y +=⎧⎨+=⎩8、(2020最新模拟湖北宜宾)某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )DA .⎩⎪⎨⎪⎧x –y = 49y =2(x +1)B .⎩⎪⎨⎪⎧x +y = 49y =2(x +1)C .⎩⎪⎨⎪⎧x –y = 49y =2(x –1)D .⎩⎪⎨⎪⎧x +y = 49y =2(x –1) 9、(2020最新模拟浙江舟山)三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .510x y =⎧⎨=⎩二、填空题1、(2020最新模拟湖南湘潭)某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为 . 答:15(x +2)=3302、(2020最新模拟湖南怀化)方程组3520x y x y +=⎧⎨-=⎩的解是 .12x y =⎧⎨=⎩ 3、(2020最新模拟浙江杭州)三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解。

2020年数学中考专题复习:第05课时 一次方程(组)及其应用

2020年数学中考专题复习:第05课时 一次方程(组)及其应用

论船舶自动化设备的信息化保障技术1. 引言1.1 船舶自动化设备的重要性船舶自动化设备在现代船舶运营中扮演着至关重要的角色。

随着科技的进步和航运行业的发展,船舶的自动化程度越来越高,船舶自动化设备的重要性也日益凸显。

船舶自动化设备可以提高船舶的运行效率和安全性。

传统的手动操作容易受到人为因素的影响,而自动化设备可以减少人为错误,提高操作的准确性和可靠性。

这不仅可以减少事故的发生概率,还可以提高船舶的运输效率和效益。

船舶自动化设备可以节约人力成本和提高船员的工作舒适度。

船舶自动化设备可以代替部分重复性、繁杂的工作,减轻船员的工作负担,提高工作效率,降低工作强度,使船员可以更专注于处理紧急情况和重要任务。

船舶自动化设备的重要性不言而喻,它不仅可以提高船舶运行的效率和安全性,还可以节约成本、提高工作效率,为船舶运营带来诸多好处。

随着科技的不断发展和航运行业的不断进步,船舶自动化设备的发展前景将更加广阔。

1.2 信息化保障技术的必要性信息化保障技术的必要性在船舶自动化设备领域中显得尤为重要。

随着科技的不断发展和船舶自动化设备的广泛应用,信息化保障技术的必要性日益凸显。

信息化保障技术能够提高船舶自动化设备的安全性。

通过信息化保障技术的应用,可以建立起完善的安全保障系统,及时预警和处理各类安全隐患,有效降低船舶运行中发生事故的概率。

信息化保障技术可以提升船舶自动化设备的智能化水平。

通过信息化技术,船舶自动化设备可以实现数据的自动采集、分析和处理,提高设备的智能化程度,优化设备运行的效率和性能。

信息化保障技术还能够改善船舶自动化设备的维护管理。

通过信息化技术的应用,可以实现设备的远程监控和诊断,及时发现和解决设备故障,提高设备的可靠性和稳定性,减少设备的损坏和维修成本。

信息化保障技术在船舶自动化设备中的应用是必不可少的。

它不仅可以提升船舶自动化设备的安全性和智能化水平,还能改善设备的维护管理,为船舶领域的发展和进步提供有力支持。

2020中考数学5_第一节 一次方程(组)

2020中考数学5_第一节 一次方程(组)

考点研读
栏目索引
考点研读
考点一 方程的相关概念及等式的性质 考点二 一元一次方程及其解法 考点三 二元一次方程(组)及其解法 考点四 ∗三元一次方程组 考点五 一次方程(组)的应用
考点研读
栏目索引
考点一 方程的相关概念及等式的性质 1.含有未知数的① 等式 叫做方程;使方程左右两边的值相等的② 未知数
5x 7x
45 3
B.
y y
5x-45 7x 3
y 5x 45
C.
y
7 x-3
y 5x-45
D.
y
7 x-3
解析 本题已经设出未知数x表示合伙人的人数,y表示羊价的钱数.由“若每人 出5钱,还差45钱”可以表示出羊价y=5x+45;由“若每人出7钱,还差3钱”可以 表示出羊价y=7x+3,联立得方程组.故选A.
相遇问题:全路程=甲走的路程+乙走的路程. 追及问题: a.同地不同时出发: 前者走的路程=追者走的路程; b.同时不同地出发: 前者走的路程+两地间距离=追者走的路程. 水中航行问题:顺水船速=静水船速+水速; 逆水船速=静水船速-水速
数字问题
两位数 三位数
表达式:10a+b 表达式:100a+10b+c
33
去分母,得2x-1=x+2-3, 移项、合并同类项,得x=0.故选C.
命题探究
1-2 已知代数式 x-1与 3x-1的值相等,则x的值为
32
A. 1
B.7
7
C.- 1
D.-7
7
解析 根据题意,得 x-1= 3x-1,
32
去分母、去括号,得2x-2=9x-3,

2020中学数学真题汇编-一次方程计算

2020中学数学真题汇编-一次方程计算

一元一次方程二.一元一次方程的解(共2小题)12.(2020•株洲)关于x 的方程3x ﹣8=x 的解为x = .13.(2020•衢州)一元一次方程2x +1=3的解是x = .三.解一元一次方程(共5小题)14.(2020•重庆)解一元一次方程12(x +1)=1−13x 时,去分母正确的是( ) A .3(x +1)=1﹣2xB .2(x +1)=1﹣3xC .2(x +1)=6﹣3xD .3(x +1)=6﹣2x 15.(2020•铜仁市)方程2x +10=0的解是 .16.(2020•柳州)一元一次方程2x ﹣8=0的解是x = .17.(2020•凉山州)解方程:x −x−22=1+2x−13. 18.(2020•杭州)以下是圆圆解方程x+12−x−33=1的解答过程.解:去分母,得3(x +1)﹣2(x ﹣3)=1.去括号,得3x +1﹣2x +3=1.移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.四.由实际问题抽象出一元一次方程(共5小题)19.(2020•青海)如图,根据图中的信息,可得正确的方程是( )A .π×(82)2x =π×(62)2×(x ﹣5)B .π×(82)2x =π×(62)2×(x +5)C .π×82x =π×62×(x +5)D .π×82x =π×62×520.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .x+23=x 2−9B .x 3+2=x−92C .x 3−2=x+92D .x−23=x 2+921.(2020•内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( )A .12x =(x ﹣5)﹣5B .12x =(x +5)+5C .2x =(x ﹣5)﹣5D .2x =(x +5)+522.(2020•金华)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +223.(2020•吉林)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 .五.一元一次方程的应用(共17小题)24.(2020•黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )A .7.4元B .7.5元C .7.6元D .7.7元25.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里26.(2020•毕节市)由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元27.(2020•呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里28.(2020•盐城)把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6 29.(2020•鸡西)“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是元.30.(2020•随州)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.31.(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .32.(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价: 元暑假八折优惠,现价:160元33.(2020•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.34.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 名.35.(2020•绍兴)有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.36.(2020•广州)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.37.(2020•山西)2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.38.(2020•攀枝花)课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?39.(2020•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?40.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲一次方程(组)知识点1 等式的性质知识点2 一元一次方程的解知识点3 一元一次方程的解法知识点4 一元一次方程的应用知识点5 二元一次方程组的解法知识点6 二元一次方程(组)的应用知识点1 等式的性质(2018衡阳)16.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来.若报出来的数如图6所示,则报4的人心里想的数是 9 .(2018河北)有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D.知识点2 一元一次方程的解知识点3 一元一次方程的解法(2018淮安)12.若关于x,y的二元一次方程3x﹣ay=1有一个解是32xy=⎧⎨=⎩,则a=_______.(2018菏泽)14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.知识点4 一元一次方程的应用(2018呼和浩特)(2018恩施)10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元(2018通辽)(2018齐齐哈尔)答案:6(2018曲靖)(2018张家界)18. 列方程解应用题:《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?解:设有x人,则…………………1分+xx…………………3分=75+345x=21+⨯元…………………4分5=2145150答:有21人,羊为150元…………………5分(2018安徽)16.《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题。

解:设城中有x户人家,由题意得x+x/3=100.解得x=75.答:城中有75户人家.(2018长春)知识点5 二元一次方程组的解法 (2018怀化)(2018天津)8.方程组10216x y x y +=⎧⎨+=⎩的解是( )A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩ (2018遂宁)二元一次方程组的解是( )A. B. C. D.(2018北京)3. 方程式⎩⎨⎧=-=-14833y x y x 的解为( )(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x (2018桂林)10.若02123=-++--y x y x ,则x ,y 的值为( )A.⎩⎨⎧==41y x B. ⎩⎨⎧==02y x C. ⎩⎨⎧==20y x D.⎩⎨⎧==11y x(2018宁波)15.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .(2018泰州)15.已知23369x y a a -=-+,269x y a a +=+-,若x y ≤,则实数a 的值为___________. (2018上海)(2018无锡)(2018滨州)17.若关于x y 、的二元一次方程组35,26x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a b 、的二元一次方程组()()()()35,26a b m a b a b n a b +--=⎧⎪⎨++-=⎪⎩的解是.(2018枣庄)13.若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by ax ,则=-b a .(2018随州)(2018嘉兴、舟山)18.用消元法解方程组3 5 43 2 x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一: 解法二:由②,得2)3(3=-+y x x , ③ 由①-②,得33=x . 把①代入③,得253=+x .(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”. (2)请选择一种你喜欢的方法,完成解答. 解:知识点6 二元一次方程(组)的应用(2018深圳)9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人。

若一共480个学生刚好住满,设有大房间x 个,小房间y 个,则所列方程组正确的是( ) A .7086480x y x y +=⎧⎨+=⎩ B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D . 4808670x y x y +=⎧⎨+=⎩(2018河南)6.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A. B. C. D.(2018新疆建设兵团)(2018株洲)15、小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为(2018青岛)11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .(2018杭州)6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A. 20=-y x B. 20=+y x C. 6025=-y x D. 6025=+y x (2018温州)(2018广州)8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y 辆,根据题意的:( D ) A. ()()11910813x yy x x y =⎧⎪⎨+-+=⎪⎩ B. 10891311y x x y x y +=+⎧⎨+=⎩C. ()()91181013x y x y y x =⎧⎪⎨+-+=⎪⎩D. ()()91110813x y y x x y =⎧⎪⎨+-+=⎪⎩(2018邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是( )A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人 (2018福建)(2018巴中)10. 巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km 一辆小汽车、一辆货车同时从巴中、广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为/xkm h 、/ykm h ,则下列方程组正确的是( )A .45()12645()6x y x y +=⎧⎨-=⎩B . 3()12646x y x y ⎧+=⎪⎨⎪-=⎩ C. 3()126445()6x y x y ⎧+=⎪⎨⎪-=⎩ D .3()12643()64x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩(2018十堰)7.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,物品的价格为y 元,可列方程(组)为( )一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=(2018龙东)答案:B(2018齐齐哈尔)答案:C(2018襄阳)13.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问这个物品的价格是多少元?”该物品的价格是元.(2018泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩(2018荆州)6.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两问牛,羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.5210258x yx y+=⎧⎨+=⎩B.5210258x yx y-=⎧⎨-=⎩C.5210258x yx y+=⎧⎨-=⎩D.5282510x yx y+=⎧⎨+=⎩(2018柳州)(2018吉林)(2018东营)6.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15(2018自贡)16.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.(2018江汉油田、潜江、天门、仙桃)14.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.(2018绍兴)12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.(2018遵义)(2018江西)9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.(2018威海)17.用若干个形状,大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为___44166___.(2018永州)23. 在永州在青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.(2018黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.(2018宜昌)19.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶。

相关文档
最新文档