单因素方差分析和多因素方差分析简单实例

合集下载

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。

•水平:因素变化的各种状态或因素变化所分的等级或组别。

•单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。

设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。

样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。

单因变量多因素方差分析课件

单因变量多因素方差分析课件

通过检验各组间方差的齐性,判断是否满 足多因素方差分析的前提条件。
多因素方差分析的实际操作和结果解读
操作步骤
选择合适的统计软件,按照多因素方差分析的步骤进行操作 。
结果解读
根据分析结果,判断各因素对因变量的影响程度和显著性, 给出合理的解释和建议。
05
实际应用中的注意事项
实验设计的考虑因素
实验目的
方差分析的假设条件
独立性
各组数据相互独立,不受其他组数据的 影响。
正态性
各组内的数据分布符合正态分布。
齐性
各组内的方差应相等,即方差齐性。
同质性
各组数据的总体均值相同或至少在可比 较的意义上相等。
方差分析的统计推断
计算F值
通过比较组间方差和组内方差,计 算F统计量,用于判断各组均值是否
存在显著差异。
定义
多因素方差分析是用来检验多个自变量对因变量的影响的统计方法,通过比较不同组之间的方差,判断自变量是 否对因变量产生了显著影响。
目的
确定自变量对因变量的独立和交互作用,以及控制其他变量的影响,从而更准确地解释和预测因变量的变化。
多因素方差分析的假设条件
01
假设条件的必要性
为了确保分析结果的准确性和 可靠性,必须满足一定的假设 条件。这些假设条件包括正态 性、方差齐性和独立性等。
在多因素研究中,需要 考虑数据收集的伦理问 题和隐私保护问题,避 免侵犯个人隐私和权益 ,同时确保研究的合法
性和公正性。
THANKS
单因变量多因素方差分析课 件
目录
• 引言 • 单因素方差分析基础 • 多因素方差分析原理 • 单因变量多因素方差分析应用实例 • 实际应用中的注意事项 • 总结与展望

方差分析(单因素、多因素方差分析)

方差分析(单因素、多因素方差分析)

单因素方差分析1.基本理解方差分析:是一种利用实验获取数据并进行分析的统计方法,经常用于研究不同效应对指定实验的影响是否显著。

方差分析用于检验连续型随机变量在三及以上分类数据不同水平上的差异情况。

方差分析包括:单因素方差分析、多元素方差分析、多元方差分析、协方差分析、重复测量方差分析。

在问卷数据中:单因素方差分析使用较多。

单因素方差分析:用于检验单个因素取不同水平是某因变量的均值是否有显著的变化,也可进一步用于因变量均值的多重比较(检验某些水平下的实验结果具体区别于其他水平的显著差异)。

图1检验步骤2.单因素方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值后,点击分析、比较平均值、单因素ANOVA检验。

图2单因素方差分析第一步操作步骤第二步:进入图中对话框后将需检验的变量放入因变量列表中,在因子中放入分类变量,点击事后比较勾选假定等方差(LSD),不假定等方差(塔姆黑泥T2)点击继续。

图3单因素方差分析事后比较勾选3.当因素方差分析结果后点击线性进入图中下方选项框、勾选描述、方差齐性检验点击继续、确定。

图4单因素方差分析选项勾选然后单因素方差分析的描述、方差齐性、假设检验就出来了。

图5单因素方差分析结果单因素方差分析事后两两比较结果。

图6事后比较结果4.结果整理将首先将描述统计的结果粘贴复制到Excel表格中进行整理,保留均值和标准差及前面的内容,后在后面加入ANOVA表中的F和p值,将整理好的两两比较结果粘贴到表格的最后,最后将整理好的结果粘贴到Word文档中进行整理。

可参考图中结果整理。

(注:一般在看结果时首先看ANOVA表的结果,看显著情况,显著(p<0.05)看方差齐性检验的结果,若方差齐性检验的结果方差齐(p>0.05),然后再看事后比较的结果,方差齐看LSD,方差不齐看塔姆黑泥的结果,同样差异的显著看事后比较每行对应的显著性(若p<0.05,代表比较的对象显著。

方差分析-单因变量多因素方差分析.

方差分析-单因变量多因素方差分析.

练习(上机实践):
练习六 7、8题 (p169-170)
两个因素对过程的作用
因素 B 因素 A x111 1 x112 ... x11m x211 2 x212 ... x21m … …… xa11 a xa12 ... xa1m
x .1.
1
2 x121 x122 ... x12 m

b x1b1
行平均值
x 1. .
……
x1b 2 ... x1bm
பைடு நூலகம்
(bm 个样本数的 平均值)
二、操作步骤
执行 [Analyze][General linear Model][Univariate]
“Model”建立分析模型 分析模型是定义分析的效应级别。有两个选择: “Full Factor” 为系统缺省模型,包括主效应分析以 及所有可能的交互效应的分析。 “Custom”为用户自定义模型, ●只分析模型中的主效应 单击某一个单个的因素变量名,箭头将该变量设置到 Model框中。 ●分析模型中的双交互或多交互效应 可以同时送两个或多个到Model框中。 ●选择交互效应类型 Build Term(s)中的: Interaction项指定任意交互效应,即:“Full Factor” Main effects选项指定主效应。 All 2-way项指定双交互效应。 All 3-way项指定3交互及其以下的效应。 All 4-way项指定4交互及其以下的效应。 All 5-way项指定5交互及其以下的效应。
当作用在一个过程(一个因变量)的因素不只一个时,对 不同因素或因素的不同水平造成不同结果的研究将采用多 因素方差分析的研究方法。
一、概念
研究多个因素的各个水平对试验结果的影响,以及各因 素相互作用对试验的影响。 因素A的水平数a,i=1,2...a 因素B的水平数b,j=1,2...b 重复测量次数m,k=1,2...m

方差分析第2部分单因素试验资料的方差分

方差分析第2部分单因素试验资料的方差分

(一)两因素单独观测值试验资料的方差分析 对于A、B两个试验因素的全部ab个水 平组合,每个水平组合只有一个观测值, 全
试验共有ab个观测值,其数据模式如表620所示。
上一张 下一张 主 页 退 出
表6-20 两因素单独观测值试验数据模式
表6-20中
x i.
x
j 1
bБайду номын сангаас
ij
, x. j x..
Cx /N
2 ..
SST x C
2 ij
dfT N 1
df t k 1 df e dfT df t
上一张 下一张 主 页 退 出
SSt xi2 . / ni C
SSe SST SSt
【例6.4】 5个不同品种猪的育肥试验,后期30天增 重(kg)如下表所示。试比较品种间增重有无差异。
这是一个单因素试验,k=5,n=5。
上一张 下一张 主 页 退 出
1、计算各项平方和与自由度
C
2 SST xij C (82 132 142 132 ) 2809.00
2 x..
/ kn 265 /(5 5) 2809 .00
2
2945.00 2809.00 136.00 1 1 2 2 SSt xi. C (51 412 60 2 482 652 ) 2809.00 n 5 2882.20 2809.00 73.20
系统分组方差分析两种,现分别介绍如下。
上一张 下一张 主 页 退 出
一、交叉分组资料的方差分析
设试验考察A、B两个因素,A因素分a个水
平,B因素分b个水平 。 所谓交叉分组是指A因

单因素试验的方差分析

单因素试验的方差分析

=
2 2
=
2 s
2
;
(3)从每个总体中抽取的样本相互独立.
那么,要从已知数据中推断 s 个总体是否具有显著 的差异,就要比较各个总体的均值是否相等.设第 j 个总
体的均值为 j ,则要检验的假设为
H0 : 1 2 s , H1 : 1, 2 , , s不全相等.
(8-1)
单 因 素 A 具 有 s 个 水 平 A1, A2 , , As , 在 每 个 水 平
推进器 B
A1
B1
58.2 52.6
B2
56.2 41.2
B3
65.3 60.8
燃料 A
49.1 54.1 51.6 A2 42.8 50.5 48.4
60.1 70.9 39.2 A3 58.3 73.2 40.7
75.8 58.2 48.7 A4 71.5 51.0 41.4
这里的试验指标是射程,推进器和燃料是因素, 它们分别有 3 个、 4 个水平.这是一个双因素试验.试 验的目的在于考察在各种因素的各个水平下射程有 无显著的差异,即考察推进器和燃料这两个因素对射 程是否有显著的影响.
H1 : 1,2 ,
,
不全为0.
s
1.3 偏差平方和及其分解
定义 8.2 方和,其中
s nj
称 ST (Xij X )2 为样本的总偏差平 j 1 i1
称为样本的总均值.
1 s nj
X n j1 i1 X ij
s nj
定义 8.3 称 SE =
( Xij X .j )2 为样本的误差平方
差. SA 体现了各水平 Aj 的样本均值 X j 与总均值 X 之间
的差异,反映了样本之间的不同,它是由因素 A 的不同水 平效应的差异以及随机误差引起的.

方差分析在生态学中的应用

方差分析在生态学中的应用

• 主要有两种类型:
①无交互作用的双因素方差分析:
A
B
②有交互作用的双因素方差分析:
AB
2.1无交互作用的双因素方差分析
2.有交互作用的双因素方差分析
结论:由结果分析可知, 能量、蛋白质对鱼的体重 有显著影响,二者的交互 作用对鱼的体重也有显著
能量对鱼体重的影响
二者交互作用对 鱼体重的影响
组X间方差分析结果
亚组间=亚组内方差分析中的“组内”--组内方差分析中的“组内”
(SS,df)
求出MS,F,p
结论:
1.组间F=23.778>F0.01=5.448,说明不同培养液处理株高 差异达到极显著水平
2.亚组间F=3.227>F0.05=2.459,说明不同处理不同盆之 间Βιβλιοθήκη 差异显著2.双因素方差分析
1.单因素方差
1.p-value比较法 p=0.0487<0.05
2.F值比较法: (F=3.525)>(F0.05=3.490)
系统分组实验的方差分析
不同培养液对植物株高的生长量是 否有影响?
不同处理下,不同盆之间的生长 量是否有差异?
组X间的方差分析
亚组X间的方差 分析
亚组内方差分析结果
蛋白质对鱼 体重的影响

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。

因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。

因素所处的状态称为因素的⽔平。

如果在试验过程中,只有⼀个因素在改变,称为单因素试验。

⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。

举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。

试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。

⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。

以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。

三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。

因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。

否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。

样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。

第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。

spss相关分析案例多因素方差分析【范本模板】

spss相关分析案例多因素方差分析【范本模板】

本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。

本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况.在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31〈2000,所以此处选用Shapiro-Wilk统计量。

由正态性检验结果的sig。

值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于0.05,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量.另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。

如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。

具体情况这里不再赘述。

下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig。

值小于0。

05,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。

二、主体间效应检验表三Tests of Between—Subjects EffectsSource Dependent Variable Type III Sum ofSquares df Mean Square F Sig。

Corrected Model 人均副食支出(元/人) 11612.395a 2 5806.198 8.880 .001 人均日用杂品支出(元/人)66.367b 2 33.183 4.732 .017人均衣着支出(元/人) 107。

spss单因素方差分析例子

spss单因素方差分析例子

第一题:data0706-nutrition为地衣(lichen)、树叶成叶和嫩叶的蛋白质和可溶性碳水化合物(water soluble carbohydrate)的含量,先分析三者之间蛋白质的含量有无差异?如果有差异,具体是怎么差异的?再可溶性碳水化合物的含量有无差异?如果有差异,具体怎么差异?(1)地衣(lichen)、树叶成叶和嫩叶的蛋白质的含量差异分析;第一步:导出变量items和protein,以便删除protein中缺失数据。

第二步:打开导出数据data0706-nutrition1,先排序,然后删除缺失数据。

第三步:对data0706-nutrition1数据的正态性、异常值和极值、方差齐性进行检验,对数据做一个检查,Analyze->Descriptive Statistics->Explore;首先:如上图,把要检验的变量protein送入Dependent List,把分组变量(因素变量)items送入Factor List。

其次:如下图,点击Plots打开:选择Factor Levels together、Stem-and-leaf、Histogram、Normality plots with tests,下方Spread vs Level with Levene Test可以提供方差齐性的检验,选择Untransformed(不对数据进行转换)。

输出结果:第一组是尽管sig=0.935,但由于样本数太小,正态一般;第二组正态性不好。

第三组中,p较小,也只是近似正态。

基于平均数的计算(Based on Mean),各组方差有差异(p=0.044)。

由直方图可以看出,在第二组和第三组存在一些极值,数据分布不均匀,连续性不好。

由茎叶图可知,第二组和第三组分别存在4个,3个极值。

由qq图和QQ图不能得到一些较有用的信息,因为正态性之前已经判断。

箱图并与茎叶图一致,在第二组标识了4个异常值,第三组标识了3个异常值。

多因素方差分析

多因素方差分析

多因素⽅差分析01.前⾔在前⾯我们讲过简单的单因素⽅差分析,这⼀篇我们讲讲双因素⽅差分析以及多因素⽅差分析,双因素⽅差分析是最简单的多因素⽅差分析。

单因素分析就是只考虑⼀个因素会对要⽐较的均值产⽣影响,⽽多因素分析是有多个因素会对均值产⽣影响。

需要注意的是⼀个因素可能会有不同的⽔平值,即不同的取值。

⽐如要判断某⼀款药对某种病症有没有效果,服⽤不同的剂量效果应该是不⼀样的,虽然因素都是服药这⼀个因素,但是不同的药剂量代表不同的⽔平。

双因素(多因素)⽅差分析⼜可以分为两种,⼀种是有交互作⽤的,⼀种是没有交互作⽤的。

啥意思呢?什么是交互作⽤呢?⽐如我们⼤家所熟知的,⽜奶和药是不可以⼀起吃的,如果单独喝⽜奶有助于⾝体蛋⽩质的补充,如果单独吃药可以有助于治疗病症,但是⽜奶和药同时吃就会把两者的作⽤抵消掉。

这种两者之间的相互作⽤就可以理解成是交互作⽤,当然了,有的时候交互是正向呢,有的时候是负向的。

02.⽆交互作⽤⽅差分析现在有如下⼀份不同品牌不同地区的产品销量数据表,想要看⼀下不同品牌和不同地区这两个因素是否对销量有显著性影响:我们先来看看⽆交互作⽤的双因素⽅差分析具体怎么做呢,所谓的⽆交互也就是假设品牌和地区之间是没有交互作⽤的,相互不影响,只是彼此单独对销量产⽣影响。

前⾯单因素⽅差分析中,我们是⽤F值去检验显著性的,多因素⽅差分析也同样是⽤F值.F = 组间⽅差/组内⽅差。

对于没有交互作⽤的多因素,可以单纯理解为多个单因素。

也就是你可以单独去看品牌对销量的影响,然后再单独去看地区对销量的影响。

那单独怎么看呢?这就回到了我们前⾯讲过的单因素⽅差分析。

我们先来计算品牌的组内平⽅和:SSA = (每个品牌的均值 - 全部销量均值)^2*每个品牌内样本数 = (344.20-328.45)^2*5 + (347.80-328.45)^2*5 + (337.00-328.45)^2*5 + (284.80-328.45)^2*5 = 13004.55我们再来计算地区的组内平⽅和:SSB = (每个地区的均值 - 全体销量均值)^2*每个地区内样本数 = (339.00-328.45)^2*4 + (330.25-328.45)^2*4 + (339.25-328.45)^2*4 + (318.25-328.45)^2*4 = 2011.7接着我们来计算全部平⽅和:SST = (每个值-总体均值)^2 = 17888.95除此之外还有⼀个平⽅和:SSE = SST - SSA - SSB这部分是除品牌和地区以外的其他因素所产⽣的,称为随机误差平⽅和。

R语言单因素方差分析实例

R语言单因素方差分析实例

1 单因素方差分析实例1
4
1 单因素方差分析实例1
5
>X<c(1600,1610,1650,1680,1700,1700,1780,1500,1640,1400,1700,1750,1640,1550,1600 ,1620,1640,1600,1740,1800,1510,1520,1530,1570,1640,1600)
小结
8
通过学习,了解单因素方差分析应用。
> A<-factor(c(rep(1,7),rep(2,5),rep(3,8),rep(4,6))) > lamp<-data.frame(X,A) > lamp.aov<-aov(X~A,data=lamp) > summary(lamp.aov)
1 单因素方差分析实例1
6
1单因素方差分析实例1
R语言单因素方差分析实例1
学习目标
2
了解单因素方差分析及应用。
1单因素方差分析实例1 3
在R中,aov()函数提供了方差分析表的计算: 进行方差分析的步骤: a.用数据框的格式输入数据 如:lamp<-data.frame(X=c(),A=factor()) b.调用aov()函数计算方差分析 lamp.aov<-aov(X~A,data=lamp) c.用summary()提取方差分析的信息 summary(lamp.aov)(anova.tab(lamp.aov))
7
分析上述计算结果,Df表示自由度,Sum Sq 表示平方和,Mean Sq 表示 均方,F value 是F值,Pr(>F)是p值,A即为因子A,Residuals 是残差。
从P值(ቤተ መጻሕፍቲ ባይዱ.121>0.05)可以看出,没有充分理由拒绝零假设H0,也就是说, 4种材料生产出来的零件寿命没有显著差异。

spss 多因素方差分析例子

spss 多因素方差分析例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze—〉General Linear Model —>Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM e rror,即无法分开MM intercept和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze—〉General Linear Model-〉Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21。

方差分析

方差分析

第二节 单因素试验方差分析
ST ( xij x.. )2
i 1 j 1 m r
式(1)
将式(1)进行分解:
ST ( xij xi. )2 r ( xi. x.. )2
i 1 j 1 i 1
m
r
m
式(2)
第二节 单因素试验方差分析
ST ( xij xi. )2 r ( xi. x.. )2
fT=mr-1=n-1,fA=m-1,fe=mr-m=n-m
显然 fT= fA+ fe 式(10)
第二节 单因素试验方差分析
fT= fA+ fe 式(10)
式(10)称为偏差平方和自由度分解公式。因为总自 由度fT=n-1是总的数据个数减1,而组间自由度fA=m-1是因 素的水平数减1,都很好计算,所以一般先求出fT和fA,再 利用 fe =fT- fA 式(11) 求出组内自由度fe。
xi.
105.6 110.9 107.9 114.2 85.0 523.6

4
i 1
2 x ij
2820.24 3092.61 2958.13 3276.50 1807.24 13954.72
第二节 单因素试验方差分析
1、计算偏差平方和及自由度 x..=523.6 CT= x..2/n=523.62/20=13707.85
式(8) 式(9)
第二节 单因素试验方差分析
(三)计算自由度和方差
偏差平方和的大小,与参与求和的项数有关,为了比较 SA与Se的大小,应消除求和项数的影响,比较它们的平均值。 从数学上的理论推导知道,SA与Se的平均值,不是把SA与Se 分别除以相应的参与求和的项数,而应除以它们的自由度, 下面分别为ST 、SA与Se的自由度fT、fA和fe。

SPSS单因素和多因素方差分析法

SPSS单因素和多因素方差分析法

SPSS单因素和多因素方差分析法SPSS是一种广泛应用于社会科学研究中的数据分析软件。

它提供了一系列功能强大的统计工具,用于分析各种数据。

在SPSS中,单因素和多因素方差分析法是常用的统计方法之一,用于比较两个或多个组之间的差异。

单因素方差分析法又称单变量方差分析,用于比较一个自变量(也称为因子或组别)对于一个因变量(也称为依变量或观察变量)的影响。

它适用于多个组之间存在一个自变量的情况。

例如,假设我们想要比较三种不同讲义对学生阅读理解成绩的影响,我们可以将讲义视为自变量,阅读理解成绩视为因变量。

通过单因素方差分析,我们可以确定这三个组之间是否存在显著差异。

多因素方差分析法又称多变量方差分析,用于比较两个或多个自变量对于一个因变量的影响。

它适用于多个组之间存在多个自变量的情况。

例如,假设我们想要比较四种不同肥料对植物生长的影响,我们可以将肥料的种类和施肥时间视为两个自变量,植物生长情况视为因变量。

通过多因素方差分析,我们可以确定这四个组之间是否存在显著差异,并确定哪个自变量或哪些自变量对于植物生长有较大的影响。

在SPSS中进行单因素和多因素方差分析的步骤大致相似。

首先,我们需要将数据输入到SPSS中。

然后,我们需要选择适当的分析方法。

对于单因素方差分析,我们选择“统计”菜单下的“方差分析”选项。

对于多因素方差分析,我们选择“统计”菜单下的“一般线性模型”选项。

接下来,我们需要选择自变量和因变量,并指定相应的因子水平或组别。

最后,我们需要运行分析并查看结果。

分析结果包括多个方面的信息。

首先,我们可以看到各组之间的均值差异以及是否显著。

通过协方差差异分析表,我们可以判断方差分析的显著水平。

如果方差分析的显著水平小于0.05,则说明至少有一组之间存在显著差异。

此外,还可以查看效应大小,以确定自变量对因变量的影响程度。

最后,通过多重比较(如Tukey's HSD),我们可以确定哪些组之间存在显著差异。

SPSS数据分析—单因素及多因素方差分析

SPSS数据分析—单因素及多因素方差分析

SPSS数据分析—单因素及多因素方差分

T检验可以用于解决单个样本或两个样本的均值比较问题。

但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。

方差分析是基于变异分解的思想,利用F
分布进行比较。

在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。

在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。

方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。

由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。

在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。

在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。

单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例

单因素方差分析实例[例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。

问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体在SPSS 中进行方差分析的步骤如下:(1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数值型),G=1、2、3 表示第一组、第二组、第三组。

然后录入相应数据,如图6-66所示图6-66 方差分析数据格式(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对话框(如图6-67所示)。

从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。

单击[OK]按钮完成。

图6-67 方差分析对话框(3)分析结果如下:因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。

多因素方差分析[例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产量,观测到的产量如表6-31所示。

试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为:(1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。

录入相应数据,如图6-68所示。

图6-68 双因素方差分析数据格式(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。

SPSS-单因素方差分析(ANOVA)案例解析

SPSS-单因素方差分析(ANOVA)案例解析

SPSS-单因素方差分析(ANOVA)案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA分) 析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a 代表雄性老鼠 b 代表雌性老鼠0 代表死亡 1 代表活着tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量”将a,b" 分别用8,9 进行替换,得到如下结果”此时的8 代表a(雄性老鼠)9 代表b 雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“勾选“将定方差齐性”下面的LSD 选项,和“未假定方差齐性”下面的Tamhane's T2 选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANOV”A 分析结果,显著性0.098,由于0.098>0.05 所以可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal -Wallis " 检验方法)通过“Kruskal - Wallis ”检验方法,我们得出“sig=0.098" 跟我们先前分析的结果一样,都是0.098,事实得到论证。

统计分析方法(t检验、单因素方差分析和多因素方差分析)

统计分析方法(t检验、单因素方差分析和多因素方差分析)
两组独立样本的比较:独立样本t检验 多组独立样本之间的比较:单因素方差分析
两组独立样本的比较:独立样本t检验 在变量视图中填入变量:这里的X为需分析数据,G代表分组
在数据视图中录入数据: G下方的数据1、2为分组 X下方的数据为相应的分组 对应的需要分析的数据
在工具栏里选择分析——描述统计——探索
将X选入因变量列表,G选入因子列表, 然后单击绘制

勾选带检验的正态图,其余的 可按照默认值 单击继续
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明该 组数据属于正态性数据,可以继续进行独立样本的t检验;如果 有任何一组P值小于0.05,则需改用非参数检验
数据符合正态时,在工具栏中选 择分析,在下拉菜单中选择比较 均值,再选择独立样本T检验
将X选入检验变量,G选入分组变 量,然后点击定义组,组1后填 入1,组2后填入2,继续——确定
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明两组数据方差齐,则 看第一行数据,如果小于0.05,说明两组数据方差不齐,则看第二行数据;sig的 值即为最终所需P值。
单因素方差分析
数据录入后,进行正态性检验,方法 见4、5、6页PPT。检验结果需要全部 正态才能进行单因素方差分析,否则 需要用非参数检验,但非参数检验没 有两两比较。
分析——比较均值——单因素ANOVA 将X选入因变量列表,G选入因子列表 中,单击两两比较,选择LSD,继续, 单击选项,选择方差同质性检验,继 续——确定
方差齐性检验结果显著性大于0.05, 说明方差齐,可以进行单因素方差分 析,如果显著性小于0.05,则说明方 差不齐,则不能进行单因素方差分析
该表为总体的显著性
该表为两两比较的结果 1 2 为1组与2组比较
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单因素方差分析实例
[例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。

问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体
在SPSS 中进行方差分析的步骤如下:
(1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数
值型),G=1、2、3 表示第一组、第二组、第三组。

然后录入相应数据,如图6-66所示
图6-66 方差分析数据格式
(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对
话框(如图6-67所示)。

从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。

单击[OK]按钮完成。

图6-67 方差分析对话框
(3)分析结果如下:
因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。

多因素方差分析
[例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产
量,观测到的产量如表6-31所示。

试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为:
(1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作
者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。

录入相应数据,如图6-68所示。

图6-68 双因素方差分析数据格式
(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。

从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。

单击[OK]按钮
图6-69 单变量多因素方差分析主对话框
(3)分析结果如下:
因此,可以认为机器类型和操作者的影响均是显著的。

相关文档
最新文档