姜启源_谢金星编《数学模型》第四版_第四章__数学规划模型
数模学习(姜启源笔记)
天大万门数模写在开始今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。
可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是~~ 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:一,“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;二,模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;三,用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。
最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~第1章建立数学模型关键词:数学模型意义特点第1章是引入的一章,对数学模型的意义来源,做了很好的解释。
其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。
数学模型 姜启源
数学模型
数学模型
精选ppt
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称
学时
36
数学模型与数学建模 Mathematical Modeling
学分 课程类别
3 专业选修课
先修课程
微积分、线性代数、概率论与数理统计
课程简介
本课程是计算机及管理专业的一门专业选修课。也是本科生参加数学建 模竞赛的辅导课程。数学模型是架于数学理论和实际问题之间的桥梁。 数学建模是应用数学解决实际问题的重要手段和途径。本书介绍数学建 模中常用的一些基本概念、理论和典型的数学模型,包括:数据拟合, 网络模型,优化模型,离散模型、随机模型,时间序列预报模型,回归 分析及其试验设计。通过数学模型和数学建模有关问题的论述和模型实 例的介绍,使学生应用数学解决实际问题的能力有所提高。
• 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
• 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20千米/小时)。
精选ppt
9
《数学模型》 姜启源 主编
第一章 建立数学模型
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
《数学模型》 姜启源 主编
第一章 建立数学模型
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个
准
比较清晰
备 搜集有关信息 掌精选握ppt 对象特征 的‘问题’25
姜启源编数学模型第四版
一般模型 x(t) ~甲方兵力,y(t) ~乙方兵力
模型 假设
• 每方战斗减员率取决于双方的兵力和战斗力. • 每方非战斗减员率与本方兵力成正比. • 甲乙双方的增援率为u(t), v(t).
x(t) f (x, y) x u(t), 0
tm~传染病高潮到来时刻
tm
1
ln
1 i0
1
t i 1 ?
(日接触率) tm
病人可以治愈!
第6页/共76页
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染. SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
di
dt
i(1 i)
i
i[i (1 1 )]
i(0) i0
/
~ 日接触率 1/ ~感染期
~ 一个感染期内每个病人的
有效接触人数,称为接触数.
第7页/共76页
模型3
di/dt
di i[i (1 1 )]
dt
接触数 (感染期内每个
病人的有效接触人数)
i
i
>1
i0
>1
1
1-1/
接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di
i(1 i)
dt
i(0) i0
第5页/共76页
模型2
i
di
i(1 i)
dt
i(0) i0
Logistic 模型
1
i(t)
第姜启源数学模型复习总结
第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。
建模的一般方法及其在建模中的应用。
建模的一般步骤(每步的主要内容与问题)。
建模的全过程(框图)4个环节的含义。
模型的特点(技艺性)。
模型分类(表现特征),建模中的能力培养。
数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。
模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。
抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。
数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了;数学进入一些新领域,为数学建模开辟了许多处女地.数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。
§3实例1:椅子问题:实际问题转换为数学问题的方法:位置用角度,放平问题转化为连续函数的零点问题(连续函数的零点定理)矩形椅子问题:(1)用θ表示椅子对角线AC 与x 轴的夹角,因为假设地面是连续曲面,椅子各点到地面的距离是θ的连续函数。
设相邻的,A B 两点到地面的的距离之和为()f θ,,C D 两点到地面的距离之和为()g θ,令()()()h f g θθθ=-,则()h θ是θ的连续函数。
(2)因为假设地面是相对平坦的,在任一位置至少三只脚着地,不妨设0θ=时,(0)0,g(0)0f >=,(0)(0)(0)0h f g =->。
(3)将椅子旋转π,则,A B 旋转到原来,C D 的位置,,C D 旋转到,A B 的位置,即AB 与CD 的位置互换,因此有()(0)0,()f(0)0f g g ππ===>,因此()()()g(0)f(0)0h f g πππ=-=-<,即连续函数()h θ在[0,]π两端点异号,由连续函数的介值定理(零点定理),知存在一点*θ使*()0h θ=,即**()()f g θθ=。
《数学建模(一)》课程教学大纲-公选课
《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。
通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。
通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。
并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。
【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。
第二节数学建模的重要意义基本要求:了解数学建模的重要性。
第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。
第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。
第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。
第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。
第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。
第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。
难点:建立模型的过程。
第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。
第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。
第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。
数学模型姜启源第4版
T T 2rT
2rT
(目标函数)
求 T ,Q 使 C(T ,Q) min
C 0, C 0 为与不允许缺货的存贮模型 NhomakorabeaT
Q
相比,T记作T´, Q记作Q´.
T 2c1 c2 c3 rc2 c3
Q 2c1r c3 c2 c2 c3
允许
T'
2c1
c 2
c 3
缺货
rc2 c3
模型 Q' 2c1r c3 c2 c2 c3
C~
c1
c2
QT 2
c1
c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解 求 T 使C(T ) c1 c2rT min
T2
dC 0 dT
模型解释
T 2c1 rc2
Q rT 2c1r c2
定性分析 c1 T,Q
c2 T,Q
• 回答原问题
T 2c1 rc2
Q rT 2c1r c2
c1=5000, c2=1,r=100
T=10(天), Q=1000(件), C=1000(元)
思考: 为什么与前面计算的C=950元有差别?
• 用于订货供应情况每: 天需求量 r,每次订货费 c1, 每 天每件贮存费 c2 , T天订货一次(周期), 每次订货Q件, 当贮存量降到零时,Q件立即到货.
经济批量订货公式(EOQ公式)
不允许缺货的存贮模型
允许缺货的存贮模型
q
Q
当贮存量降到零时仍有需求r,
出现缺货,造成损失. 原模型假设:贮存量降到零时 A
Q件立即生产出来(或立即到货). O
中国海洋大学本科生课程大纲-数学科学学院
四、教学进度
序号
第一章 1.1-1.3
第二章 2.1-2.2
专题 或主题
MATLAB 入门
MATLAB 编程与 作图
计划 课时
8
16
主要内容概述
MATLAB 桌面(安装与运行) 数据和变量 数组及其运算 关系与逻辑运算 建模试验:贷款利率模型 程序设计(分支、循环结构) MATLAB 作图(二维平面曲线图、三维空 间曲线图、三维空间曲面图) 动画、游戏制作(简介)
三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,认真听讲,积极参与课堂讨论、和上机练习。本课程将包含较多
的上机练习、小组讨论等课堂活动。 (2)认真对待并完成规定的上机任务。由于本课程实践性强,学生个人能力有差
别,因此上机任务极有可能无法在课堂上完成,因此需要学生能够利用课下时间,继 续完成布置的上机任务。这些任务能加深对课程内容的理解、促进独立查阅资料和解 决问题的能力培养。上机任务的完成情况,是平时成绩的关键组成部分。
中国海洋大学本科生课程大纲
课程名称 课程属性
数学实验基础 Foundation of Mathematics Experiments
工作技能
数学建模模型
超市员工安排及运营问题摘要在一些大型服务机构中,不同的时间段内需要的服务量有着显着的不同,从而主管单位在不同的时段雇佣工作人员的人数往往也不同。
因此对于既要满足需要,又要尽量减少劳务开支是管理者必须思考的决策问题。
本文我院某校内超市员工安排问题为例,据已给定的各个时间段所需的服务员人数和两个班次与休息时间安排表、职员工资及其他给定的限制,建立整数规划优化模型,得出最优安排,使得既满足超市对职工的需要,又使超市的劳务开支最少。
另外本文进一步讨论在已有班次的基础上,对增加更多的班次后的人员安排及劳务支出的变化,以便此超市根据最少的劳务开支做出最优选择。
由问题给出的时间和班次安排表,在8:00——17:00和12:00——21:00中每隔一个小时安排吃饭时间,根据班次安排的人数列出线性不等式,根据月支出来列出目标函数,然后设计线性规划模型,用LINGO.8解出人数和最优劳务支出。
由此解决了本问题要讨论的最少人数和最优劳务支出。
关键词:优化设计,劳务开支,临时员工安排。
一问题重述在一些大型服务机构中,不同的时间段内需要的服务量有显著的不同。
例如,交通管理人员、医院医护人员、宾馆服务人员、超市卖场营销人员等。
在不同的时段劳务需求量不同,主管单位在不同时段雇佣的临时职工数量往往也不同。
因此对于既要满足需要,又要尽量节约劳务开支是管理者必须思考的决策问题。
现就我院校内某超市临时员工的班次安排问题建立一个数学模型来进行优化设计,使其既满足超市的营业需要,又能够使超市的劳务开支最少。
超市的营业时间为11:00到22:OO,根据学生的购买情况,以一小时为一时段,各时段内所需的服务人员数如表1。
此超市员工由临时工和正式员工构成,正式职工两名,主要负责管理工作,每天需要工作8小时,临时工若干名,每天工作4小时。
已知一名正式员工11:00开始上班,工作4小时后休息1小时,而后再工作4小时;另一名正式职工13:00开始上班,工作4小时后休息1小时,而后再工作4小时,工作、休息时间安排如表2。
笔记-数学模型(第四版) 姜启源等编
dx kx 当 t 0 得微分方程: dt x(0) x0
解微分方程
dx kdt x 1 x dx kdt ln( x) kt c1 x ce kt , c x0 x x0 e kt
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e m( )
t 时刻年龄为 的人的存活时间之和为: h( ) 所以时刻 t 年龄为 的人的期望寿命为:
P174 习题 4 1.设 x(t ), y (t ) 分别为 t 时刻甲乙双方的兵力,满足下列微分方程
x ay , (1) y bx, (2) x ( 0) x 0 , y ( 0) y 0 a 4, x 0 y 0 则当乙方取胜时,乙方的剩余兵力是多少?战斗时间 b 是多少? (2) 若甲方在战斗开始后,有后备兵力以不变的速率 r 增援,试重新建立模 型, 讨论如何判断双方的胜负
0
( r , t ) dr
0
d
解:
设 t 时刻年龄为 的人的数目随时间变化的规律为: m m( r ), r 0
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e 0 0 m(0)
2.试推导 logistic 人口增长模型.即设时刻 t 的人口为 x(t ) ,单位时间内人口的 增量与 x(1
姜启源谢金星编《数学模型》第四版第4章数学规划模型
3360.000
[milk] x1 + x2<50; Total solver iterations:
2
[time]
Variable Value
Reduced Cost
12*x1+8*x2<480;
X1 20.00000
0.000000
[cpct] 3*x1<100;
X2 30.00000
0.000000
第四章 数学规划模型
4.1 奶制品的生产与销售 4.2 自来水输送与货机装运 4.3 汽车生产与原油采购 4.4 接力队选拔和选课策略 4.5 饮料厂的生产与检修 4.6 钢管和易拉罐下料
数学规划模型
实际问题中 min(或max) z f (x), x (x1, , x n )T
的优化模型
s.t. gi (x) 0, i 1, 2, , m
车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划.
时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划.
本节课题
例1 加工奶制品的生产计划
问 题
1桶 牛奶 或
12h
8h
3kgA1 4kgA2
获利24元/kg 获利16元/kg
Global optimal solution found.
Objective value:
3360.000
结果解释
Total solver iterations:
2 最优解下“资源”增加
Variable Value
Reduced Cost
X1 20.00000
0.000000
规划模型 《数学模型》(第三版)电子课件姜启源谢金星叶 俊编制.
每天 50桶牛奶 时间480小时
获利24元/公斤 获利16元/公斤 至多加工100公斤A1
决策变量 目标函数
约束条件
x1桶牛奶生产A1 x2桶牛奶生产A2
获利 24×3x1
获利 16×4 x2
每天获利 Max z 72 x1 64 x2
原料供应
x1 x2 50
线性 规划
劳动时间
12 x1 8x2 480
每天: 50桶牛奶 时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大
• 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
1桶 牛奶 或
12小时 8小时
3公斤A1 4公斤A2
NO. ITERATIONS= 2
2.000000 0.000000
时间增加1单位, 利润增长2 加工能力增长不影响利润
• 35元可买到1桶牛奶,要买吗? 35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
DO RANGE(SENSITIVITY) ANALYSIS? Yes 最优解不变时目标函
模型
加工能力 非负约束
3x1 100
x1, x2 0
(LP)
模型分析与假设
比 xi对目标函数的
例 “贡献”与xi取值
性 成 xi对正约比束条件的
“贡献”与xi取值
可 加
成 xi对正目比标函数的 “贡献”与xj取值
性 无 xi对关约束条件的“贡献”与xj来自值连续性无关xi取值连续
线性规划模型
DO RANGE (SENSITIVITY) ANALYSIS? No
《数学建模》教学大纲
《数学建模》教学大纲课程编码:1511101303课程名称:数学建模学时/学分:54/3先修课程:《数学分析》、《高等代数》、《数学软件与实验》、《概率论与数理统计》、《常微分方程》适用专业:数学与应用数学开课教研室:应用数学教研室一、课程性质与任务1.课程性质:本课程是数学与应用数学专业的专业基础课。
2.课程任务:本课程是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
通过数学建模有关的概念、特征的学习和数学建模实例的介绍,使学生较为系统地掌握利用数学工具建立数学模型的基本步骤、基本技能与常见方法,培养学生双向翻译能力,数学推导计算和简化分析能力和用数学方法和思想分析、解决实际问题的初步能力。
二、课程教学基本要求《数学建模》是一门应用性较强的新兴课程,主要培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力。
由于该课程的性质、特点、内容不同于其它课程,教学形式应该是讲授与个人作业相结合,教学方法则是以启发式教学为主,学生动手实践为辅的双向教学模式。
本课程开设在第5学期,共54学时,其中课堂讲授36学时,课内实践18学时。
成绩考核形式:末考成绩(开卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容第一章 数学建模概论1.教学基本要求让学生了解数学建模相关基本概念,了解课程特点,为后继学习奠定基础。
2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解数学模型、数学建模的概念,了解数学模型的特点和分类,初步掌握数学建模的基本方法和步骤,培养学生把实际问题翻译成数学问题的能力。
3.教学重点和难点教学重点是数学建模的基本步骤。
教学难点是如何把实际问题翻译成数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节课题
例1 加工奶制品的生产计划
问 题
1桶 牛奶 或
12h
8h
3kgA1 4kgA2
获利24元/kg 获利16元/kg
每天: 50桶牛奶 时间480h
至多加工100kgA1
制订生产计划,使每天获利最大
目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线
最优解一定在凸多边 形的某个顶点取得.
模型求解
软件实现
LINGO
model: max = 72*x1+64*x2; [milk] x1 + x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100; end
决策变量 目标函数
约束条件
x1桶牛奶生产A1 x2桶牛奶生产A2
获利 24×3x1
获利 16×4 x2
每天获利 max z 72 x1 64 x2
原料供应
x1 x2 50
线性 规划
劳动时间
12 x1 8x2 480
模型
加工能力
3x1 100
(LP)
非负约束
x1, x2 0
end
Row Slack or Surplus Dual Price
三
原料无剩余
种
时间无剩余
资 加工能力剩余40
1 MILK TIME CPCT
3360.000 0.000000 0.000000 40.00000
1.000000 48.00000 2.000000 0.000000
源
“资源” 剩余为零的约束为紧约束(有效约束)
3x1 100
x1, x2 0
l3 : 3x1
l4 : x1 0,
目标 max z 72 x1 64 x2
函数 z=c (常数) ~等值线
8x2 480
B
100 l4
l2 C z=3360
l5 : x2 0
O
c l5
l3 D x1
z=0 z=2400
在B(20,30)点得到最优解.
Global optimal solution found.
Objective value:
3360.000
结果解释
Total solver iterations:
2 最优解下“资源”增加
Variable Value
Reduced Cost
X1 20.00000
0.000000
X2 30.00000
第四章 数学规划模型
4.1 奶制品的生产与销售 4.2 钢管下料
数学规划模型
实际问题中 min(或max) z f (x), x (x1, , x n )T
的优化模型
s.t. gi (x) 0, i 1, 2, , m
x~决策变量
f(x)~目标函数 gi(x)0~约束条件
多元函数 条件极值
决策变量个数n和 约束条件个数m较大
最优解在可行域 的边界上取得
数 线性规划
学 规
非线性规划
划 整数规划
重点在模型的建立和结果的分析
4.1 奶制品的生产与销售
企业生产计划
空间层次
工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;
车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划.
模型分析与假设
线性规划模型
比 xi对目标函数的“贡 A1,A2每千克的获利是与各自 例 献”与xi取值成正比 产量无关的常数
性 xi对约束条件的“贡 每桶牛奶加工A1,A2的数量, 时 献”与xi取值成正比 间是与各自产量无关的常数
可 加
xi对目标函数的“贡 献”与xj取值无关
性 xi对约束条件的“贡 献”与xj取值无关
3360.000
[milk] x1 + x2<50; Total solver iterations:
2
[time]
Variable Value
Reduced Cost
12*x1+8*x2<480;
X1 20.00000
0.000000
[cpct] 3*x1<100;
X2 30.00000
0.000000
0.000000 加工能力增长不影响利润
• 35元可买到1桶牛奶,要买吗?
35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
敏感性分析 (“LINGO|Ranges” )
• 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/kg,应否改变生产计划?
基本 1桶
12h
模型 牛奶 或
8h
3kgA1 4kgA2
获利24元/kg 获利16元/kg
每天 50桶牛奶 时间480h
至多加工100kgA1
0.000000
Row Slack or Surplus Dual Price
1单位时“效益”的增 量
影子价格
1 3360.000 MILK 0.000000
1.000000 48.00000 原000000 时间增加1单位, 利润增长2
CPCT 40.00000
连续性 xi取值连续
A1,A2每千克的获利是与相互 产量无关的常数
每桶牛奶加工A1,A2的数量,时 间是与相互产量无关的常数
加工A1,A2的牛奶桶数是实数
模型求解
图解法
Ax2
约 x1 x2 50
l1 : x1 x2 50
l1
束 12 x1 8x2 480
l2 :12 x1
条 件
Global optimal solution found.
Objective value:
3360.000
Total solver iterations:
2
Variable Value
Reduced Cost
X1 20.00000
0.000000
X2 30.00000
0.000000
Row Slack or Surplus Dual Price
1 3360.000
1.000000
MILK 0.000000
48.00000
TIME 0.000000
2.000000
CPCT 40.00000
0.000000
20桶牛奶生产A1, 30桶生产A2,利润3360元.
结果解释
model:
Global optimal solution found.
max = 72*x1+64*x2; Objective value: