五轴加工中心数控编程技巧
数控五轴加工中心编程的方法及步骤
数控五轴加工中心编程的方法及步骤小伙伴!今天咱们来唠唠数控五轴加工中心编程这个事儿。
一、了解加工零件。
咱得先好好看看要加工的零件长啥样。
就像认识新朋友,得知道它的轮廓、尺寸、精度要求这些。
你得清楚哪里是平面,哪里是曲面,有没有啥特殊的形状。
这就好比给零件做个全身检查,心里有数了,编程的时候才能有的放矢。
二、确定加工工艺。
这一步可重要啦。
要想清楚用啥刀具合适呢?大零件和小零件用的刀具可能就不一样。
还有切削的参数,就像炒菜放多少盐、多少油一样,切削速度、进给量、切削深度都得定好。
这得根据零件的材料来,要是硬邦邦的材料,那切削参数就得小心调整,不然刀具可能就受不了啦。
工艺路线也得规划好,先加工哪里,后加工哪里,就像规划旅行路线一样,得合理安排。
三、建立坐标系。
这个就像是给零件在加工中心里找个家。
确定一个原点,然后X、Y、Z轴就像房间的坐标一样,每个点都有自己的位置。
五轴加工中心还有两个旋转轴呢,这两个轴的坐标系也要确定好。
这就像给零件的每个部分都贴上了地址标签,加工的时候刀具才能准确找到地方。
四、编写程序。
现在就开始正儿八经写程序啦。
用那些编程代码,像G代码、M代码之类的。
比如说G00就是快速定位,让刀具快速跑到指定位置。
编写的时候要按照之前确定的加工工艺来。
如果有曲面的话,可能得用一些特殊的编程方法,像宏程序之类的。
这就像写作文,要按照一定的逻辑和规则来写,不能乱写一气。
五、模拟加工。
程序写好可别着急让加工中心干活。
先模拟一下,就像演习一样。
看看刀具的路径对不对,有没有可能撞到零件或者夹具。
要是模拟的时候发现问题,那就赶紧修改程序。
这就像出门前检查一下东西有没有带齐,发现没带钥匙还能及时补上。
六、实际加工。
经过前面的步骤,没问题啦,就可以让加工中心开始干活啦。
不过在加工的时候也不能完全不管,得盯着点。
万一有啥突发情况,像刀具磨损啦,还能及时处理。
数控五轴加工中心编程就是这么个事儿,看起来有点复杂,但是只要一步一步来,多实践,肯定能掌握的。
五轴加工中心数控编程技巧分析
五轴加工中心数控编程技巧分析摘要:五轴加工中心是机械工业生产中极为重要的设备,具有加工范围广、精度高、速度快的特点,可以对各类零部件进行高效加工。
五轴加工中心数控编程技巧的应用有利于提升加工效率,保证加工质量,程序员在进行五轴加工中心的数控编程时需要注意科学分析数控机床、明确坐标系确定方法、关注编程中刀具补偿、选用恰当的编程方法并优化编程中的工艺处理,进一步强化数控编程质量,提升五轴加工中心的工作效率。
关键词:五轴加工中心;数控编程;技巧五轴加工中心的五轴联动设计是工业生产中进行零件加工的重要技术,可以对大型三维立体曲面等零件进行加工,具有极高的应用价值。
而数控编程技术的应用能够对五轴联动加工系统进行多元化控制,调整加工速度、空走速度、落刀速度等数值,保证加工效率与质量。
在五轴加工中心的数控编程中,合理运用编程技巧可以减少程序编写的工作量,提升加工效率、优化工业生产过程,为此应该重视五轴加工中心数控原理分析,并对具体的编程技巧进行研究,合理的运用相应技巧完成程序编写。
一、五轴加工中心数控系统控制原理五轴加工是数控机床加工的一种模式,是在X、Y、Z三个移动轴基础上加任意两个旋转轴的五轴联动加工系统,可以让加工刀具在五个自由度上进行定位与连接,能够实现几何形状复杂的零件加工。
五轴加工中心是五轴加工所采用的机床,可进行各类复杂零部件加工,包括有自由曲面的机体零部件、涡轮机零部件等,能够提高零件加工效率。
五轴加工中心的五轴联动加工具有更广的适应性,可以对直纹面类零件进行加工,提高其工作效率[1]。
在立体型面加工时,五轴加工可以采用铣刀端面逼近立表面进行加工,减少走刀次数,降低残余高度,提高加工效率与表面质量。
此外,五轴数控加工可以一次装夹完成工件多表面、度工序加工,在提高工作效率的同时,确保相互位置的精度,具有极高的应用价值。
五轴加工中心数控系统是运用编程软件完成编程,进而实现数字化控制的过程,通常需要由编程人员与机床操作人员密切配合,保证其程序编写的科学性与准确性。
ug五轴编程常用小技巧
ug五轴编程常用小技巧一、了解加工对象和选择合适的刀具在进行五轴编程之前,了解加工对象的特点和加工需求是非常重要的。
首先,要了解加工材料的硬度、脆性、软度、是否易变形等因素,以便选择合适的刀具和切削参数。
同时,根据加工需求选择适当的加工路径,如粗加工还是精加工,选择不同的切削策略和加工方式。
二、合理设置切削参数切削参数是五轴编程中非常重要的一部分,它包括切削速度、进给速度、切削深度、快速移动速度等。
在设置切削参数时,要充分考虑刀具的切削性能和加工材料的特性,选择合适的切削策略和加工方式。
此外,要避免使用过高的切削速度和进给速度,以免造成刀具磨损和工件表面质量的下降。
三、优化加工路径加工路径是五轴编程中的重要部分,它决定了刀具在加工过程中的运动轨迹。
在进行五轴编程时,要充分考虑加工对象的形状和特点,优化加工路径,减少刀具的空行程时间和碰撞风险。
可以使用UG 软件中的自动碰撞检测和自动换刀等功能,确保加工过程的顺利进行。
四、合理使用加工模拟加工模拟是五轴编程中非常有用的工具,它可以帮助工程师检查加工过程中的碰撞、过切等问题,并及时进行调整。
在UG软件中,可以使用模拟功能来模拟刀具的运动轨迹,检查加工过程中的问题,并及时进行调整。
这样可以大大提高加工效率和产品质量。
五、注意安全问题在进行五轴编程时,安全问题是非常重要的。
要确保机床和操作环境的安全,避免意外碰撞和过切等问题的发生。
在进行编程时,要充分考虑机床的极限和加工对象的形状,避免造成安全事故。
六、持续学习与优化五轴编程是一个不断学习和优化的过程。
随着技术的发展和加工对象的不断变化,需要不断学习新的技术和方法,优化已有的编程技巧和方法。
可以通过阅读专业书籍、参加培训课程、与同行交流等方式,不断学习和提高自己的五轴编程技能。
总之,UG五轴编程需要综合考虑加工对象、刀具选择、切削参数、加工路径、安全问题等多个方面。
通过不断学习和优化,可以提高加工效率和产品质量,为企业创造更多的价值。
五轴加工中心数控编程技巧探究
( 太原科技大学 机械工程学院, 太原 030024 )
*
摘要:基于微分几何理论, 对复杂曲面环形刀无干涉刀具路径生成算法进行研究 , 对复杂曲面进行曲 在此基础上建立环形刀五轴加工模型, 进行走刀步长、 加工行距和相邻刀触点等的计算, 并 面划分, 提出通过选择最佳刀具尺寸和改变刀具姿态进行干涉避免的方法 。 与其它环形刀刀具路径生成算 法相比, 本文提出的算法具有更高的准确性和可靠性 。 关键词:复杂曲面; 环形刀; 刀具路径; 干涉避免 中图分类号:TP273 文献标识码:A
Research on Gaugingfree Cutter Path Generation Technology of Complex Surfaces ZENG Zhiying,JIA Yuqin,YUAN Jinpeng,LI Kun,MIN Xuexi ( Sch. of Electromechanic,Taiyuan Univ. of Science & Technology,Taiyuan 030024 ,China) Abstract: Based on the theory of differential geometry ,the fiveaxis machining gaugingfree cutter path generation algorithm of the toroidal Cutter is researched. And fiveaxis machining model of the toroidal Cutter is built,the calculation of feeding step length,machining interval and adjacent cutter contact points etc. is done based on the division of complex surfaces. Besides,the w ay of avoid tool interfere is presented by selecting optimum tool sizes and changing tool posture. Comparing w ith other algorithms, the proposed algorithm in this paper is more precise and reliable. Key words: complex surface; toroidal cutter; tool path; gaugingfree 免方面, 国内外学者在局部干涉避免方法研究的比 目前, 关于局部干涉判断和处理方法, 可归结 较多, : , 为以下两大类 一是直接距离法 即通过直接计算刀 具表面与曲面之间的距离来判断是否产生干涉并进 4] 。 二是微分几何法, 如文献[ 即采用 行相应调整, 曲率匹配来对刀具的局部干涉进行检查和修正, 文 3, 5] 提出了密切曲率法, 即根据在密切面内刀具 献[ 与曲面曲率的吻合状态来进行局部干涉的检测和处 [6 ] 理; Than Lin 等人则在切触点处平行于刀具进给方 向和垂直于进给方向的两个法截面内, 分别将刀具 的有效切削曲率半径和曲面的有效曲率半径进行比 较, 从而进行局部干涉的判断和处理。 本文通过选 择最佳刀具的尺寸和调整刀具的姿态来避免干涉的 产生。 在复杂曲面的五轴加工中, 由于平头刀几何形 研究利用平头刀生成刀具路径 状简单且容易建模, 7] 的方法比较多, 如文献[ 研究了基于加工带宽评价 8] 文献[ 方法的平头刀五轴加工刀具路径生成方法 , 研究了基于平头刀的等残高自由曲面五轴加工刀具 而关于环形刀生成刀具路径的方法 路径生成技术,
五轴联动加工中心操作与基础编程 第五章 多轴数控加工技术
Q2:P1为(28.284,-28.284,-50) P2为(28.284,28.284,-50) P3为(28.284,0,-25)
五轴定向加工的编程
2.1、前侧表面特性坐标系构建关系 (G68.2)
P1为(0,-28.284,-25)
(a)原点平移
(b)进动角0°变换 (c)盘转角90°(完成)
4
攻螺纹
M4丝锥
500
-8
工序号
进给速度F (mm/min)
400 500 150 350
五轴定向加工的编程
1、各表面特性坐标系构建关系 (G68.1Qn预置)
Q1:P1为(0,-28.284,-25) P2为(10,-28.284,-25) P3为(5,-28.284,-20)
Q3:P1为(28.284,28.284,-50) P2为(-28.284,28.284,-50) P3为(0,28.284,-25)
阶梯孔
Ф17钻头、内孔车 刀
三爪卡盘
托盘 铝 LY12
设备 锯床 数控车床
3
调头,车外圆Ф80、 内孔Ф45
外圆车刀 内孔车刀
三爪卡盘
数控车床
箱体零件五轴定向加工的工艺设计
xx厂
机械加工 工艺过程卡
产品型号 产品名称
工序
工序内容
工序草图
零(部)件图号 零(部)件名称
材料名称
材料牌号
编制
刀具/工具
装夹方法
工序名称 侧面槽孔加工
材料名称
材料牌号
铝
LY12
机床名称
机床型号
双摆台五轴
HZ-5xis
夹具名称
夹具编号
拉杆螺钉
工步
mastercam5轴编程参数
mastercam5轴编程参数
Mastercam是一款广泛应用于数控加工领域的软件,它提供了丰富的功能来支持5轴编程。
在Mastercam中进行5轴编程时,需要考虑以下参数:
1. 机床配置,首先需要设置好机床的参数,包括工作台尺寸、旋转轴的类型(例如旋转/倾斜)、最大转速、最大进给速度等。
2. 刀具路径,确定刀具的路径是5轴编程中的关键步骤。
需要考虑刀具的轨迹、切削方向、切削深度等参数,以确保刀具能够准确地切削工件。
3. 刀具轨迹控制,在5轴编程中,刀具轨迹的控制尤为重要。
需要设置刀具的进给速度、切削速度、切削深度等参数,以确保刀具能够在加工过程中保持稳定的切削状态。
4. 刀具半径补偿,5轴编程中需要考虑刀具半径补偿,以确保刀具能够准确地切削工件轮廓。
需要设置好刀具半径补偿的参数,以确保刀具能够按照预定的轨迹进行切削。
5. 安全平面和初始平面,在5轴编程中,需要设置安全平面和
初始平面的参数,以确保刀具在加工过程中不会与工件或夹具发生
碰撞。
总的来说,5轴编程涉及到多个参数的设置和调整,需要综合
考虑刀具路径、刀具轨迹控制、刀具半径补偿、机床配置等多个方
面的因素。
合理设置这些参数可以有效地提高加工效率和加工质量。
五轴联动加工中心操作与基础编程 第六章 多轴数控加工技术
处理等过程进行评价
4.能针对程序中的错误,分析
5.进行本情境工作学习的总结 出错的可能原因,并提出改进意 见
加工仿真检查的类别
1. CAM软件内嵌的仿真检查功能模块 通常可进行线架形式和3D实体形式的仿真验证检查。实体仿真用 于加工结果的直观检查,而线架仿真用于刀路轨迹的细致分析。
2.第三方开发的专业仿真检查软件
刀路程序的优化与调整
曲面加工NC输出的过滤控制
刀路程序的优化与调整
曲面加工大程序输出的分割控制
1)人工分割 注意程序头尾,重新添加提刀和下刀、加刀长补偿、关 停主轴和冷却液等指令。重复小但易出错。 2)刀路分割 调整刀路加工区间范围。包括深度分解、重构边界或调 整边界余量大小。可能有重复但不易出错。
由CAM软件与机床厂家之外的第三方所开发的仿真软件 可面向CAM编制的NC程序,能检查后置的合理性
3.机床厂家开发的在机仿真检查功能模块 作为功能模块内嵌在数控机床控制软件中的在机仿真检查 大多都只能提供线架形式的仿真,只有使用PC-NC及Windows系 统的机床才有3D实体仿真。 在机仿真与机床的实际运动相配合,真实可信度最高。
方法3:使用平行到曲面五轴刀路方法,刀路切削方式参数参照图示设置。
五轴定向加工的CAM刀路设计
六、前侧矩形槽锥壁面五轴加工的刀路设计。
方法3:使用平行到曲面五轴刀路方法,刀轴控制参数参照图示设置。
综合数控加工及工艺应用
单元六 6.2程序仿真检查及优化
单元学习任务与目标
单元学习任务பைடு நூலகம்
单元学习目标
1.学习基于NC程序的仿真检 1.熟悉基于NC程序仿真检查软
CAM内嵌刀路仿真查错不出的案例之二
三轴联动斜向提刀致撞刀,旧版CAM仿真未检出错误!
ug五轴编程教程
ug五轴编程教程五轴编程是机器人技术中非常重要的一部分,它允许机器人在三个平面上进行运动,并且可以通过旋转来改变工具的方向。
在本教程中,我们将学习如何编写五轴编程来控制机器人的动作。
1. 建立工作坐标系在编程之前,我们需要先建立一个工作坐标系。
这个坐标系可以是机器人手臂能够操作的空间范围。
通常情况下,这个坐标系由机器人的基座、手臂和工具构成。
我们需要确定坐标系的原点,以及三个平面的方向。
2. 设定起始位置机器人需要一个起始位置来开始工作。
这个位置可以根据实际需求来设定,比如机器人手臂的位置、工具的方向等。
起始位置一般由坐标值表示,在编程中使用坐标值来设定起始位置。
3. 确定目标位置在编程中,我们通常需要指定一个目标位置,让机器人移动到这个位置。
目标位置可以是一个具体的坐标值,也可以是一个相对于起始位置的偏移量。
根据实际需求来确定目标位置。
4. 编写运动指令一旦我们确定了起始位置和目标位置,我们就可以开始编写运动指令。
这些指令告诉机器人应该如何移动,以及移动的速度和加速度。
编程语言中通常提供了一些指令来实现这些功能,比如直线插补、圆弧插补等。
5. 调试和优化编写完运动指令后,我们需要对程序进行调试和优化。
这包括检查程序中的错误,修改参数以获得更好的运动效果。
通常情况下,我们可以通过机器人模拟器来模拟程序的运行情况,并进行调试和优化。
总结:五轴编程是一项复杂而重要的任务,它允许机器人在三个平面上进行运动,并进行工具方向的调整。
通过建立工作坐标系、设定起始位置、确定目标位置、编写运动指令以及进行调试和优化,我们可以实现机器人的精确控制。
五轴五联动的编程技巧
五轴五联动的编程技巧五轴五联动编程是指利用五轴数控机床的五个轴,同时进行运动,完成复杂的加工任务。
五轴五联动编程具有以下特点:1.加工效率高:五轴五联动可以同时进行多轴运动,减少刀具空行程,提高加工效率。
2.加工精度高:五轴五联动可以实现刀具与工件在任意位置的相对运动,提高加工精度。
3.加工范围大:五轴五联动可以加工复杂形状的工件,扩大加工范围。
五轴五联动编程需要考虑以下因素:1.工件形状:工件形状复杂程度决定了五轴五联动编程的难度。
2.刀具选择:刀具的形状和尺寸决定了五轴五联动加工的效果。
3.编程方法:五轴五联动编程方法多种多样,需要根据具体情况选择合适的方法。
五轴五联动编程技巧主要包括以下几点:1.合理选择工艺路线:工艺路线的合理性直接影响五轴五联动加工的效率和精度。
在选择工艺路线时,需要考虑工件的形状、尺寸、材料等因素。
2.正确使用刀具:刀具的正确使用是五轴五联动加工成功的关键。
在使用刀具时,需要注意刀具的形状、尺寸、硬度等因素。
3.熟练使用编程软件:五轴五联动编程需要使用专用的编程软件。
在使用编程软件时,需要熟悉软件的操作方法和功能。
以下是一些五轴五联动编程的常用技巧:1.使用虚拟坐标系:虚拟坐标系可以简化五轴五联动编程的复杂性。
在使用虚拟坐标系时,需要注意虚拟坐标系与实际坐标系之间的转换关系。
2.使用插补功能:插补功能可以自动生成刀具轨迹。
在使用插补功能时,需要注意插补方法的选择。
3.使用参数化编程:参数化编程可以提高五轴五联动编程的灵活性。
在使用参数化编程时,需要注意参数的定义和使用。
五轴加工中心加工球类带凸台的编程方法
五轴加工中心加工球类带凸台的编程方法
五轴加工中心在加工球类带凸台时,可以通过以下编程方法实现:
1. 定义工件坐标系:首先,需要定义工件坐标系,即球心的坐标以及球的半径等信息。
根据球心坐标和球半径,可以确定球与刀具刀尖的相对位置和距离。
2. 定义刀具坐标系:在五轴加工中心中,刀具坐标系是相对于工件坐标系的坐标系。
刀具坐标系确定了刀具在工件上的位置和姿态。
3. 切削轨迹规划:根据球的形状和凸台的形状,可以确定刀具在球表面的切削路径。
可以使用曲面加工算法来生成刀具的切削轨迹。
同时,还要考虑刀具的刀径补偿和修边等因素。
4. 编写五轴刀具路径程序:根据切削轨迹规划的结果,编写五轴刀具路径程序。
路径程序中需要包含刀具的坐标变换和切削参数等信息。
5. 模拟和调试:在编写好路径程序后,可以使用模拟软件对刀具路径进行模拟和调试。
通过模拟可以检查刀具路径是否正确,并可以预先发现潜在的干涉问题。
6. 加工实施:将调试好的路径程序加载到五轴加工中心上,进行实际的加工操作。
需要注意的是,在五轴加工中心上加工球类带凸台时,需要考虑切削力和切削热的影响,以避免对工件和刀具造成损害。
此外,还需要合理选择刀具和加工参数,以获得更好的加工效果。
五轴cnc操作方法
五轴cnc操作方法
五轴CNC操作方法要点如下:
1. 首先,确保操作者对CNC机床的基本构造、操作面板和操作软件有一定的了解和熟悉。
2. 确定加工任务和工件尺寸,根据工艺要求编写加工程序。
3. 打开CNC操作软件,导入或手动输入加工程序。
4. 在CNC操作软件中对加工程序进行编辑和优化,如调整切削速度、进给速度、切削路径等。
5. 设置刀具和工件的坐标系,确保刀具和工件的零点正确。
6. 将刀具安装在主轴上,确保刀具夹紧牢固并没有松动。
7. 将工件固定在工作台上,确保工件牢固并没有晃动。
8. 检查CNC机床的各项参数设置是否正确,如机床坐标系、刀具长度补偿、刀具半径补偿、安全距离等。
9. 启动CNC机床,初始化机床,并进行手动操作校对机床的各轴运动。
10. 进行自动运行模式,CNC机床按照加工程序中的指令进行自动加工。
11. 在加工过程中,及时观察机床各轴的运动状态和加工质量,如有异常情况及时停机检查并进行必要的调整。
12. 加工完成后,关闭CNC机床,保存加工程序和相关参数设置。
以上是五轴CNC操作方法的基本要点,具体操作还需要根据具体的机床型号和加工任务而定。
五轴说明书(编程部分)
第二章编程篇2.1 准备功能G代码的种类准备功能G代码及后数字表示,规定其所在的程序的意义。
G代码有一下两种类型:(例)G01和G00是同组的模态G代码G01 X______;Z__________; G01有效X__________; G01有效Z__________; G00有效注:具体的系统参数请参考系统参数表G代码及功能表U、V、W分别和 A、B、C 同义,同时使用 A 和 U 或 B 和 V 等会产生错误(也就是一行中用了两次 A)。
在 U、V、W 代码的描述中没有指定它们在同一程序行使用的次数,但 A、B、C 代码的描述决定了他们只能使用一次。
2.1.1快速直线移动 - G00(1)对于快速直线移动,程序 G00 X__ Y__ Z__ A__ C__ 中的所有功能字,除了至少选用其中的一个外其它都为可选,如果当前移动模式为G00那么G00也是可选的,刀具可以以协调线性移动的方式以最大进给到达目的点,执行G00命令不会有切削动作发生。
(2)如果执行了G16命令设置了极坐标原点,在极坐标中使用半径和角度表示目的地,也可以使用G00 X__ Y__控制快速直线移动,X__是目的地相对于极坐标原点的半径,Y__则是目的地与极坐标原点连线与3点钟方向逆时针方向的夹角(也就是通常用的四象限标准)。
执行 G16 时的当前点坐标就是极坐标原点。
如果在程序中省略了所有的轴功能字将会产生错误。
如果启用了刀具半径补偿,刀具的移动将与上面所描述的不同(见刀具补偿)。
如果程序在同一行有 G53 命令,刀具的移动也同与上述不同(见绝对坐标系)。
2.1.2 以进给直线切削– G01(1)对于以进给直线切削来说,程序G01 X__ Y__ Z__ A__ C__中的所有功能字,除了必须至少使用的之外其它的轴功能字都为可选。
如果当前移动模式为G01,那么G01也是可选的,刀具将以协调线形移动的方式以当前进给移动到目的地。
数控五轴xza方向的圆弧编程
数控五轴xza方向的圆弧编程摘要:一、前言二、数控五轴xza 方向的圆弧编程介绍三、编程方法四、编程实例五、总结正文:一、前言在现代制造业中,数控技术已经成为了不可或缺的一部分。
在数控加工中,五轴数控机床由于其高精度、高效率的特点被广泛应用。
在五轴数控机床中,xza 方向的圆弧编程是一种常见的编程方式,它能够实现对复杂形状零件的加工。
本文将详细介绍数控五轴xza 方向的圆弧编程。
二、数控五轴xza 方向的圆弧编程介绍数控五轴xza 方向的圆弧编程是指在五轴数控机床上,通过编写程序,控制刀具沿x、z、a 三个轴向进行圆弧运动,以实现对工件的加工。
这种编程方式能够实现对复杂形状零件的加工,如螺旋桨、叶片等。
与传统的数控编程相比,五轴xza 方向的圆弧编程需要更高的编程技巧和经验。
三、编程方法数控五轴xza 方向的圆弧编程主要采用G02 和G03 两个指令。
G02 指令用于顺时针圆弧运动,G03 指令用于逆时针圆弧运动。
在编写程序时,需要根据零件的形状和加工要求,选择合适的指令。
编程时,还需要考虑刀具的半径补偿和长度补偿。
半径补偿用于补偿刀具直径引起的加工误差,长度补偿用于补偿刀具磨损引起的加工误差。
在编写程序时,需要根据刀具的实际参数进行设置。
四、编程实例下面以一个简单的数控五轴xza 方向的圆弧编程实例进行说明。
假设我们要加工一个直径为100mm、高度为50mm 的圆柱形零件,刀具的直径为20mm。
1.首先,开启数控机床,并设置好刀具的半径补偿和长度补偿。
2.编写G00 指令,将刀具移至加工起点。
3.编写G02 指令,进行顺时针圆弧运动,加工直径为100mm 的圆弧。
4.编写G01 指令,进行直线运动,加工高度为50mm 的部分。
5.编写G02 指令,进行逆时针圆弧运动,加工直径为100mm 的圆弧。
6.编写G00 指令,将刀具移至加工终点。
五、总结数控五轴xza 方向的圆弧编程是一种常见的编程方式,能够实现对复杂形状零件的加工。
五轴数控编程教学-最新教育资料
五轴数控编程教学一、五轴数控铣削刀具轨迹在利用CAM软件进行五轴数控铣削刀具轨迹编制时,主要内容包括刀具轴矢量控制、轨迹驱动方式、进退刀处理、五轴数控机床后处理与五坐标机床加工仿真模拟等方面的工作。
由于五轴加工时产品的复杂性和刀具轴控制的灵活性和多样性,导致五坐标联动加工编程的难度和复杂性较大。
一般CAM软件都提供五轴铣削数控编程功能,其主要包括(1)旋转四轴:多用于带旋转工作台或配备绕X、Y轴的旋转台的的四轴加工;如对外圆上的槽或型腔进行加工;(2)五轴底刃铣削:用于铣刀的底刃对空间曲面进行加工,避免传统球头刀的加工,此时需要对刀轴矢量进行合理的控制;(3)侧刃五轴:利用铣刀的侧刃对空间的曲面进行加工,避免球头刀的R切削,能大幅度提高曲面粗精加工的效率;(4)五轴顺序铣削与五面体加工:多用于铣削工步内容比较多的多面体加工,如立卧转换五面体加工中心可一次加工产品上的五个面或内外腔的场合,多用于工序的复合化加工;(5)曲线五轴:对空间的曲面曲线进行五轴曲线加工;(6)五轴钻孔:对空间的孔进行钻孔加工,多用于孔的位置不再三个基准平面上比较特殊的场合,如圆锥面上的孔或产品上孔位的轴线方向变化的场合。
四轴五轴加工的基础是理解刀具轴的矢量变化。
四轴五轴加工的关键技术之一是刀具轴的矢量(刀具轴的轴线矢量)在空间是如何发生变化的,而刀具轴的矢量变化是通过摆动工作台或主轴的摆动来实现的。
对于矢量不发生变化的固定轴铣削场合,一般用三轴铣削即可加工出产品,五轴加工关键就是通过控制刀具轴矢量在空间位置的不断变化或使刀具轴的矢量与机床原始坐标系构成空间某个角度,利用铣刀的侧刃或底刃切削加工来完成。
刀具轴的矢量变化控制一般有固定矢量、曲面法线、固定点、直线导动、直纹面导动、刀具轨迹投影、点位与任意矢量连续插补等方式。
UnigraphicsNX软件在刀具轴矢量控制方面表现得更加灵活,尤其是其提供的插补刀具轴矢量控制和顺序铣削编程功能能够使得用户很轻松得完成所期望的五坐标联动铣削刀具轨迹目标。
五轴数控编程基础
五轴机床结构简介: 单转台单摆
头
1、结构:单转台 单摆头五轴旋转轴 B为摆头,旋转平 面为ZX平面;旋转 轴C为转台,旋转 平面为XY平面。
2、特点:加工过 程中工作台只旋转 不摆动,主轴只在 一个旋转平面内摆 动,加工特点介于 双转台和双摆头之 间。
五轴机床结构简介: 双摆头
1、结构:双摆头五轴两 个旋转轴均属摆头类,B 轴旋转平面为ZX平面,C 轴旋转平面为XY平面。 两个旋转轴结合为一个 整体构成双摆头结构。 2、特点:加工过程中工 作台不旋转或摆动,工 件固定在工作台上,加 工过程中静止不动。适 合加工体积大、重量重 的工件;但因主轴在加 工过程中摆动,所以刚 性较差,加工切削量较 小。由于自身结构特点, 加工范围小。
在UG软件上,编制零件加工程序 测量机床两旋转中心坐标值,并输入机床 零件安装在机床上,测量G54,并设定 程序导入机床加工 优点:零件在机床上安装位置可以任意改变,
而不影响程序。使用三维刀具补偿功能。 缺点:机床加工坐标与程序中坐标值不对应。
1、结构:两个旋转轴均 属转台类,B轴旋转平面 为YZ平面,C轴旋转平面 为XY平面。一般两个旋转 轴结合为一个整体构成双 转台结构,放置在工作台 面上。( 3+2轴 ) 2、特点:加工过程中工 作台旋转并摆动,可加工 工件的尺寸受转台尺寸的 限制,适合加工体积小、 重量轻的工件;主轴始终 为竖直方向,刚性比较好, 可以进行切削量较大的加 工。(电极、鞋模)
3、存在多个刀路时,各刀路间衔接处,刀轴矢量 应平滑过渡;
4、在编程中使用的各种方法应该能在数学角度有 解。
(d)
(e)
(f)
4.多轴加工中工件定位与机床的 关系
1、了解机床各部件之间的位置关系 2、确定工件坐标系原点与旋转轴的位置关
加工中心五轴UG编程入门
高速铣削加工与编程、前言数控高速切削制造技术促进了机械冷加工制造业的飞速发展,革新了产品设计概念,如通过采用整体件加工取代零部件的分项制造装配,提高了加工效率和产品质量,缩短了产品制造周期。
高速切削加速了汽车、模具、航空、航天、光学、精密机械等产品的更新换代,加速了制造技术与装备的升级,推动了企业技术进步。
但目前国内存在相当一部分高速机床因各方面的原因并没有达到理想的效果,如刀具配置跟不上而低速使用,高速电主轴因长期受重载荷或使用不当造成寿命低下,企业高速切削工艺参数库及CAD\CAM高速编程软件包造成高速切削应用不是很好,高速切削工艺流程与传统的工艺流程没有有机结合,没有充分发挥高速切削加工变形小、加工效率高、定位装夹少的优势。
高速铣削机床的特点,采用主轴运动结构实现载荷的平稳,减小工作台由于运动的惯性,尤其是当工作台承载较大时,工作台本身和工件的运动载荷对高速切削极容易引起冲击,机床结构的新颖性对高速切削有着重要的影响,传统机床依靠工作台移动实现机床的XY方向的移动不是很适合高速切削。
高速机床有瑞士Mikron公司VCP710、美国Cincinnati公司HyperMach五轴加工中心、日本Mazak公司SMM-2500UHS、德国Roders公司RFM1000、意大利FIDIA公司KR214六坐标加工中心、FIDIA公司D218五坐标加工中心等,其主轴转速及工作进给如表1所示。
一般情况下,高速切削其切削速度比常规速度高出5~10倍,其材料的去除率是常规切削的3~5倍以上。
对于铝合金铣削可达到1100m/min以上,铸铁可到700m/min,钢材可到380m/min以上,钻削200~1200m/min,磨削150~360m/min。
如图1所示的是采用FIDIA KR214五坐标高速铣削加工中心机床及机床验收标准试切产品示意图。
二、高速铣削刀具刀柄1.高速铣削刀柄由于高速切削时,主轴、刀柄及刀具在高速旋转情况下,较小的偏心就会产生较大的离心力,由振动引起产品的质量、降低主轴和刀具的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导读:本辑归纳了五轴加工中心后置处理,五轴加工中心静刚度分析与结构优化,复杂曲面 的五轴加工无干涉刀具路径生成技术研究,大型水轮机转轮叶片的五轴加工技术,五轴加工 中心静刚度分析与结构优化。
中国学术期刊文辑(2013)
目录
一、理论篇 复杂曲面零件五轴加工刀轴整体优化方法 1 高动态五轴加工中心 BarbaraSchulz 12 高速卧式五轴加工中心主机结构的选型设计 14 基于 UG 的螺旋叶片数控五轴加工 17 基于多体系统理论的五轴加工中心几何误差建模李欢玲 20 汽车玻璃钢化风栅成形器五轴加工刀轴矢量插值 24 汽轮机叶片五轴加工编程与仿真研究 29 汽轮机叶片五轴加工编程与仿真研究章泳健 34 浅析五轴加工异形管连接器 39 浅析五轴加工中心数控编程技巧 42 人头模型的逆向造型设计及其五轴加工 45 实现低成本五轴加工的秘诀嵌入五轴工作台 47 矢量化编程使航空航天领域的五轴加工更便捷 49 二、发展篇 数控五轴加工余量问题 53 五轴加工不同点详述 54 五轴加工超差故障一例分析 56 五轴加工刀具路径生成的有效加工域规划方法 58 五轴加工模具制造的理想方式 68 五轴加工中非线性误差的检测和处理方法 70 五轴加工中心后置处理与虚拟仿真的研究 75 五轴加工中心任意点旋转坐标的计算 77 西门子 SINUMERIK840D 在五轴加工中的应用 DirkRaben 79 虚拟环境下五轴加工中心的建模技术研究 82 一种五轴加工中心主轴摆动消隙方法研究 87 应用虚拟制造技术开发五轴加工中心 92 直驱式高速龙门五轴加工中心横梁的设计 97
航 空 学 报 Acta Aeronautica et Astronautica Sinica http:/buaa.edu.cn
doi:10.7527/S1000-6893.2013.0242
Jun.25 2013 Vol.34 No.6 1452-1462 ISSN 1000-6893 CN 11-1929/V
复杂曲面零件五轴加工刀轴整体优化方法
王晶,张定华* ,罗明,吴宝海
西北工业大学 现代设计与集成制造技术教育部重点实验室 ,陕西 西安 710072
摘 要:针对复杂曲面零件五轴加工中刀轴矢量变化剧烈、严重影响工件表面加工质量 的 问 题,提 出 一 种 基 于 临 界 约 束 的五轴刀轴矢量整体优化方法。首先,构造了给定切触点处所有可行摆刀平面,并在摆刀平面内根据临界 约 束 计 算 出 临 界刀轴矢量,在获得临界刀轴矢量的基础上,对其进行平面 映 射,建 立 了 刀 轴 摆 动 的 初 始 可 行 域 ;其 次,通 过 对 初 始 可 行 域进行均匀离散,根据离散点之间相对位置关系构造邻接矩 阵,并 结 合 最 短 路 径 搜 索 算 法 获 得 了 初 始 参 考 刀 轴 ,从 而 构 造了新的刀轴摆动可行域;最后,建立当前切削行内无干涉且 相 邻 刀 轴 变 化 最 小 的 刀 轴 矢 量 优 化 模 型 ,实 现 自 由 曲 面 五 轴加工无干涉刀轴矢量的光滑控制。两种自由曲面叶轮的加 工 算 例 分 析 表 明,采 用 本 文 方 法 获 得 的 刀 轴 矢 量 可 以 明 显 改 善 机 床 的 运 动 性 能 ,避 免 了 刀 具 干 涉 的 产 生 ,可 提 高 复 杂 曲 面 零 件 的 加 工 质 量 与 效 率 。
关 键 词 :复 杂 曲 面 ;临 界 约 束 ;刀 轴 矢 量 优 化 ;五 轴 加 工 ;机 床
中 图 分 类 号 :V261;TP391.7 文 献 标 识 码 :A 文 章 编 号 :1000-6893(2013)06-1452-11
由于五轴数控加工中机床自由度的增加使刀 具具有更高的可 达 性,因 此 常 被 用 于 复 杂 曲 面 类 零件的加工 中。 然 而,自 由 度 的 增 加 导 致 刀 具 姿 态控制复杂度提 高,在 一 定 程 度 上 限 制 了 它 在 实 际加工中的 应 用。 同 时,加 工 过 程 中 刀 轴 矢 量 的 剧 烈 变 化 ,还 会 在 零 件 表 面 产 生 切 痕 ,甚 至 破 坏 零 件表面[1-2],严重 影 响 加 工 质 量。 此 外,大 的 角 度 变化还可能超出机床转动角速度与角加速度的限 制,降低加工效率与表面加工质量 。 [2] 因此,研 究 复杂曲面零件五轴加工中的刀轴整体优化方法具 有重要的理论意义和应用价值。
刀轴矢量,首先通 过 典 型 位 置 上 符 合 机 床 运 动 学 特性的刀轴矢量,结 合 四 元 数 插 值 算 法 进 行 中 间 刀轴矢量 的 计 算,最 终 进 行 碰 撞 干 涉 检 查。Luo 等[5]将该方法 进 行 了 改 进,并 在 叶 片 多 轴 加 工 刀 轴光顺控制中进行了应用。但该方法的实现需要 对得到的切削行上每个刀位点处刀轴进行干涉判 断与 修 正,大 大 增 加 了 计 算 量。 第 2 种 思 路 是 首 先在离散的刀位点 处 计 算 刀 具 的 无 干 涉 方 向 (即 可 达 方 向 锥 ),然 后 在 可 达 方 向 锥 中 选 择 出 可 行 方 向锥,再从中 规 划 刀 轴 矢 量 。 [6] 这 种 方 法 的 难 点 在于刀具可行空间的计算,目前主要采用 C 空间 法 和 [2,4,7] 可视锥法 实 [8-11] 现 。 在 可 行 空 间 中 沿 刀 具进给方向实现 刀 轴 光 顺 控 制 方 面,也 有 不 少 学 者提出 相 应 方 法。 Wang 和 Tang[2]通 过 计 算 每 一切触点处在角速度限制条件下刀轴可以达到的 范围和该点的无干涉范围之间的交集来确定五轴
针对上述问题,国 内 外 众 多 学 者 进 行 了 大 量 的 研 究 工 作 ,主 要 有 两 种 方 法 ,一 种 是 先 生 成 刀 轴 矢量再进行调 整[3],另 一 种 是 在 刀 轴 可 行 空 间 中 规划刀轴矢量 。 [4] 基于第1种思路,Ho等 提 [1] 出 了刀轴光顺方法(TOS方法),为获 得 变 化 均 匀 的