国科大材料化学复习资料
国科大材料化学复习资料
第二章晶体学终极重点:1、晶体特征,晶体与非晶体区别 2、晶向与晶面指数确定步骤1.晶体的性能特征:均一性,各向异性,自限性,对称性,最小内能性;2.对称操作与对称要素:对称轴,对称面,对称中心,倒转轴;3.晶向指数与晶面指数:确定步骤;4.球体的堆积:六方,面心立方,体心立方5.鲍林规则;6.各种典型晶体构型;7.硅酸盐晶体结构与实例:岛状,链状,层状,架状;8.同质多晶现象:可逆转变,不可逆转变,重建型转变,位移型转变。
1.晶体的性能特征:均一性,各向异性,自限性,对称性,最小内能性(1)晶体的基本特征晶体的性能特征结晶均一性:在晶体内部任意部位上具有相同的性质;各向异性:在晶体不同方向上表现出的性质差异;自限性:能够自发形成封闭的凸几何多面体外形的特性;对称性:晶体中的相同部分(晶面,晶棱,等等)以及晶体的性质能够在不同方向或位置上有规律地重复;最小内能性:在相同的热力学条件下,晶体与同组成的气体、液体及非晶态固体相比具有最小内能,即最为稳定。
(2)对称操作与对称要素:对称操作:使晶体的点阵结构和性质经过一定程序后能够完全复原的几何操作;对称要素:实施对称操作所依赖的几何要素(点,线,面等);1.旋转操作与对称轴:一个晶体如能沿着某一轴线旋转360 / n(n = 1, 2, 3, 4, 6)后使晶体位置完全回复原状,则该晶体具有n 重对称轴;2.反映操作和对称面:一个晶体中如果存在某一个平面,使平面两边进行反映操作,而令晶体复原,则这个平面称为对称面;3.反演操作和对称中心:一个晶体中央在某一个几何点,使晶体外形所有晶面上各点通过该几何点延伸到相反方向相等距离时,能够使晶体复原的操作。
该几何点称为对称中心。
4.旋转反演操作和对称反轴:旋转之后进行反演使晶体复原的操作;只有4¯是新的独立对称要素。
(3)晶向指数与晶面指数:确定步骤晶向指数:以晶胞的某一阵点O为原点,过原点O的晶轴为坐标轴x,y,z,以晶胞点阵矢量的长度作为坐标轴的长度单位;过原点O作一直线OP,使其平行于待定晶向;在直线OP上选取距原点O最近的一个阵点P,确定P点的3个坐标值;将这3个坐标值化为最小整数u,v,w,加以方括号,[ u v w ]即为待定晶向的晶向指数。
《材料化学》考试试题重点
1、什么是材料化学?其主要特点是什么?答:材料化学是与材料相关的化学学科的一个分支,是与材料的结构、性质、制备及应用相关的化学。
材料化学的主要特点是跨学科性和实践性2、一些物理量在元素周期表中规律,答:电离势同一周期的主族元素从左到右增大,稀有气体最大;同一周期的副族元素从左到右略有增加。
同一主族,从上到下减小;同一副族从上到下呈无规则变化。
电子亲和势同周期从左到右大体上增加,同族元素变化不大。
电负性同周期从左到右变大,同主族从上到下减小。
材料中的结合键有哪几种?各自的特点如何?对材料的特性有何影响?3、原子间结合键有哪些,怎么分类?答:依据键的强弱可分为主价键和次价键。
主价键是指两个或多个原子之间通过电子转移或电子共享而形成的键合,即化学键;主要包括离子键、共价键和金属键。
次价键如范德华键是一种弱的键合力,是物理键,氢键也是次价键。
4、谈谈化学锈蚀和电化学锈蚀的各自特点和机理。
答:化学锈蚀是指金属与非电解质接触时,介质中的分子被金属表面所吸附并分解成原子,然后与金属原子化合,生成锈蚀产物。
可以利用致密氧化膜的保护特性。
电化学锈蚀原理与金属原电池的原理相同。
即当两种金属在电解质溶液中构成原电池时,作为原电池负极的金属就会被锈蚀。
在金属材料上外加较活泼的金属作为阳极,而金属材料作为阴极,电化学腐蚀时阳极被腐蚀金属材料主体得以保护。
5、如何防止或减轻高分子材料的老化?答:在制造成品时通常都要加入适当的抗氧化剂和光稳定剂(光屏蔽剂、紫外线吸收剂、猝灭剂)可提高其抗氧化能力。
6、试解释为何铝材不易生锈,而铁则较易生锈?答:铝在空气中可以生成致密得氧化物膜,阻止与空气得进一步接触,所以不易生锈;铁在空气中生成疏松得氧化物膜,不能隔绝空气,特别是铁在潮湿得空气中能够发生电化学反应,因此加大了锈蚀,所以铁较易生锈。
7、谈谈热膨胀系数相关知识。
答:热膨胀系数分线膨胀系数和体膨胀系数。
不同材料的膨胀系数不同。
金属和无机非金属的膨胀系数较小,聚合物材料的膨胀系数较大。
材料化学期末复习
第一章一、名词解释:1.材料:材料(一般)是指人类社会所能够接受的、可以经济地制造有用器件的(固体)物质。
2.材料科学:是研究材料的组织结构、性质、生产流程和使用效能,以及他们之间相互关系的学科。
3.材料科学与工程:材料科学是一门与工程密不可分的应用科学,材料科学与材料工程合起来称为“材料科学与工程”。
4.材料四要素:组成、结构、工艺、性能。
5.复合材料:复合材料是由两种或两种以上物理和化学性质不同的物质组合成的一种多相固体材料。
二、什么是材料化学?其主要特点是什么?材料化学是从化学的角度研究材料设计、制备、组成、结构、表征、性质和应用的一门科学。
跨学科性和实践性。
三、材料与化学试剂的主要区别是什么?化学试剂在使用过程中通常被消耗,并转化为别的物质;材料一般可以重复、持续使用,除了正常损耗,它是不会不可逆地转变成为别的物质。
四、观察一只灯泡,列举出制造灯泡所需要的材料。
白炽灯泡主要由灯丝、玻璃壳体、灯头等几部分组成。
五、材料按其化学组成和结构可以分为哪几类?金属材料、无机非金属材料、高分子材料、复合材料。
六、简述材料化学的主要内容。
材料化学是关于材料的结构、性能、制备和应用的化学。
根据化学理论,通过一定的合成和制备工艺,可获得具有特定组成、结构和性能的材料,进而产生相应的用途。
◆第二章一、名词解释1.电负性:是元素的原子在化合物中吸引电子能力的标度。
2.晶体:由原子、分子或离子等微粒在空间按一定规律、周期性地重复排列的固体物质称为晶体。
3.晶格:晶体中质点中心用直线连起来构成的空间格架。
4.晶胞:构成晶格最基本的几何单元。
5.晶面间距:具有相同密勒指数的两个相邻平行晶面之间的距离称为镜面间距。
二、原子间的结合健共有几种?各自特点如何?三、范德华力的来源有哪些?①取向力。
当极性分子相互接近时,它们的固有偶极相互吸引产生分子间的作用力;②诱导力。
当极性分子与非极性分子相互接近时,非极性分子在极性分子固有偶极作用下,发生极化,产生诱导偶极,然后诱导偶极与固有偶极相互吸引而产生分子间的作用力;③色散力。
材料化学复习材料(doc 6页)
材料化学复习材料(doc 6页)材料化学一名词解释1 材料:材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质。
2 智能材料:性能随着时间和空间条件的变化而变化得智能材料的适应环境,接受外界环境的调节,且不需要靠计算机和电子技术,仅靠材料本身的性质来实现自我调节,自我诊断,自我复原。
3 设计型材料: 就是化学家和材料科学家采用新的物理,化学方法,根据实际需要设计出具有特殊性能的材料。
4 材料化学:是研究材料的制备,组成,结构,性质及其应用的一门科学。
5 结构材料: 是指具有抵抗外场作用而保持自己的形状,结构不变的优良力学性能(强度和韧性等),用于结构目的的材料。
6 功能材料:是具有优良的电学,磁学,光学,力学,热学,声学,化学和生物学功能及其相互转化的功能,被用于非结构目的的高技术材料。
7 复合材料:是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
8 晶体:是原子(离子)在三维空间中有规律的周期性排列而成的,其结构特点是长程有序。
9 点缺陷:发生在晶格中一个原子尺寸范围内的一类缺陷。
10 线缺陷:缺陷只在一个方向上延伸,或称一有各种敏感性的陶瓷材料。
21 结构陶瓷:由单一或复合的氧化物或非氧化物组成,如单由Al2O3、ZrO2、SiC、Si3N4,或相互复合,或与碳纤维结合而成。
22 氧化铝陶瓷:是一种以a-AL2O3为主晶相的陶瓷材料,其AL2O3含量一般在75%~99%。
23 非氧化物陶瓷:由碳化物,硅化物和硼化物等制造的陶瓷的总称。
24 功能陶瓷:具有电,光,磁,化学和生物特性,且具有相互转换功能的陶瓷。
25 超导材料:具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。
26 腐蚀:材料(通常指金属)与环境间的物理-化学相互作用,其结果是使材料的性能发生变化,并常可导致材料、环境或由它们作为组成部分的技术体系的功能受损伤。
27 化学腐蚀:材料与周围介质直接发生化学反应,但反应过程中不产生电流的腐蚀过程28 电化学腐蚀:金属与离子导电性介质发生电化学反应,反应过程中伴随有电流的产生的腐蚀过程。
材料化学复习归纳
材料化学复习提纲第一章晶体学基础一、名词解释1.晶体:是一种内部粒子(原子、分子、离子)或粒子集团在空间按一定规律周期性重复排列而成的固体。
2.周期性:一定数量和种类的粒子(或粒子集团)在空间排列时,在一定的方向上,相隔一定的距离重复出现的现象。
3.晶胞:空间格子将晶体结构截成的一个个大小、形状相等,包含等同内容的基本单位。
4.同质多晶:同一化合物存在两种或两种以上的结构型式。
5.类质同晶:在两个或多个化合物(或单质)中,如果化学式相似,晶体结构型式相同,并能相互置换。
6.晶体衍射:晶体中各原子散射的电磁波互相干涉、互相叠加,从而在某一方向得到加强的现象。
7.系统消光:由于晶胞中某些特定位置上的原子散射的X射线间相互干涉,使得许多衍射点有规律的系统的不出现现象。
二、填空题1.点阵是反映结构周期性的几何形式,平移群反映结构周期性的代数形式。
2.构成点阵的两个必要条件为点数无限多和各点所处的环境完全相同。
3.晶体的缺陷按几何形式分为点缺陷、线缺陷、面缺陷和体缺陷。
三、简答题1.点阵和平移群之间的关系?答:连接任意两点阵点所得向量必属于平移群;属于平移群的任一向量的一端落在与其对应点阵中任一点阵点时,其另一端落在此点阵的另一点阵点上。
ue方程与Bragg方程区别与联系。
答:1)都是反映X射线在晶体中发生衍射在衍射方向这一要素上的客观规律,都是联系衍射方向与晶体结构参数的重要方程。
2)它们的本质上是一样的,但表达方式不同,前者是基本的关系式,后者在形式上更为简单。
3)Laue方程多用于单晶X射线衍射,Bragg方程则为多晶粉末法提供了理论基础。
3.物相鉴定的主要步骤包括?P59答:1)收集衍射数据,分析计算图谱,得到一组d(hkl)/n---I/I(max)数据;2)选取8个强度最大的衍射对应的d(hkl),利用索引查找与实验数据相近的卡片号码;3)按照卡片号码找到相应的卡片,将卡片值与实验值一一对照确定物相。
材料化学考试重点整理
材料化学考试重点整理第⼀章1、材料的基本概念材料是⼈类赖以⽣存的基础,材料的发展和进步伴随着⼈类⽂明发展和进步的全过程。
材料是国民经济建设,国防建设和⼈民⽣活不可缺少的重要组成部分,是社会现代化的物质基础与先导。
材料,尤其是新材料的研究、开发与应⽤反映着⼀个国家的科学技术与⼯业⽔平。
材料特别是新材料与社会现代化及现代⽂明的关系⼗分密切,新材料对提⾼⼈民⽣活,增加国家安全,提⾼⼯业⽣产率与经济增长提供了物质基础,因此新材料的发展⼗分重要。
材料是⼀切科学技术的物质基础,⽽各种材料的起点主要来源于材料的化学制备和化学改性。
2、什么是材料科学⼯程具有物理学、化学、冶⾦学、⾦属学、陶瓷学、计算数学等多学科交叉与结合的特点,并且具有鲜明的⼯程性。
3、什么是材料化学材料化学在研究开发新材料中的作⽤,就是⽤化学理论和⽅法来研究功能分⼦以及由功能分⼦构筑的材料的结构与功能关系,使⼈们能够设计新型材料,提供的各种化学合成反应和⽅法使⼈们可以获得具有所设计结构的材料。
采⽤新技术和新⼯艺⽅法,合成新物质和新材料,通过化学反应实现各组分在原⼦或分⼦⽔平上的相互转换过程。
涉及材料的制备、组成、结构、性质及其应⽤的⼀门科学。
材料化学既是材料科学的⼀个重要分⽀,也是材料科学的核⼼内容。
同时⼜是化学学科的⼀个组成部分,具有明显的交叉学科、边缘学科的性质。
是材料学专业学⽣的⼀门重要的专业基础知识课程。
4、材料的分类(1)按照材料的使⽤性能:可分为结构材料与功能材料两类结构材料的使⽤性能主要是⼒学性能;功能材料的使⽤性能主要是光、电、磁、热、声等功能性能。
(2)以材料所含的化学物质的不同将材料分为四类:⾦属材料、⾮⾦属材料、⾼分⼦材料及由此三类材料相互组合⽽成的复合材料。
第⼆章1、原⼦结合---键合两种主要类型的原⼦键:⼀次键和⼆次键。
(1)⼀次键的三个主要类型:离⼦键、共价键和⾦属键。
(⼀次键都涉及电⼦的转移,或者是电⼦的共⽤。
)⼀次键通常⽐⼆次键强⼀个数量级以上。
材料化学期末复习基础重点
材料化学期末复习基础重点第八章配合物的结构和性质1配合物的组成形成体配体配位数多齿配体和单齿配体2 配合物的化学式和命名原则3 配合物的价键理论配合物的几何构型内轨配键和外轨配键内轨型配合物和外轨型配合物配位化合物的磁性磁矩与未成对电子之间的关系4 配离子稳定常数及有关计算第十章碱金属和碱土金属元素1 金属单质的性质(金属性强,非常活泼可与许多非金属单质反应。
)2 氢化物的性质受热分解与水反应产生氢气极强的还原剂3 过氧化物含有过氧基的化合物,常见的过氧化钠。
在碱性介质中是强氧化剂,常用作熔矿剂,以使既不溶于水又不溶于酸的矿石被氧化分解为可溶于水的化合物。
与水或稀酸反应与二氧化碳反应放出氧气4 氢氧化物的碱性判断和溶解性变化规律氢氧化物的酸碱性递变规律,用离子势判断。
(不适用于过渡金属)氧化物的酸碱性判断与对应的氢氧化物一致。
5 盐的性质1 晶体类型除Be盐属于共价型晶体外,其余都属于离子晶体。
2 热稳定性各种盐类的热稳定性3 溶解度碱金属、碱土金属离子对应的各种盐类溶解性。
4 镁、钙、钡盐在溶液中的鉴定晶体在水中溶解度相对大小有什么变化规律?对于极化作用很小的离子晶体:小的阳离子与大的阴离子、大的阳离子与小的阴离子组成的离子晶体,溶解度相对较大;小的阳离子和小的阴离子,大的阳离子和大的阴离子组成的离子晶体,溶解度相对较小。
对于极化作用强的离子晶体:离子极化作用越强,在水中溶解度越小。
第十一章卤素和氧族元素卤素1 卤素单质颜色、溶解性,卤素单质(除碘外)有较强的氧化性,与单质反应,与水反应2 卤化氢实验室制备、酸性、还原性3 卤化物的溶解性4 氯的含氧酸及其盐氯的含氧酸、盐的酸性强弱比较:氯的氧化态越高,酸性越强氯的含氧酸、盐的氧化性强弱比较:氯的氧化态越高,氧化性降低解释:氯的氧化态越高,氯原子外层的原子数多,使还原剂不易与氯原子接触,所以高价态的含氧酸氧化性越弱,稳定性越高。
热稳定性比较:氯的氧化态越高,热稳定性增强氧族元素O,S典型的非金属元素,硒和碲是准金属元素。
材料化学期末复习资料
点缺陷在热力学上是稳定的。 离开平衡位置的原子有三个去处 迁移到晶体表面或内表面的正常结点位置上,使晶体内部留下空位,称为肖特基(Schottky)缺陷或 肖特基空位; 挤入点阵的间隙位置,在晶体中同时形成数目相等的空位和间隙原子,则称为弗兰克尔(Frenkel) 缺陷; 跑到其他空位中,使空位消失或使空位移位。
电化学腐蚀 金属表面在介质如潮湿空气、电解质溶液等中,因形成微电池而发生电化学作用而引起的腐蚀称 作电化学腐蚀。 电化学腐蚀的特点是形成腐蚀电池。
形成腐蚀电池具备的条件 首先,有电位差存在。即不同金属或同种金属的不同区域之间存在着电位差。电位差越大,锈蚀越 烈。 二,有电解质溶液,即两极材料共处于相连通的电解质溶液中。 三,具有不同电位的两部分金属之间必须有导线连接或直接接触。
材料性能
材料的耐氧化性、耐有机溶剂性和耐老化性 化学腐蚀 材料表面与非电解质(干燥气、高温气体、非电解质溶液)直接发生化学作用而引起的破坏称为化学腐 蚀。 在化学腐蚀过程中,电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。 化学腐蚀原理比较简单,属于一般的氧化还原反应 可以利用致密氧化膜的保护特性,以改善材料的耐氧化腐蚀性能。
范德华力 分子与分子间的作用力 普遍存在固体、液体、和气体分子间 特点:没有方向性、饱和性 范德华力对材料性能的影响 范德华力对物质的沸点、熔点、气化热、熔化热、溶解度、表面张力、粘度等物理化学性质有决定性 的影响。 对聚合物材料,由于分子链很长,所以即使范德华键很弱,但分子链间范德华力总和还是很大的,聚 合物材料的性质在很大程度上受范德华力的影响。
高分子的溶解 先溶胀,后溶解
耐老化性 老化:高分子材料在加工、储存和使用过程中,由于受热、光照、氧、高能辐射、化学介质、微生物、 潮湿等环境因素影响,逐步发生物理化学性质变化,使性能下降,以致最后丧失使用价值的过程。 老化的基本类型 1. 化学老化 一种不可逆的化学反应,是高分子材料分子结构变化的结果,如塑料的脆化、橡胶的龟裂。 特点:不可逆、不能恢复 主要有:降解、交联 2. 物理老化 玻璃态高分子材料通过小区域链段的布朗运动使其凝聚态结构从非平衡态向平衡态过渡。从而使得材 料的物理、力学性能发生变化的现象。具有可逆性; 密度增加,模量和拉伸强度增加,断裂伸长和冲击强度下降,由塑性转变成脆性。
材料化学期末总结复习
• 强度
典型的应力-应变曲线分析 应力-应变曲线的特征点 弹性极限、屈服强度、极限拉伸强度、断裂应力 相关公式应用:课后思考题(p65)
• 硬度
常用的三种硬度测试方法:布氏、洛氏、维氏 材料结构与硬度的关系: 无机非金属材料、金属材料、高分子材料 提高金属材料硬度的方法:形成固溶体或合金
• 疲劳
第3章 材料的性能
3.3 热性能
• 热容 定压热容 定容热容 • 热膨胀
用势能图解释热膨胀现象及不同材料的热膨胀性能差异
• 热传导
不同材料的热传导源于:
金属:自由电子 无机陶瓷及其他绝缘材料:晶格振动(声子) 半导体材料:电子和声子共同贡献 高分子材料:分子链节及链段运动
第3章 材料的性能
6.6 储氢合金
储氢原理及吸释氢过程:吸氢放热、吸热放氢
第7章 无机非金属材料
7.1 无机非金属材料分类及特点
• 分类 传统(普通)、新型(特种) • 结构特点
多数是离子键和共价键的混合体 组成元素间电负性差越大,离子键比例越高
第7章 无机非金属材料
7.2 水泥
• 水泥:一种水硬性胶凝材料,即一种细磨的无机材料,
• 原子间的键合方式及其特点
金属键、离子键、共价键 氢键、范德华力
第2章 材料的结构
2.2 晶体学基本概念
• 晶体与非晶体的典型区别
晶体:长程有序、短程有序 非晶体:短程有序、长程无序
• 晶格、晶胞、晶格参数、晶系 • 晶向指数和晶面指数 (课后思考题 p44 )
晶向指数:后点坐标与前点坐标相减最小整数
第3章 材料的性能
3.5 磁性能
• 反磁性与顺磁性 • 铁磁性
外磁场去除后,仍保持部分极化状态(磁滞回线) 存在一临界温度点(居里温度),高于此温度, 铁磁性消失而变为正常的顺磁性
材料化学考试试题重点
材料化学考试试题重点 The latest revision on November 22, 20201、什么是材料化学其主要特点是什么答:材料化学是与材料相关的化学学科的一个分支,是与材料的结构、性质、制备及应用相关的化学。
材料化学的主要特点是跨学科性和实践性2、一些物理量在元素周期表中规律,答:电离势同一周期的主族元素从左到右增大,稀有气体最大;同一周期的副族元素从左到右略有增加。
同一主族,从上到下减小;同一副族从上到下呈无规则变化。
电子亲和势同周期从左到右大体上增加,同族元素变化不大。
电负性同周期从左到右变大,同主族从上到下减小。
材料中的结合键有哪几种各自的特点如何对材料的特性有何影响3、原子间结合键有哪些,怎么分类答:依据键的强弱可分为主价键和次价键。
主价键是指两个或多个原子之间通过电子转移或电子共享而形成的键合,即化学键;主要包括离子键、共价键和金属键。
次价键如范德华键是一种弱的键合力,是物理键,氢键也是次价键。
4、谈谈化学锈蚀和电化学锈蚀的各自特点和机理。
答:化学锈蚀是指金属与非电解质接触时,介质中的分子被金属表面所吸附并分解成原子,然后与金属原子化合,生成锈蚀产物。
可以利用致密氧化膜的保护特性。
电化学锈蚀原理与金属原电池的原理相同。
即当两种金属在电解质溶液中构成原电池时,作为原电池负极的金属就会被锈蚀。
在金属材料上外加较活泼的金属作为阳极,而金属材料作为阴极,电化学腐蚀时阳极被腐蚀金属材料主体得以保护。
5、如何防止或减轻高分子材料的老化答:在制造成品时通常都要加入适当的抗氧化剂和光稳定剂(光屏蔽剂、紫外线吸收剂、猝灭剂)可提高其抗氧化能力。
6、试解释为何铝材不易生锈,而铁则较易生锈答:铝在空气中可以生成致密得氧化物膜,阻止与空气得进一步接触,所以不易生锈;铁在空气中生成疏松得氧化物膜,不能隔绝空气,特别是铁在潮湿得空气中能够发生电化学反应,因此加大了锈蚀,所以铁较易生锈。
7、谈谈热膨胀系数相关知识。
材料化学复习提纲
材料化学复习提纲第一章绪论1.根据当今材料发展趋势,可分为五大类:金属材料;非金属材料;高分子材料;复合材料;生物医学材料。
2根据历史发展,材料可分为:第一代,天然材料;第二代,烧炼材料;第三代,合成材料;第四代,设计性材料;第五代,智能材料。
3.材料相关的三个基础学科:固体物理学;固体化学;材料工程学。
4.如何理解材料化学与化学的关系?答:化学是关于物质的组成,结构和性质以及物质转化成其他物质的变化过程的研究,是着眼于原子—分子水平的相互作用;而材料化学是关于材料制备,加工和分析的化学。
5.材料化学的内涵是什么?答:采用新技术和工艺方法制备新材料;材料组成和微观结构的表征;材料性能的测试。
第二章晶体学基础1.晶体结构与非晶结构。
答:晶体是以其内部质点在空间做规则排列,其结构长程和短程均有序;非晶体结构则长程无序,短程有序。
2一些晶体的典型晶体结构类型。
答:面心立方,体心立方,密排立方。
3.晶胞的两个要素:一是晶胞的大小,形式,由晶胞参数确定;二是晶胞中各原子的位置用原子得分数坐标表示。
4晶面角守恒定律:属于同一晶种的晶体,两个对应晶面间的夹角恒定不变。
5晶体的宏观特征和微观特征?答:宏观特征:规则的几何外形(自范性);晶面角守恒;有固定的熔点;物理性质的各向异性。
微观特征:6晶面指数求法,什么晶系可以用四坐标系表示?答: 在所求晶面外取晶胞的某一顶点为原点O,三棱边为三坐标轴x,y,z;以棱长为单位,量出待定晶面在三个坐标轴上的截距;取截距的倒数,并化为最小整数h,k,l并加以()即是。
六方晶系可以用四坐标系表示。
7.如何划分平行六面体格子?答:为确保所截取的平行六面体能够统一,且是最为简单,又能代表整个点阵的几何特性。
有以下三条规定:(1)所选取的平行六面体必须能够反映点阵的宏观对称特性;(2)在满足上述规定的条件下,所选取的平行六面体应具有尽可能多的直角;(3)在满足以上两条规定的条件下,所选取的平行六面体应具有最小的体8。
《材料化学》期末复习资料
《材料化学》期末复习资料1)液体和溶液试样除了可以用红外显微镜或多次衰减全反射(ATR)附件测试外,一般地,液体样品可装在红外液体池里测试。
液体池的种类很多,可以从红外仪器公司直接购买,也可以自己加工制作。
液体池大体可以分为:可拆式液池,固定厚度液池和可变厚度液池。
红外光谱实验室测试有机液体红外光谱,最常用的液池窗片材料是溴化钾和氯化钠。
这两种晶片都是无色透明的。
测试有机液体最适合的窗片材料是溴化钾。
用于水溶液测试的窗片材料必须不溶于水,最常用的是氟化钡晶,其次是氟化钙晶片2)气体试样在玻璃气体池内测定,玻璃气体池两端粘有红外透光的NaCl或KBr窗片,先将气体池抽真空,再注入试样气体即可。
3)固体试样固体样品的测试方法有:常规透射光谱法,显微红外光谱法,ATR光谱法,漫反射光谱法,光声光谱法,高压红外光谱法等。
其中常用的常规透射光谱法制样方法有:压片法、糊状法和薄膜法。
2.能谱仪与波谱仪的比较优点:(1)探测效率高。
(2)灵敏度高。
(3)分析效率高。
(4)能谱仪的结构简单,使用方便,稳定性好。
缺点:(1)分辨率低。
(2)能谱仪的Si(Li)窗口影响对超轻元素的检测。
(3)维护成本高。
3.高分辨电子显微镜(HRTEM)与透射电子显微镜(TEM)存在以下区别:1)成像束:HRTEM为多电子束成像,而 TEM则为单电子束成像。
2)结构要求:HRTEM 对极靴、光阑要求高于 TEM。
3)成像:HRTEM 仅有成像分析,包括一维、二维的晶格像和结构像,而 TEM除了成像分析还可衍射分析。
4)试样要求:HRTEM 试样厚度一般小于 10 nm,可视为弱相位体,即电子束通过试样时振幅几乎无变化,只发生相位改变,而TEM试样厚度通常为50~200 nm。
5)像衬度:HRTEM像衬度主要为相位衬度,而 TEM则主要是振幅衬度。
4.景深焦长的定义意义景深是指像平面固定,在保证像清晰的前提下,物平面沿光轴可以前后移动的最大距离。
材料化学复习资料
材料化学复习资料第一章晶体学基础一.选择1. 下面哪些是同质多晶(BCD )。
A. Fe2O3B. 石墨C. 金刚石D. 石墨烯E. Fe3O42. 下面哪些是类质同晶(AC )。
A. CaSB. TiO2C. NaClD. Fe2O3E. Fe3O43. 点缺陷包括哪些(ABCDE )。
A. 空位B. 杂质原子C. 间隙原子D. 错位原子E. 变价原子4. 晶体缺陷按几何形式分为哪些(ACDE )。
A. 点缺陷B. 杂质缺陷C. 线缺陷D. 面缺陷E. 体缺陷5. 晶体中的点缺陷按形成原因可分为(CDE )。
A. 空位B. 间隙质点C. 本征缺陷或热缺陷D. 非本征缺陷或杂质缺陷E. 非化学计量比缺陷二.名词解释1. 晶体:一种内部粒子(原子、分子和离子)或粒子集团在空间按一定规律周期性重复排列而成的固体。
2. 肖特基缺陷:一对正负离子同时离开其平衡位置而迁移到晶体表面上,在原来的位置形成一对正负离子空位,这种正负离子空位并存的缺陷叫肖特基缺陷。
3. 弗伦克尔缺陷:当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
4. 材料:人类社会所能够接受的经济地制造有用器件的物质(可以用来制造有用的构件、器件或物品的物质)。
5. 空间点阵:表示晶体结构中各类等同点排列规律的几何图形(表示晶体内部结构中质点重复规律的几何图形)。
6. 晶向:空间点阵的结点可以看成是分列在一系列相互平行的直线上,这些直线系称为晶列,同一个格子可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。
7. 晶面:空间点阵的结点可以从各个方向被划分为许多组平行且等距的平面点阵,这些平面点阵所处的平面称为晶面。
8. 点群:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反演轴)的集合。
9. 空间群:是指一个晶体结构中所有对称要素集合。
10. 晶面指标:晶面指标(hkl)是平面点阵面在三个晶轴上的倒易截数之比,它是用来标记一组互相平行且间距相等的平面点阵面与晶轴的取向关系的参数。
材料化学复习复习资料
材料化学复习复习资料材料化学考点1)晶体有七大晶系(立方晶系,正交晶系,单斜晶系,三斜晶系,六方晶系,四方晶系,三方晶系),有14种空间点阵,32种点群,230种空间群。
2)五种平面点阵:正方,矩形,矩形带心,六方a=b,夹角为120,平行四边形a≠b,夹角≠90。
3)宏观对称元素哪些是独立的:有八个,1.对称中心(I),对称操作为倒反,等同操作为一次反轴。
2.镜面(m),对称操作为反映M,等同操作为二次反轴。
3.一次旋转轴,对称操作为L(o)。
4.二次旋转轴,对称操作为L(180)。
5.三次旋转轴,对称操作为L(120)。
6.四次旋转轴,对称操作为L(90)。
7.六次旋转轴,对称操作为L(60)。
8.四次反轴,对称操作为L(90)I。
4)反轴1.2.3.6,相当于什么对称元素和操作?反轴1:相当于对称操作为L(o)I,对称元素:一次旋转轴和对称中心=等同对称中心。
反轴2:相当于对称操作为L(180)I,对称元素:二次旋转轴和对称中心=镜面。
反轴3:相当于对称操作为L(120)I,对称元素:三次旋转轴和对称中心。
反轴6:相当于对称操作为L(60)I,对称元素:3次轴+垂直镜面。
5)哪些反轴是可以独立的?只有四次反轴是独立的,所谓对称元素的独立性,是指对称图形中的某一个对称元素,不能被图形中的其他对称元素或对称元素的组合取代.因为分子中含有四次反轴时并不存在四次旋转轴和对称中心I,而对于其他的一次反轴和对称中心等价;二次反轴等价于镜面,三次反轴等价于三次轴+对称中心i,六次次反轴等价于三次轴+三重垂直镜面。
6.空间点阵(四方,立方,正交)四方晶系:晶胞参数a=β=γ=90,a=b≠C立方晶系:晶胞参数a=β=γ=90,a=b=c正交晶系:晶胞参数a=β=γ=90。
7.哪些是宏观对称元素,哪些是微观对称元素?宏观:倒反M,反映I.,旋转L(a),旋转倒反L(a)I。
微观:倒反M,反映I.,旋转L(a),旋转倒反L(a)I,平移T,螺旋旋转L(a)T,滑移反映MT。
材料化学复习题及答案
材料化学复习题及答案一、选择题1. 材料化学中,下列哪种材料属于无机非金属材料?A. 塑料B. 陶瓷C. 橡胶D. 合金答案:B2. 材料科学中,下列哪种材料具有最高的热导率?A. 石墨烯B. 铜C. 铝D. 玻璃答案:A3. 材料的疲劳寿命通常与下列哪个因素无关?A. 材料的微观结构B. 材料的表面处理C. 材料的化学成分D. 材料的颜色答案:D二、填空题1. 材料的硬度通常用______来表示。
答案:莫氏硬度2. 陶瓷材料的主要成分是______。
答案:无机非金属材料3. 金属材料的塑性变形主要通过______来实现。
答案:位错运动三、简答题1. 简述材料科学中,材料的力学性能包括哪些方面?答案:材料的力学性能主要包括硬度、弹性、塑性、韧性、强度、疲劳强度等。
2. 请解释什么是材料的热膨胀系数,并说明其对材料性能的影响。
答案:热膨胀系数是指材料在温度变化时体积或长度的变化率。
它对材料性能的影响主要体现在热应力的产生和材料尺寸的稳定性上。
四、计算题1. 已知某种材料的热膨胀系数为12×10^-6/°C,试计算该材料在温度从20°C升高到100°C时,长度为100mm的样品长度的变化量。
答案:ΔL = αL₀ΔT = 12×10^-6/°C × 100mm × (100°C - 20°C) = 0.96mm五、论述题1. 论述材料的电导率与其微观结构之间的关系,并举例说明。
答案:材料的电导率与其微观结构密切相关。
例如,金属的电导率较高,因为其内部存在大量的自由电子,这些自由电子可以在电场作用下自由移动,形成电流。
而绝缘体的电导率较低,因为其内部几乎没有自由电子,电子被原子核紧紧束缚,难以形成电流。
半导体的电导率介于金属和绝缘体之间,其电导率可以通过掺杂改变,掺杂可以增加材料内部的自由电子或空穴,从而提高电导率。
材料化学绪论知识点总结
材料化学绪论知识点总结一、材料化学的基本概念1.1 材料化学的定义材料化学是一门研究材料结构、性能和制备方法的学科。
它涉及材料的原子结构、晶体结构、材料的物理性质和化学性质等方面。
材料化学旨在探索材料的内在规律,促进新材料的开发和应用。
1.2 材料化学的发展历史材料化学的研究可以追溯到古代,如金属冶炼、陶瓷制作等。
随着化学、物理学等学科的发展,材料化学逐渐成为一个独立的学科。
20世纪末以来,材料化学得到了迅速发展,取得了许多重大突破,如纳米材料、功能材料等的研究。
1.3 材料化学的研究内容材料化学主要包括材料性能的研究、结构与性能的关系、材料的制备与加工等内容。
在这些研究领域中,涉及了很多基本概念和原理,我们将在后续章节中详细介绍。
二、材料的结构与性能2.1 材料的晶体结构晶体是由规则排列的原子或分子组成的固体结构,具有长程有序性。
晶体结构对材料的性能有着重要影响。
常见的晶体结构有离子晶体、共价晶体、金属晶体等。
2.2 材料的物理性质材料的物理性质包括热学性质、电学性质、光学性质等。
这些性质的表现取决于材料的结构和成分。
2.3 材料的化学性质材料的化学性质反映了材料在化学反应中的行为和特性。
主要包括化学稳定性、化学活性等。
对于材料的应用和稳定性有重要意义。
2.4 结构与性能的关系材料的结构和性能之间存在着密切的关系。
通过了解材料的结构,可以预测材料的性能;通过改变材料的结构,可以调控材料的性能。
三、材料的制备方法3.1 化学合成法化学合成法是指通过化学反应合成材料的方法。
例如,通过溶液法、气相法合成各种无机化合物、高分子化合物等材料。
3.2 物理制备法物理制备法是指通过物理手段制备材料,如溅射法、磁控溅射法等。
这些方法适用于各种材料的制备,得到的材料通常具有较高的纯度和均匀的结构。
3.3 生物制备法生物制备法是指利用生物体或生物体制造材料的方法。
如利用微生物合成高分子材料、利用植物提取天然产物等。
材料化学_复习资料
环境与市政工程学院应用化学专业2012-2013学年第一学期材料化学复习资料一、名词解释(1、固溶体:一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态晶体。
2、奥氏体:碳溶解在 -Fe中的间隙固溶体3、超塑性现象:金属在某一小的应力状态下,可以延伸十倍甚至是上百倍,既不出现缩颈,也不发生断裂,呈现一种异常的延伸现象。
4、表面效应:表面效应是指纳米粒子的表面原子数与总原子数之比随着纳米粒子尺寸的减小而大幅度地变化,粒子的表面能及表面张力也随着增加,从而引起纳米粒子性质的变化。
5、置换型固溶体:由溶质原子替代一部分溶剂原子而占据着溶剂晶格某些结点位置所组成的固溶体。
6、填隙型固溶体:溶质质点进入晶体中的间隙位置所形成的固溶体。
7、介电性:在电场作用下,材料表现出的对静电能的储蓄和损耗的性质。
8、居里温度:高于此温度铁电性消失。
9、相图:用几何的方式来描述处于平衡状态下物质的成分、相和外界条件相互关系的示意图。
10、合金:由两种或以上的金属非金属经过熔炼、烧结或其他方法组合而成并具有金属特性的物质。
11、复合材料:两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
12、纳米材料:微观结构至少在一维方向上受纳米尺度调制的各种固体超细材料,或由它们作为基本单元构成的材料13、相:一个系统中,成份、结构相同,性能一致的均匀的组成部分叫做相。
14、材料:具有使其用于机械、结构、设备和产品的性质的物质。
15、材料化学:在分子结构层次上研究材料的合成、制备、理论,以及分子结构和聚集态结构、材料性能之间关系的科学。
16、智能材料:能够随着环境、时间的变化改变自己的性能或状态一类新型功能材料。
17、晶体:晶体是内部质点在三维空间呈周期性重复排列的固体。
(具有格子构造的固体)18、肖特基缺陷:正常各点上的质点,在热起伏过程中获得能量离开平衡位置迁移到晶体的表面,而在晶体内部正常格点上留下空位。
材料化学-期中复习
显然,O2 分子中有一个σ键和两个单电子π键,当然具有顺磁性。
又如HF的键级等于1,正好跟古老的氟呈1价的概念相合。
2.4 超分子 • 概念:什么是超分子 • 分子间作用力
2.5 缺陷 • 概念、分类 • 点缺陷的分类与表示方法
• 一些特殊缺陷类型:弗仑克尔( Frankel ) 缺陷、肖特基(Schottky)缺陷、色心、电子缺 陷、非化学计量缺陷
与沉淀)
3.4 水热法 • 什么是水热法:是在特制的密闭反应容器里,采用
水溶液作为反应介质,通过对反应容器加热,创造出 一个高温、高压反应环境,使通常难溶或不溶的物质 溶解并且重结晶。
• 水热法作用:分别用来生长各种单晶,制备
超细、无团聚或少团聚、结晶完好的陶瓷粉体
• 沉淀与结晶:异同点
• 水热条件下晶体生长机理:溶解、输运、结 晶。
3.6 生物矿化
• 什么是生物矿化:是指在生物体内形成 矿物质(生物矿物)的过程,是生物在特定 部位和一定物理化学条件下,在生物体 有机物质的控制或影响下,将溶液中的 离子转变成为固相矿物,具有特殊的多 级结构和特殊的组装方式,引导着无机 矿物定向结晶并使复合物变得坚韧的过 程。
• 什么是生物矿化,其大概机理:有机基 质诱导的结晶过程
作用力称为化学键(chemical bond)。(或者,将分子中
的原子结合在一起的作用力)。
• 典型的化学键有三种: ① 离子键(ion bond) ② 共价键(covalent bond) ③ 和金属键(metalic bond) 基本概念,不同之处,区别的关键。常见物质的化学 键类型。
2.2.2 共价键理论 • 共价键的键型 : 键和 键
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章晶体学终极重点:1、晶体特征,晶体与非晶体区别 2、晶向与晶面指数确定步骤1.晶体的性能特征:均一性,各向异性,自限性,对称性,最小内能性;2.对称操作与对称要素:对称轴,对称面,对称中心,倒转轴;3.晶向指数与晶面指数:确定步骤;4.球体的堆积:六方,面心立方,体心立方5.鲍林规则;6.各种典型晶体构型;7.硅酸盐晶体结构与实例:岛状,链状,层状,架状;8.同质多晶现象:可逆转变,不可逆转变,重建型转变,位移型转变。
1.晶体的性能特征:均一性,各向异性,自限性,对称性,最小内能性(1)晶体的基本特征晶体的性能特征结晶均一性:在晶体内部任意部位上具有相同的性质;各向异性:在晶体不同方向上表现出的性质差异;自限性:能够自发形成封闭的凸几何多面体外形的特性;对称性:晶体中的相同部分(晶面,晶棱,等等)以及晶体的性质能够在不同方向或位置上有规律地重复;最小内能性:在相同的热力学条件下,晶体与同组成的气体、液体及非晶态固体相比具有最小内能,即最为稳定。
(2)对称操作与对称要素:对称操作:使晶体的点阵结构和性质经过一定程序后能够完全复原的几何操作;对称要素:实施对称操作所依赖的几何要素(点,线,面等);1.旋转操作与对称轴:一个晶体如能沿着某一轴线旋转360 / n(n = 1, 2, 3, 4, 6)后使晶体位置完全回复原状,则该晶体具有n 重对称轴;2.反映操作和对称面:一个晶体中如果存在某一个平面,使平面两边进行反映操作,而令晶体复原,则这个平面称为对称面;3.反演操作和对称中心:一个晶体中央在某一个几何点,使晶体外形所有晶面上各点通过该几何点延伸到相反方向相等距离时,能够使晶体复原的操作。
该几何点称为对称中心。
4.旋转反演操作和对称反轴:旋转之后进行反演使晶体复原的操作;只有4¯是新的独立对称要素。
(3)晶向指数与晶面指数:确定步骤晶向指数:以晶胞的某一阵点O为原点,过原点O的晶轴为坐标轴x,y,z,以晶胞点阵矢量的长度作为坐标轴的长度单位;过原点O作一直线OP,使其平行于待定晶向;在直线OP上选取距原点O最近的一个阵点P,确定P点的3个坐标值;将这3个坐标值化为最小整数u,v,w,加以方括号,[ u v w ]即为待定晶向的晶向指数。
晶面指数:在点阵中设定参考坐标系,设置方法与确定晶向指数时相同;求得待定晶面在三个晶轴上的截距,若该晶面与某轴平行,则在此轴上截距为无穷大;若该晶面与某轴负方向相截,则在此轴上截距为一负值;取各截距的倒数;将三倒数化为互质的整数比,并加上圆括号,即表示该晶面的指数,记为 (h k l )。
(4)球体的堆积:等径球体的紧密堆积,等径球体的非紧密堆积(体心立方)包括:六方紧密堆积和面心立方紧密堆积,该两种方式是同种原子(等径球体)能够达到的最紧密堆积方式,堆积系数(原子所占空间分数)达0.74,其余0.26为空隙所占有。
六方紧密堆积(hcp):在同一层密排面上,每个原子周围均有6个最邻近原子(出现两种类型的凹坑);第二层密排面排列于第一层上,必然置于同一类型的凹坑中;第三层排列于第一层的正上方;第四层排列于第二层的正上方,依次类推,形成 ABABAB 构型。
面心立方紧密堆积(fcc):在同一层密排面上,每个原子周围均有6个最邻近原子(出现两种类型的凹坑);第二层密排面排列于第一层上,必然置于同一类型的凹坑中;第三层排列于第二层未占据的凹坑位置;第四层排列于第一层的正上方,依次类推,形成 ABCABC 构型。
体心立方堆积(bcc)非紧密堆积方式:堆积系数0.68,配位数8;单层排列面作近似紧密排列,每个原子与四个最邻近原子接触;在第一层的凹坑处堆积第二层同形排列面;第三层排列面位于第一层的正上方,依次循环。
空隙规则:如果构成某晶胞需要n个原子作紧密堆积,则该晶胞必具有 2n个四面体空隙和n个八面体空隙。
补充:晶体的宏观对称性:是指晶体中的相同部分(晶面,晶棱等)以及晶体的性质在不同方向或位置上有规律地重复出现。
晶体的微观对称性:螺旋轴:对称轴上加上平移操作,是一种复合的对称要素,螺旋轴的周次n只能等于1、2、3、4、6,所包含的平移变换其平移距离应等于沿螺旋轴方向结点间距的s/n,s为小于n的自然数;滑移面:对称面上加上平移操作,对于此平面的反映和沿此直线方向平移的联合,其平移的距离等于该方向行列结点间距的一半。
(5)鲍林规则1.鲍林第一规则几何规则:围绕每一个正离子,负离子的排列占据一个多面体的各个顶角位置。
正负离子的间距决定了离子半径的总和,负离子配位数决定于正负离子半径的比率。
2.鲍林第二规则静电价规则:处于最稳定状态的离子晶体,其晶体结构中的每一个负离子所具有的电荷,恰恰被所有最邻近(相互接触)的正离子联系于该负离子的静电价键所抵消。
3.鲍林第三规则共棱共面规则:共棱数越大,尤其是共面数越大,则离子排列趋于越不稳定。
4.鲍林第四规则:高电价和低配位数的正离子具有尽可能相互远离的趋势。
5.鲍林第五规则节约规则:所有相同的离子,在可能范围内,它们和周围的配位关系往往是相同的。
(6)各种典型的晶体结构:金刚石立方面心结构:碳原子位于立方面心的所有结点位置和交替分布在立方体内的四个小立方体的中心,每个碳原子周围有四个碳原子,碳原子之间形成共价键。
石墨结构:六方晶系:碳原子呈层状排列,每层中碳原子按六方环状排列,每个碳原子与三个相邻碳原子距离相等(0.142 nm),层间距为0.335 nm。
特点:层内为共价键而层间为分子键。
NaCl型结构立方面心结构:阴离子按立方最紧密方式堆积,阳离子填充于全部八面体空隙,阴、阳离子的配位数均为6。
CsCl型结构简单立方结构:阴离子位于简单立方格子的顶点位置,阳离子位于立方体的中心。
阴、阳离子的配位数都是8。
β - ZnS(闪锌矿)型结构立方面心结构:阴离子占据面心立方的结点位置,阳离子交错分布于立方体内小立方体的中心。
阴、阳离子的配位数都是4。
α - ZnS(纤锌矿)型结构六方晶系:阴离子按六方紧密堆积方式排列,阳离子占据二分之一的四面体空隙。
阴、阳离子的配位数都是4。
CaF2(萤石)型结构立方面心结构:阳离子位于面心立方的结点位置,阴离子位于立方体内小立方体的中心。
即阳离子按立方紧密堆积方式排列,阴离子填充全部的四面体空隙。
阳离子的配位数是8而阴离子的配位数是4。
(7)岛状结构:硅酸盐晶体中的硅氧四面体以孤立状态存在,硅氧四面体之间没有共用的氧。
硅氧四面体中的氧除与硅相连外,剩下的一价将与其它金属阳离子相连。
实例:镁橄榄石(Mg2SiO4),氧离子近似于六方紧密堆积,硅离子填充1/8 四面体空隙,镁离子填充 1/2 八面体空隙。
链状结构:硅氧四面体通过共用氧离子相连,在一维方向延伸,形成链状。
此类结构可以分为单链和双链类型。
链间通过其它阳离子按照一定的配位关系连接起来。
实例:透辉石层状结构:硅氧四面体通过三个共用氧相连,在二维平面内延伸成一个硅氧四面体层;在硅氧层中,处于同一平面的三个氧离子被硅离子共用,称为桥氧,电荷达到平衡。
顶角上一个氧离子,电荷未达平衡,称为自由氧,与硅氧层外的其它阳离子相连;自由氧一般与 Al3+,Mg2+,Fe3+,Fe2+等阳离子相连,构成 Al –O、Mg – O 等八面体。
架状结构:硅氧四面体的四个顶角都与相邻的硅氧四面体共顶,构成三维“骨架”。
实例: - 方石英,立方晶系,Si4+占据全部面心立方结点位置和一半(四个)的小立方体中心,每个Si4+与四个O2-相连。
(8)同质多晶现象:物质以多种晶型存在,并且不同晶型之间在适宜条件下能够进行相互转变。
即,同种化学成分在不同的热力学条件下结晶成不同晶体结构的现象。
晶型的稳定性:一种同质多晶的变体中,自由焓最低者为稳定晶型:G=U+ PV−TS,其中,内能U取决于晶体结构的晶格能,P为平衡蒸气压,V为体积,T为绝对温度,S为一定晶型的熵重建型转变:当一组同质变体晶型晶型转变时,通过破坏原子间键合,改变次级配位,使晶体结构完全改变原样的转变形式——化学键破坏重组需要较大能量,转变缓慢;位移型转变:当一组同质变体晶型晶型转变时,总体结构不发生根本改变,次级配位的改变不破坏键合情况,仅使结构发生畸变——转变迅速。
第三章晶体缺陷终极重点:1、缺陷方程式 2、刃型位错与螺型位错(1)缺陷类型及表示方法,有效电荷,缺陷方程式的书写;(2)点缺陷:Frenkel缺陷,Schottky缺陷,点缺陷的生成热力学;色心:色心的形成,分类;(3)线缺陷:刃位错,螺位错,柏氏矢量的确定,及其与位错类型的关系;(4)面缺陷:小倾角晶界,大倾角晶界,晶面间距,孪晶,晶界特性,堆积层错的类型,(5)亚晶粒界和反相畴界;(6)非化学计量化合物。
(1)缺陷类型及表示方法,有效电荷,缺陷方程式的书写1.点缺陷:缺陷尺寸处在一两个原子大小的量级;线缺陷:在晶体结构中的一维缺陷,通常指位错;面缺陷:通常指晶界、表面等等;体缺陷:指三维方向上尺度都比较大的缺陷。
热缺陷:由于原子的热振动而产生的缺陷;特点:缺陷浓度随温度升高呈指数增加。
Frenkel缺陷:由于热振动,部分能量较大的原子离开正常结点位置,进入间隙,变成填隙原子;Schottky缺陷:由于热振动,原子迁移到表面,在正常结点位置留下空位。
杂质缺陷:由外来原子进入晶体而形成,杂质浓度与温度无关。
2.缺陷表示方法克罗格-明克符号:在晶体中加入或去掉一个原子时,视为加入或去掉一个中性原子;在晶体中加入或去掉一个离子时,视为加入或去掉一个电子。
空位: VM —— M原子空位,VX—— X原子空位;填隙子: Mi ,Xi分别表示M及X处在间隙的位置;错位: MX表示M原子被错放到X位置,反之亦然;3.有效电荷:缺陷及其周围的总电荷减去理想晶体中同一区域的电荷之差。
对于自由电子和空穴:有效电荷等于实际电荷;对于化合物晶体:缺陷的有效电荷一般不等于实际电荷,例如,将CaCl掺杂到2NaCl中,缺陷反应表示为:(2)点缺陷:Frenkel缺陷,Schottky缺陷,点缺陷的生成热力学;色心:色心的形成,分类1.Schottky缺陷:正负离子空位成对出现;为补偿空位,对应 Schottky 缺陷,在晶体表面有两个额外的原子。
Frenkel缺陷:空位与填隙子有相反的电荷并可以彼此吸引成对;整体上呈电中性,存在偶极矩;缺陷对可以相互吸引形成较大的聚集体或缺陷簇,在相变中起到晶核的作用。
2.以NaCl晶体为例,Schottky缺陷平衡:反应平衡常数:对于Schottky缺陷,有:简化可得:为每一类空位的总数,有:令N为每一类格位的总数,NV对于小的浓度缺陷,有:平衡常数可以表示为温度的指数函数:通常也表示为:其中,n/N为缺陷浓度,E为缺陷生成能,k= 1.38×10-23J•K-1。