专题13幂函数知识点归纳

合集下载

幂函数知识点

幂函数知识点

幂函数知识要点一.定义:形如y=x a(是常数)的函数,叫幂函数。

二.图象幂函数的图象和性质;由d取值不同而变化,如图如示:三.幂函数的性质:n>0时,(1)图象都通过点(0,0),(1,1)(2)在(0,+∞),函数随的增大而增大n<0时,(1)图象都通过(1,1)(2)在(0,+∞),函数随x的增加而减小(3)在第一象限内,图象向上与y轴无限地接近,向右与x轴无限地接近。

注意事项:1.判断幂函数的定义域的方法可概括为(对指数)“先看正负,是负去零,再看奇偶,是偶非负”2.根据幂函数的定义域,值域及指数特点画其图象。

函数位于第一象限的图象在“n>1”时,往上翘;0<n<1,往右拐;n<0向下滑。

四.例析:分析:底数分别不同而指数相同,可以看作是和。

两个幂函数,利用幂函数的单调性质去理解。

解:(1)(0,+∞)是递增的又∵1.1<1.4 ∴利用幂函数的性质比较数的大小。

例3.比较的大小。

分析:三个量比较大小,先考虑取值的符号。

启示:当直接比较大小难以进行时,可以考虑借助一些中间量特殊值,如0,1或其他数来解决。

分析:在指数运算中,注重运算顺序和灵活运用乘法合成。

启示:此处化简过程可与初中代数式的运算联系。

五.自测题:1.计算的值()2.下列命题中正确的是()A.当n=0时,函数y=x n的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.若幂函数y=x n的图象关于原点对称,则y=x n在定义域内y随x的增大而增大D.幂函数的图象不可能在第四象限3.实数a,b满足0<c<b<1,则下列不等式正确的是()A.a b<ba B.a-b<b-b C.a-a<b-b D.b b<a a4.在幂函数y=x a,y=x b,y=x c,y=x d在第1象限的图象中(右图),的大小关系为()A.a>b>c>d B.d>b>c>a C.d>c>b>aD.b>c>d>a5.下列函数中是幂函数的是)6.设幂函数y=x n的图象经过(8,4),则函数y=x n的值域为_______。

根据幂函数的增减性知识点及题型归纳总结

根据幂函数的增减性知识点及题型归纳总结

根据幂函数的增减性知识点及题型归纳总

一、幂函数的增减性知识点
1. 幂函数的定义
幂函数是指以x为变量、以正常数a为底数的函数f(x) = a^x (a>0且a≠1)。

2. 幂函数的图像特点
- 当a>1时,幂函数的图像为增函数,即随着x的增大,f(x)的值也随之增大。

- 当0<a<1时,幂函数的图像为减函数,即随着x的增大,f(x)的值逐渐减小。

- 幂函数的图像都通过点(0,1)。

3. 幂函数的增减性
- 当a>1时,幂函数是严格递增函数,即对于任意的x1和x2(x1<x2),都有f(x1)<f(x2)。

- 当0<a<1时,幂函数是严格递减函数,即对于任意的x1和x2(x1<x2),都有f(x1)>f(x2)。

二、幂函数的题型归纳总结
1. 计算函数值
给定幂函数f(x) = a^x,计算特定x值对应的函数值,即求解f(x)。

2. 求解定义域和值域
给定幂函数f(x) = a^x,求解函数的定义域和值域。

3. 比较大小
给定两个幂函数f(x) = a^x和g(x) = b^x,比较它们在特定区间的大小关系。

4. 求解方程
给定幂函数f(x) = a^x,求解方程f(x) = k的解。

5. 绘制函数图像
根据给定的幂函数,绘制函数的图像。

注意:幂函数的变量x可以是实数,题目中可能会限定x的取值范围。

以上是根据幂函数的增减性的知识点及常见题型的归纳总结。

希望对你的学习有帮助!。

高中幂函数知识点总结

高中幂函数知识点总结

高中幂函数知识点总结幂函数知识点包括幂函数的定义、幂函数的图象和性质、利用幂函数解不等式的步骤、幂函数图象性质的拓展等部分,有关幂函数的详情如下:幂函数的定义(1)一般地,函数y=xα叫做幂函数(power function),其中x是自变量,α是常数.(2)幂函数解析式的结构特征①指数为常数;②底数是自变量,自变量的系数为1;③幂xα的系数为1;④只有1项.幂函数的图象和性质常见幂函数(1)y=x、y=x2、y=x3、、y=x-1的图象(2)性质利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式求参数范围,注意分类讨论思想的应用.幂函数图象性质的拓展对于幂函数y=xα(α∈R)时,可视为y=型(p,q互异)根据最简分数的值,来类比常见幂函数的图象.(1)当α>0时,①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x的增大而增大;③在第一象限内,α>1时,图象是向下凸的;0<α<1时,图象是向上凸的;④在第一象限内,过点(1,1)后,图象向右上方无限伸展.(2)当α<0时,①图象都通过点(1,1);②在第一象限内,函数值随x的增大而减小,图象是向下凸的;③在第一象限内,图象向上与y轴无限接近,向右与x轴无限接近;④在第一象限内,过点(1,1)后,|α|越大,图象下降的速度越快.(3)幂函数的奇偶性.y=xα,当α=p,q∈Z)是最简分数时,当p,q均为奇数时,y=xα是奇函数;当p为偶数,q为奇数时,y=xα是偶函数;当q为偶数时,y=xα为非奇非偶函数.。

高考数学知识点幂函数知识点总结

高考数学知识点幂函数知识点总结

高考数学知识点幂函数知识点总结幂函数是高考数学中的重要知识点之一。

它在求解各类问题中具有广泛的应用。

本文将对幂函数的定义、性质以及解题技巧进行总结,以帮助考生全面掌握相关知识。

一、幂函数的定义与性质1. 定义:幂函数是指形如f(x) = a^x的函数,其中a为实数且a>0且a≠1。

2. 幂函数的基本性质:(1) 当a>1时,幂函数是递增函数;(2) 当0<a<1时,幂函数是递减函数;(3) 幂函数的图象是关于y轴对称的;(4) 当x取整数时,幂函数的函数值为恒定值。

3. 幂函数的特殊情况:(1) 当a>1时,幂函数的图象在x轴正半轴上逼近y轴;(2) 当0<a<1时,幂函数的图象在x轴正半轴上逼近x轴;(3) 当a=1时,幂函数为常数函数。

二、幂函数的常见解题技巧1. 求解幂函数的零点:对于幂函数f(x) = a^x = 0,可以通过求解a^x = 0的条件来得到幂函数的零点。

由于指数函数a^x的定义域为实数集,而等式0^x没有意义,因此幂函数的零点不存在。

2. 求解幂函数的最值:当幂函数f(x) = a^x存在最值时,可以通过导数法求解。

具体步骤为:(1) 求得f'(x) = a^x * ln(a),其中ln(a)表示以e为底的对数;(2) 令f'(x) = 0,解得x = ln(a);(3) 将x = ln(a)带入幂函数,得到最值点或者端点的函数值;(4) 比较得到最值。

3. 幂函数与其他函数的复合:幂函数和其他常见函数的复合,如幂函数与线性函数、指数函数、对数函数的复合等,可以通过替换变量或者利用函数关系进行求解。

具体步骤需要根据题目的要求和已知条件进行灵活运用。

4. 幂函数在实际问题中的应用:幂函数在生活和工作中有广泛的应用,比如指数增长与衰减问题,利润与销售量关系的建模,物理中的涉及到指数增长和衰减的问题等,需要考生能够将幂函数与实际问题相结合,进行建模和求解。

幂函数知识点

幂函数知识点

幂函数1.幂函数:一般地,形如y=x a(a∈R)叫做幂函数,其中x是自变量,a是常数.要准确理解幂函数的定义,注意以下四点:(1)幂函数具有严格的形式,形如 y=mx a, y=(mx)a, y=x a+m,y=(x+m)a(以上m均为不等于零的常数,且前两个函数中的m也不等于1)的函数都不是幂函数,二次函数中只有y=x2是幂函数,其他的二次函数都不是幂函数,幂函数y=x a要满足三个特征:○1幂x a前的系数是1;○2底数只能是自变量x,指数是常数;○3项数只有一项,只有满足这三个特征,才是幂函数;(2)求函数解析式时,若已知待求函数是幂函数,则可根据待定系数法设函数为f(x)=x a,根据条件求出a即可.(3)不要把幂函数与指数函数混淆,幂函数的底数为自变量,指数为常数,而指数函数恰好相反,底数为常数,指数为自变量.当遇到一个有关幂的形式的问题时,要先看自变量所在的位置,然后决定是用幂函数知识解决,还是用指数函数知识解决.2.幂函数在第一象限的图象:幂函数在其他象限的图象,可由幂函数的奇偶性根据对称性做出.α=n/m (其中m∈N*,n∈Z且m,n互质).(1)当n为偶数时,f(x)为偶函数,其图象关于y轴对称.(2)当m,n都为奇数时,f(x)为奇函数,其图象关于原点对称.(3)当m为偶数,n为奇数时,f(x)为非奇非偶函数,其图象只能在第一象限.3.幂函数当α=1,2,3,0.5,-1时的图象与性质.(1)图象(如图所示)(2)性质(如表)4.幂函数的性质:(1)所有的幂函数在(0,+∞)上都有定义,并且图像都通过点(1,1);(2)如果a>0,则幂函数的图像过原点,并且在区间(0,+∞)上为增函数;(3)如果a<0,则幂函数的图像在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于零时,图像在y轴右方无限逼近y轴,当x趋向于无穷大时,图像在x轴上方无限逼近x轴;(4)当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数.(5)①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,y=x a表示过点(1,1)且平行于x轴的直线(除去点(0,1))5.幂函数图象的其他性质:(1)图象的对称性:把幂函数y=x a的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数y=x a的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数y=x a的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。

幂函数知识点总结自己

幂函数知识点总结自己

幂函数知识点总结自己一、幂函数的定义幂函数的一般形式为f(x) = a^x,其中a为实数且不等于1。

当a大于1时,幂函数是增函数;当a小于1且大于0时,幂函数是减函数;当a小于0时,幂函数的定义域依赖于指数x的奇偶性,当x为偶数时,a^x为正数,当x为奇数时,a^x为负数。

二、幂函数的性质1. 定义域和值域:幂函数的定义域为所有实数,值域为正实数或所有实数。

2. 奇偶性:当a为正数时,幂函数为偶函数;当a为负数时,幂函数为奇函数。

3. 单调性:当a大于1时,幂函数是增函数;当0小于a小于1时,幂函数是减函数。

4. 渐近线:幂函数的渐近线为直线y=0。

5. 对称轴:当a为1时,幂函数的对称轴为y轴。

6. 图像:当a大于1时,幂函数的图像向上开口,当0小于a小于1时,幂函数的图像向下开口。

三、幂函数与指数函数的关系幂函数可以看作是指数函数的逆函数。

如果f(x) = a^x,那么反函数为g(x) = log_a(x),其中log_a(x)表示以a为底的对数函数。

幂函数和对数函数是互为反函数的关系。

四、幂函数的应用1. 在数学建模中,幂函数可以描述物质的生长和衰减过程,例如人口增长模型、经济增长模型等。

2. 物理学中,幂函数可以描述一些物理量随时间的变化规律,例如放射性物质的衰变过程、天体运动等。

3. 经济学中,幂函数可以描述一些经济指标随时间的变化规律,例如产业增长模型、市场需求模型等。

五、幂数学中幂函数的扩展在数学中,幂函数还可以扩展为带有幂指数的多项式函数,例如f(x) = ax^n,其中n为正整数。

这类函数也被称为幂函数,它在数学中有着重要的应用。

总之,幂函数在数学中是一个非常重要的函数,它的性质和应用都十分广泛。

掌握幂函数的定义、性质和应用对于深入理解数学和解决实际问题都具有重要意义。

希望本文的介绍对广大数学爱好者有所帮助。

幂函数题型归纳

幂函数题型归纳

幂函数知识点归纳及题型总结1、幂函数定义:对于形如:,其中为常数.叫做幂函数定义说明:1、定义具有严格性,系数必须是1,底数必须是2、取值是R .3、《考试标准》要求掌握α=1、2、3、½、-1五种情况2、幂函数的图像幂函数的图像是由决定的,可分为五类:1)时图像是竖立的抛物线.例如:2)时图像是一条直线.即3)时图像是横卧的抛物线.例如4)时图像是除去(0,1)的一条直线.即()5)时图像是双曲线(可能一支).例如具备规律:①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高)②幂指数互为倒数时,图像关于y=x对称③结合以上规律,要求会做出任意一种幂函数图像三、幂函数的性质幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。

1、定义域、值域与α有关,通常化分数指数幂为根式求解2、奇偶性要结合定义域来讨论3、单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减4、过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1)5、由可知,图像不过第四象限1、幂函数解析式的求法1. 利用定义(1)下列函数是幂函数的是 ______① ② ③ ④ ⑤(2)若幂函数的图像过点,则函数的解析式为______.(3)已知函数是幂函数,求此函数的解析式。

2.利用图象若函数是幂函数,且图像不经过原点,求此函数的解析式。

3.利用性质已知幂函数的图像关于y轴对称,且在上是减函数,求此函数的解析式。

2、幂函数的图像及应用1.分布规律幂函数图像的分布规律可用“一全有、二一偶、三一奇、四必无”来说明(1)、函数的图像是()(2)右图为幂函数在第一象限的图像,则的大小关系是()xOy2.比较大小(1)单调性比较比较与的大小比较与的大小把()-,(),(),()0按从小到大的顺序排列____________________.(2)利用图象比较大小当时,的大小关系是()A. B..C. D.3.幂函数的单调性与奇偶性函数在上是()A.增函数且是奇函数 B.增函数且是偶函数.C.减函数且是奇函数 D.减函数且是偶函数4.求参数的取值范围(1).已知函数f(x)=(m2+2m)·x m2+m-1,m为何值时,f(x)是:(1)正比例函数; (2)反比例函数;(3)二次函数; (4)幂函数?(2)已知幂函数的图像关于y轴对称,且在上是减函数,求满足的的取值范围。

高考数学考点归纳之幂函数

高考数学考点归纳之幂函数

高考数学考点归纳之幂函数一、基础知识1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.幂函数的特征(1)自变量x处在幂底数的位置,幂指数α为常数;(2)xα的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质二、常用结论对于形如f(x)=x nm(其中m∈N*,n∈Z,m与n互质)的幂函数:(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称;(2)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(3)当m为偶数时,x>0(或x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一幂函数的图象与性质[典例] (1)(2019·赣州阶段测试)幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x 23-n n(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2 [解析] (1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C.(2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x-2的图象关于y 轴对称,故n =1.[答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练]1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( ) A .y =x -4 B .y =x -1 C .y =x 2D .y =x 13解析:选A 函数y =x -4为偶函数,且在区间(0,+∞)上单调递减;函数y =x -1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . [答案] D[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b . 2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( ) A .4 B.2 C .22D .1解析:选C 设f (x )=x n ,由条件知f (4)=2,所以2=4n ,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( ) A .1 B .2 C.12D .-1解析:选D 由幂函数的性质得k <0,故选D. 3.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( )A .1B .2C .1或2D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x 24的最小值为( )A .1B .2C .4D .6解析:选A 设幂函数f (x )=x α.∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1.5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3解析:选C 由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <b <c C .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c ,故选C.7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( ) A .x <z <y B .y <x <z C .y <z <xD .z <y <x解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x-2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14. 答案:1410.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________.解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3.答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________.解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x 12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x ()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2), ∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1.(2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。

总结幂函数的知识点

总结幂函数的知识点

总结幂函数的知识点一、幂函数的定义幂函数的一般形式为f(x) = x^n,其中n是一个实数。

当n为正整数时,我们可以得到常见的幂函数,如f(x) = x^2、f(x) = x^3等。

当n为负整数时,幂函数具有分式形式,如f(x) = 1/x、f(x) = 1/x^2等。

当n为分数时,幂函数的解析形式较为复杂,但与整数幂函数有着相似的性质。

总结来说,幂函数是一种以自变量x的幂次作为函数表达式的函数。

二、幂函数的性质1. 定义域和值域幂函数的定义域通常为实数集R,除非n为分数并且分母为偶数时,此时幂函数的定义域为正实数集R+。

对于值域,当n为偶数时,幂函数的值域为非负实数集R+;当n为奇数时,幂函数的值域为全体实数集R。

2. 增减性和奇偶性当n为正数时,幂函数在整个定义域上是增函数;当n为负数时,幂函数在定义域上是减函数。

当n为偶数时,幂函数关于y轴对称;当n为奇数时,幂函数关于原点对称。

3. 渐近线当n>1时,幂函数的图像在y轴右侧有一条垂直渐近线x=0;当n<0时,幂函数的图像在y轴右侧也有一条垂直渐近线x=0。

4. 零点和极限对于n为正数的幂函数,它的零点是x=0;对于n为负数的幂函数,它在x=0处有一个无穷远点的极限。

5. 斜率和凹凸性幂函数的斜率函数为f'(x) = nx^(n-1),在n>1时,斜率函数是一个正函数;在0<n<1时,斜率函数是一个负函数。

并且当n>2时,幂函数在定义域上为凸函数;当0<n<2时,幂函数在定义域上为凹函数。

三、幂函数的图像幂函数的图像可以通过手绘或利用计算机绘图工具制作。

常见的幂函数图像有以下几种特点:1. 当n>1时,幂函数的图像在第一象限上递增,图像呈现上升趋势;当0<n<1时,幂函数的图像在第一象限上递减,图像呈现下降趋势。

2. 当n为偶数时,幂函数的图像在第一、四象限上对称;当n为奇数时,幂函数的图像在整个平面上关于原点对称。

根据幂函数知识点总结归纳

根据幂函数知识点总结归纳

根据幂函数知识点总结归纳
幂函数是数学中的一种特殊函数形式,定义为 f(x) = x^a,其中a 可以是实数。

以下是幂函数的基本特点和性质的总结:
1. 幂函数的定义域是所有实数集,即幂函数可以在整个实数轴上取值。

2. 幂函数的导数可以通过幂函数的定义和导数的基本性质计算得出。

对于 f(x) = x^a,在定义域内对 x 求导,得到导数 f'(x) =
a*x^(a-1)。

3. 幂函数的图像特点与指数 a 的正负相关。

当 a > 0 时,幂函数的图像是递增的,趋近于正无穷;当 a < 0 时,幂函数的图像是递减的,趋近于零。

4. 幂函数在 x = 0 处的取值与指数 a 的奇偶性相关。

当 a 是奇数时,幂函数在 x = 0 处取值为 0;当 a 是偶数且 a > 0 时,幂函数在 x = 0 处取值为正。

5. 当 a = 1 时,幂函数成为恒等函数,即 f(x) = x。

此时幂函数的图像为一条直线,斜率为 1。

6. 幂函数之间可以进行基本的运算,如加法、减法、乘法和除法。

幂函数的加法运算为 f(x) + g(x) = x^a + x^b;减法运算为 f(x) - g(x) = x^a - x^b;乘法运算为 f(x) * g(x) = (x^a) * (x^b) = x^(a+b);除法运算为 f(x) / g(x) = (x^a) / (x^b) = x^(a-b)。

以上是对幂函数知识点的简单总结归纳。

幂函数在数学中具有广泛的应用,对于理解和解决实际问题具有重要意义。

(完整版)幂函数公式汇总

(完整版)幂函数公式汇总

(完整版)幂函数公式汇总1. 幂函数的定义幂函数是形如 f(x) = ax^n 的函数,其中 a 是实数常数,n 是整数。

幂函数包含了多种特定形式的函数,如常函数、线性函数等。

2. 幂函数的图像特征- 当 a > 0 且 n 是偶数时,幂函数的图像在整个定义域上都为正值,并且关于 y 轴对称。

- 当 a > 0 且 n 是奇数时,幂函数的图像在整个定义域上有正有负,并且关于原点对称。

- 当 a < 0 时,幂函数的图像在整个定义域上都为负值,并且关于 y 轴对称。

- 当 a = 0 时,幂函数的常函数图像与 x 轴重合。

3. 幂函数的性质- 幂函数的定义域是全体实数。

- 幂函数的值域取决于 a 和 n 的取值范围。

- 当 a > 0 且 n > 0 时,幂函数是递增函数;当 a > 0 且 n < 0 时,幂函数是递减函数。

- 幂函数在 x = 0 处取得最小值或最大值,取决于 a 和 n 的符号。

4. 幂函数的常见公式- 幂函数的线性公式:f(x) = ax- 幂函数的平方公式:f(x) = ax^2- 幂函数的立方公式:f(x) = ax^3- 幂函数的平方根公式:f(x) = a√x- 幂函数的绝对值公式:f(x) = |a|x^n5. 幂函数的应用领域- 幂函数广泛应用于物理学、经济学、工程学等领域,用于描述各种与指数关系相关的现象和规律。

- 幂函数在建模和优化问题中具有重要作用,如生产函数、成本函数等。

以上是对幂函数的定义、图像特征、性质、常见公式和应用领域的汇总。

幂函数是数学中重要的函数类型之一,深入理解幂函数的特点和应用将有助于我们解决各种实际问题。

此为大致800字的幂函数公式汇总文档,你可以根据需要适当添加内容或进行修改。

幂函数知识点及题型归纳总结

幂函数知识点及题型归纳总结

幂函数知识点及题型归纳总结知识点精讲一、幂函数的定义一般地,函数()y x R αα=∈叫做幂函数,其中x 是自变量,α是常数.注:判断一个函数是否为幂函数,关键是看其系数是否为1,底数是否为变量x .二、幂函数的图像幂函数的图像一定会出现在第一象限内,一定不会出现在第四项县内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像如果与坐标轴相交,则交点一定是原点. 当11,2,3,,12α=-时,在同一坐标系内的函数图像如图2-18所示.三、幂函数的性质当0α>时,幂函数y x α=在(0,)+∞上是增函数,当1α>时,函数图像是向下凸的;当01α<<时,图像是向上凸的,恒过点(0,0)(1,1)和;当0α<时,幂函数y x α=在(0,)+∞上是减函数.幂函数y x α=的图像恒过点(1,1).题型归纳及思路提示题型1 幂函数的定义及其图像思路提示确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.例2.68函数2223()(1)a a f x a a x --=--为幂函数(a 为常数),且在(0,)+∞上是减函数,则a =______. 分析根据幂函数的定义及单调性求解a .解析依题意,得2211230a a a a ⎧--=⎪⎨--<⎪⎩,解得2a =. 变式1 函数32204(42)(1)y mx x m x mx -=++++-+的定义域为R ,求实数m 的取值范围.变式2 幂函数()y f x =的图像经过点1(2,)8--,则满足()27f x =的x 的值是______.. 变式3 设11,1,,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=为奇函数且定义域为R 的所有α的值为( ) .1,3A .1,1B - .1,3C - .1,1,3D -题型2 幂函数性质的综合应用思路提示紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.例2.69已知幂函数223()()m m f x x m Z --=∈为偶函数,且在区间(0,)+∞上是减函数.(1)求函数()f x 的解析式;(2)求满足33(1)(32)mma a --+<-的a 的取值范围.分析利用函数()f x 在区间(0,)+∞上是减函数且为偶函数求m ,从而得到()f x 的解析式.解析(1)因为幂函数在区间(0,)+∞上是减函数,所以2230m m --<得 13,m m Z -<<∈又,当0m =时,2233m m --=-;当1m =时,2234m m --=-;当2m =时,2233m m --=-.又因为()f x 为偶函数,所以4()f x x -=.(2)由1m =得1133(1)(32)a a --+<-. 即113311132a a ⎛⎫⎛⎫< ⎪ ⎪+-⎝⎭⎝⎭又13y x =在R 上单调递增,故11132a a <+-,整理得 (1)(32)(23)0a a a +--<,解得23132a a <-<<或,如图所示.故a 的取值范围为23(,1)(,)32-∞-. 评注突破点为由单调性得m 的取值范围,进而验证满足偶函数的值,若从偶函数的条件入手,则不易向下转化.分类讨论时,确定分类标准,做到不重不漏.变式1 已知函数2()f x x =,设函数[]()()(21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使()g x 在区间(],4-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,求出q ;若不存在,请说明理由.最有效训练题1.下列函数中,既是偶函数又在(,0)-∞上是增函数的是( )43.A y x =32.B y x = 2.C y x -= 14.D y x = 2.幂函数2232()m m y x m Z --=∈的图像如图2-20所示,则m 的值为( ).1A .2B .3C.4D3.幂函数()f x 的图像经过点11(,)42A ,则它在点A 处的切线方程为( ) .4410A x y ++= .4410B x y -+= .20C x y -=.20D x y += 4.若幂函数()f x 的图像经过点13,9⎛⎫⎪⎝⎭则其定义域为( ){}.,0A x x R x ∈> {}.,0B x x R x ∈< {}.,0C x x R x ∈≠ .D R 5.设232555322,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) .Aa c b >>.B a b c >> .C c a b >> .Db c a >> 6.设1112,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,则使y x α=为奇函数且在(0,)+∞上单调递减的α值的个数为( ) .1A .2B .3C .4D7.已知幂函数()y f x =的图像过点(2,2),则(8)f 的值为_______.8.已知幂函数265()()m m f x x m Z -+=∈为奇函数,且在区间(0,)+∞上是减函数,则()f x 的解析式为32 231- 图 2-19_______.9.已知函数12()f x x =,且(21)(3)f x f x -<,则x 的取值范围是_______.10.设函数()1()f x x Q αα=+∈的定义域为[][],,b a a b --,其中0a b <<,若函数()f x 在区间[],a b 上的最大值为6,最小值为3,则()f x 在[],b a --上的最大值与最小值的和为_______.11.已知函数12()f x x =,给出下列命题:①若1()1x f x >>则;②若120x x <<,则2121()()f x f x x x ->-;③若120x x <<,则2112()()x f x x f x <;④若120x x <<,则1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭. 其中,所有正确命题的序号是_______.12.点在幂函数()f x 的图像上,点12,4⎛⎫- ⎪⎝⎭在幂函数()g x 的图像上,问当x 为何值时有: (1)()()(2)()()(3)()()f xg x f x g x f x g x >=<。

幂函数知识点

幂函数知识点

幂函数知识点幂函数是数学中的一种常见函数形式,它的数学表达式为f(x) = x^a,其中a是实数。

幂函数在数学和科学中有着广泛的应用,它可以描述许多自然界中的现象。

本文将带您逐步了解幂函数的定义、性质和应用。

一、幂函数的定义幂函数是指以自变量为底数的指数函数。

它的一般形式为f(x) = x^a,其中x为自变量,a为实数。

在这里,a被称为幂指数,控制着函数的形状。

二、幂函数的性质1.定义域和值域:幂函数的定义域为所有正实数和0,值域则取决于幂指数的奇偶性。

当a为正偶数时,函数图像在y轴的右侧无上界;当a为负偶数时,函数图像在y轴的左侧无上界。

当a为正奇数时,函数图像在整个坐标平面上,有上下界;当a为负奇数时,函数图像在整个坐标平面上,有左右界。

2.对称性:当幂指数为偶数时,幂函数关于y轴对称;当幂指数为奇数时,幂函数关于原点对称。

3.增减性:幂函数的增减性取决于幂指数的正负。

当a大于0时,函数在定义域上是严格递增的;当a小于0时,函数在定义域上是严格递减的。

4.特殊情况:当幂指数为0时,函数为常数函数f(x) = 1;当幂指数为1时,函数为恒等函数f(x) = x。

三、幂函数的应用幂函数在许多科学领域中有着重要的应用。

以下是一些常见的实际应用示例:1.物理学中的运动学:在运动学中,幂函数可以描述物体的位移、速度和加速度之间的关系。

例如,当幂指数为2时,函数表示匀加速运动中的位移和时间的关系。

2.经济学中的成本函数:在经济学中,幂函数可以用于描述成本与产量之间的关系。

例如,当幂指数为1时,函数表示线性成本函数,可以用来分析单位成本随产量变化的情况。

3.生物学中的生长模型:在生物学中,幂函数可以用来描述生物体的生长模型。

例如,当幂指数为正时,函数表示指数生长模型,可以用来研究细菌、植物等生物体的增长规律。

4.工程学中的功率函数:在工程学中,幂函数可以用来描述电力、声音和光的功率与强度之间的关系。

例如,当幂指数为2时,函数表示光强随距离的平方衰减规律。

高中幂函数知识点总结

高中幂函数知识点总结

高中幂函数知识点总结在高中数学中,学生们需要掌握幂函数的基本性质、图像特征、变化规律以及应用等知识点。

下面就幂函数的这些知识点进行总结。

一、幂函数的基本性质1.定义域和值域幂函数的定义域为全体实数集R,当a>0时,幂函数的值域为(0,+∞);当a<0时,幂函数的值域为(-∞,0)。

当b为实数时,定义域不变,值域也不变。

2.奇函数和偶函数当b为奇数时,幂函数为奇函数,其图像关于原点对称;当b为偶数时,幂函数为偶函数,其图像关于y轴对称。

3.增减性当b>0时,a^b是单调递增函数;当b<0时,a^b是单调递减函数;当a>1时,a^x是单调递增函数;当0<a<1时,a^x是单调递减函数。

4.奇偶性当b为偶数时,幂函数的值域为(0,+∞),其奇函数;当b为奇数时,幂函数的值域为(-∞,+∞),其为奇函数。

5.图像特征当a>1时,幂函数的图像开口向上,且与y轴有交点(0,1);当0<a<1时,幂函数的图像开口向下,且与y轴有交点(0,1)。

二、幂函数的变化规律1.当a>1时,随着x的增大,幂函数的值也增大;当0<a<1时,随着x的增大,幂函数的值逐渐减小。

2.当b>0时,随着x的增大,幂函数的值也增大;当b<0时,随着x的增大,幂函数的值逐渐减小。

3.在定义域内,当a大于1时,幂函数呈现增长趋势,a小于1时,幂函数呈现下降趋势。

幂函数的图像是在a的基础上上升或下降,实际上是在描绘x的指数函数。

4.幂函数的图像经常在一轴上浮躺,显示出一种不平滑的弧度,变化没有一元二次函数的平稳。

随着a的变大或者减小,幂函数的图像与x轴的夹角越来越小。

5.当b不为整数,是一个更加复杂的形式;而指数函数是幂函数的一种特殊情况,b为整数时。

三、幂函数的应用1.在现实生活中,幂函数的变化规律被应用在各个方面,比如物理学中的指数增长和衰减模型、生物学中的人口增长模型、经济学中的利润增长模型等。

幂函数知识点总结

幂函数知识点总结

幂函数知识点总结幂函数是高中数学中的一个重要概念,它在数学的各个领域中都有着广泛的应用。

从初中开始,我们就接触到了简单的幂函数,随着学习的深入,我们逐渐掌握了更多关于幂函数的知识。

在本文中,我们将对幂函数的相关概念、性质和应用进行总结和探讨。

1. 幂函数的定义和表示方式幂函数是指以一个常数为底数,自变量为指数的函数。

一般表示为:f(x) = a^x,其中a为常数,x为自变量,f(x)为函数值。

2. 幂函数的基本性质2.1 幂函数的奇偶性与增减性:当底数a为正数且不等于1时,幂函数f(x) = a^x在定义域内是奇函数;当底数a为负数时,幂函数f(x) = a^x是偶函数。

当底数a大于1时,幂函数是增函数,当底数a在(0,1)之间时,幂函数是减函数。

2.2 幂函数的单调性:当底数大于1时,幂函数是递增的;当底数小于1时,幂函数是递减的。

2.3 幂函数的相关性质:a^0=1,a^1=a,a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),(a^m)/(a^n)=a^(m-n),(a/b)^n=a^n/b^n。

3. 幂函数图像和特征幂函数的图像具有一些独特的特征,这在解析题或者问题求解时具有重要意义。

3.1 幂函数的渐近线:当底数大于1时,幂函数的图像在y轴上有一个水平渐近线;当底数小于1时,幂函数的图像在x轴上有一个水平渐近线。

3.2 幂函数的特殊点:当底数大于1时,幂函数的图像经过点(0,1);当底数小于1时,幂函数的图像经过点(0,1)和点(1,a)。

3.3 幂函数的拐点:当幂函数的底数a大于1时,图像经过点(1,a)并且有一个拐点;当底数a小于1时,图像经过点(1,a)但没有拐点。

4. 幂函数的应用幂函数在实际问题的解决中有着广泛的应用,以下是一些典型的应用场景:4.1 音乐和声音强度的计算:声音的强度与音源与听者距离的幂函数关系密切,通过对幂函数的建模和计算,可以获得声音强度的变化规律。

专题13:幂函数知识点归纳(最新整理)

专题13:幂函数知识点归纳(最新整理)

1
1 3
3
2a
1 3
,求实数
a
的取值范围.
(C) m 为偶数, n 为奇数,且 m 1 n
(D) m 奇数, n 为偶数,且 m 1 n
y
x O
3、比较下列各组数的大小:
1
1
(1)1.53 ,1.73 ,1;(2)
3
2 7,
3
3 7,
3
5 7 ;(3)
2 2
2 3

10 7
2 3

1.1
4 3

4、若 a
解析式为__________
5、设 a 2, 1, 1 , 1 , 1 ,1, 2,3 ,已知幂函数 f x x 是偶函数,且在区间 0, 上是
232
减函数,则满足要求的 值的个数是__________.
6、设 y f x 和 y g x 是两个不同的幂函数,集合 M x | f x g x ,则集合 M
幂函数知识点归纳
一、 幂函数定义:对于形如: fx x ,其中 为常数.叫做幂函数
定义说明:
1、 定义具有严格性, x 系数必须是 1,底数必须是 x
2、 取值是 R .
3、 《考试标准》要求掌握α=1、2、3、½、-1 五种情况
二、 幂函数的图像
幂函数的图像是由 决定的,可分为五类: 1)>1时图像是竖立的抛物线.例如: fx x2
3、 0
① y x2
② y x1
3
—4
③yx 2 ④yx 3
三、 幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。
1、 定义域、值域与α有关,通常化分数指数幂为根式求解

幂函数知识总结

幂函数知识总结

幂函数知识总结幂函数复:幂函数是指形如αy=x(α∈R)的函数,其中x是自变量,α是常数。

幂函数与指数函数的本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。

幂函数在第一象限的性质:当α>0时,图像过定点(0,0)和(1,1),在区间(1,+∞)上单调递增;当α<0时,图像过定点(1,1),在区间(0,1)上单调递减。

对于形如y=x(m/n)(m,n∈Z且m,n互质)的幂函数,当m和n都为奇数时,f(x)为奇函数,图象关于原点对称;当m为奇数n为偶数时,f(x)为偶函数,图象关于y轴对称;当m为偶数n为奇数时,f(x)是非奇非偶函数,图象只在第一象限内。

幂函数的图像画法:先画第一象限,然后根据奇偶性和定义域画其它象限。

指数大于1时,在第一象限为抛物线型(凹);指数等于1时,在第一象限为上升的射线;指数大于0小于1时,在第一象限为抛物线型(凸);指数等于0时,在第一象限为水平的射线;指数小于0时,在第一象限为双曲线型。

比较幂形式的两个数的大小,可以化为同指数或同底数,或寻找一个恰当的数作为桥梁来比较大小。

题型一:幂函数解析式特征。

对于已知函数是幂函数的情况,可以根据题目给出的条件求出函数的解析式。

题型二:幂函数性质。

幂函数在第一象限的性质可以用于求解一些问题,同时也需要注意幂函数的奇偶性和定义域来画出其图像。

图像不可能出现在第四象限内。

对于3D图像,如果幂函数y=x^α为奇函数,则在定义域内是增函数。

练3:如图所示,曲线c1和c2分别是函数y=x^m和y=x^n在第一象限的图像。

那么一定有n<m<0.练4:(1)函数y=x的单调递减区间为(-∞,1);(2)函数y=x^2的单调递增区间是[0.+∞),因为它的图像过点(2.4);(3)幂函数的性质可知,x^a>x^b当且仅当a>b,因此(2)^3>(3)^2,(3)^2>(2)^(-3),(4)^(-1)>(5)^(-1),1.1>0.9.经典例题:例1:已知函数f(x)=x^(m-2)+(m+3),其中m∈Z,为偶函数,且f(3)<f(5),求m的值,并确定f(x)的解析式。

幂函数知识总结

幂函数知识总结

幂函数复习一、幂函数定义:形如的函数称为幂函数,其中是自变量,是常数。

归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:,图像过定点(0,0)(1,1),在区间()上单调递增。

,图像过定点(1,1),在区间()上单调递减。

探究:整数m,n的奇偶与幂函数的定义域以及奇偶性有什么关系?结果:形如的幂函数的奇偶性(1)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(2)当m为奇数n为偶数时,f(x)为偶函数,图象关于y轴对称;(3)当m为偶数n为奇数时,f(x)是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。

指数大于1,在第一象限为抛物线型(凹);指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸);指数等于0,在第一象限为水平的射线;指数小于0,在第一象限为双曲线型;四、规律方法总结:1、幂函数的图像:2、幂函数的图像:3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.题型一:幂函数解析式特征例1.下列函数是幂函数的是()A.y=x B.y=3x C.y=x+1 D.y=x练习1:已知函数是幂函数,求此函数的解析式.练习2:若函数是幂函数,且图象不经过原点,求函数的解析式.题型二:幂函数性质例2:下列命题中正确的是()A.当时,函数的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.幂函数的图象不可能在第四象限内D.若幂函数为奇函数,则在定义域内是增函数练习3:如图,曲线c1, c2分别是函数y=xm和y=xn在第一象限的图象,那么一定有()A.n<m<0 B.m<n<0 C.m>n>0 D.n>m>0练习4:.(1)函数y=的单调递减区间为()A.(-∞,1) B.(-∞,0) C.[0,+∞) D.(-∞,+∞)(2).函数y=x在区间上是减函数.(3).幂函数的图象过点(2,), 则它的单调递增区间是.题型三:比较大小.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1),;(2),;(3),;(4),..经典例题:例1、已知函数为偶函数,且,求m的值,并确定的解析式.例2、若,试求实数m的取值范围.例3、若,试求实数m的取值范围.例4、若,试求实数m的取值范围.例5、函数的定义域是全体实数,求m的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
幂函数知识点归纳
一、 幂函数定义:对于形如:()
x f x α=,其中α为常数.叫做幂函数
定义说明:
1、 定义具有严格性,x α
系数必须是1,底数必须是x
2、 α取值是R .
3、
《考试标准》要求掌握α=1、2、3、½、-1五种情况
二、 幂函数的图像
幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x =
2)=1α时图像是一条直线.即()
x f x =
3)01α<<
时图像是横卧的抛物线.例如()1
2
x f x
=
4)=0α时图像是除去(0,1)的一条直线.即()
0x f x =(0x ≠)
5)0α<时图像是双曲线(可能一支).例如
()-1
x f x =
具备规律:
①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高)
②幂指数互为倒数时,图像关于y=x 对称
③结合以上规律,要求会做出任意一种幂函数图像
练习:做出下列函数的图像:
1、1α> ①3
y x =或53y x = ②2y x =或43y x = ③32y x =或74
y x
=
2、01α<< ①13y x = ②23y x = ③12
y x = 3、0α< ①2
y x -= ②1
y x -= ③32
y x
-
= ④43
y x
=—
三、
幂函数的性质
y=x
3
幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。

1、 定义域、值域与α有关,通常化分数指数幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1) 5、

()0
x f x α=>可知,图像不过第四象限
四、 幂函数类型题归纳 (一) 定义应用:
1、下列函数是幂函数的是 ______
①21()y x
-= ②22y x = ③21
(1)y x -=+ ④0
y x = ⑤1y =
2、若幂函数()y f x =
的图像过点2⎫⎪⎪⎝⎭
,则函数()y f x =的解析式为______. 3、已知函数()()
22
1
44m m f x m m x
--=--是幂函数,且经过原点,则实数m 的值为__________.
4、已知函数()()2
2
k
k f x x k Z -++=∈满足()()23f f <,则k 的值为________ ,函数()f x 的
解析式为__________ 5、设1112,1,,,,1,2,3232a ⎧

∈---
⎨⎬⎩⎭
,已知幂函数()f x x α=是偶函数,且在区间()0,+∞上是减函数,则满足要求的α值的个数是__________.
6、设()y f x =和()y g x =是两个不同的幂函数,集合()(){}
|M x f x g x ==,则集合M 中
元素的个数是( )
(A)1或2或0 (B) 1或2或3(C)1或2或3或4 (D)0或1或2或3 (二) 图像及性质应用 1、
右图为幂函数y x α
=在第一象限的图像,则
,,,a b c d 的大小关系是 ( ) ()A a b c d >>> ()B b a d c >>>
d
y=x
()C a b d c >>>
()D a d c b >>> 2、如图:幂函数n m
y x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有
( )
()A m 、n 为奇数且
1m
n
<
()B m 为偶数,n 为奇数,且1m
n >
()C m 为偶数,n 为奇数,且1m
n <
b
c
3
()D m 奇数,n 为偶数,且
1m
n
> 3、比较下列各组数的大小: (1)13
1.5,13
1.7,1;(2
)(37
,(
)3
7
,(
37
;(3
)23
2-
⎛⎫- ⎪ ⎪⎝⎭
,23
107-
⎛⎫
- ⎪⎝⎭,()431.1--. 4、若()()1
13
3
132a a --+<-,求实数a 的取值范围.。

相关文档
最新文档