(完整版)华东师大版八年级数学下册期中试卷
【华东师大版】八年级数学下期中试卷(带答案)
C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
故选:A.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
【详解】
∵ ,
∴ ,
∴ .
故选A.
【点睛】
本题考查二次根式的性质与化简,掌握二次根式的意义以及化简方法为解题关键.
6.C
解析:C
【分析】
根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.
【详解】
解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.
(1)判断下列两个命题是真命题还是假命器(填“真”或“假”)
①等边三角形必存在“和谐分割线”
②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.
命题①是_______命题,命题②是______命题;
(2)如图2, . , , ,试探索 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由.
20.已知一个三角形三边的长分别为 ,则这个三角形的面积是_________________.
三、解答题
21.如图,菱形 的对角线 相交于点 是 的中点,点 在 上, .
(1)判断四边形 的形状;
(2)若 ,求菱形 的面积和 的长.
华师大版八年级下学期数学《期中考试题》及答案
[答案]
[解析]
[分析]
首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA.
[详解]解:直线 与x轴、y轴分别交于A、B两点,求出点 ,B(0,2),
8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
[答案]B
[解析]
[详解]0.056用科学记数法表示为:0.056= ,故选B.
9.如图,平行四边形的对角线 与 相交于点 , ,若 , ,则 的长是( )
A. B. C. D.
[答案]B
[解析]
[分析]
由平行四边形对角线互相平分的性质可知OA长,根据勾股定理求出BO长可得BD长.
[详解]解: 四边形ABCD是平行四边形,
,
故选:B
[点睛]本题考查了平行四边形的性质及勾股定理,灵活应用平行四边形对角线互相平分求线段长是解题的关键.
10.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴, .∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数 的图象过点C.当以CD为边的正方形的面积为 时,k的值是()
故答案为1
[点睛]本题考查了分式的混合运算,熟练掌握运算法则和整体代换的思想是解题的关键.
13.对于函数 , 的值随 值的增大而_______.
[答案]减小
[解析]
[分析]
根据一次函数的性质可知.
华东师大版八年级数学下册期中试卷.docx
华东师大版八年级数学下册期中试卷期中测试姓名一 .选择题 : (每题 3 分 .共 30 分)1.分式 2 . x - y . y中 .最简分式有 ( )4x x2+y2 2y2 A . 0 个 B .1 个 C . 2 个D . 3 个2.下列算式错误的是 ( )A .1+x= 1 B . (y 2)2= y4 C .1 + 1=x+1D .c+1= c2+1x+1 x+12x 4x2 xxc c23.若点( m.n )在第一象限 .则点( m. - n )在 ()A .第一象限B .第二象限C .第三象限D .第四象限4.已知在一次函数y=kx+b 中 .k < 0.b > 0.则这个一次函数的大致图象是( )yyyyA . ox.oxD . oxoxBC .y5. 如图 .点 P ( x.0 )是 x 轴正半轴上的一个动点 .过点 P1作 x 轴的垂线交双曲线y= x 于点 Q.连结 OQ. 当点 P 沿Qx 轴的正方向运动时 .Rt △ QOP 的面积( )A . 逐渐增大B . 逐渐减小OC . 保持不变D . 无法确定P x(第 18 ) 6.一列火车自 2007年全国铁路第 6 次大提速后 .速度提高了(第 5 题)26 千米 /小时 .现在该列火车从甲站到乙站所用的时间比原来减少了1 个小时 .已知甲、乙两个车站的路程是 312 千米 .设火车提速前的速度为 x千米 /小时 .根据题意所列方程正确的是 ( )312 312 312 312A . x -x-26= 1B.x+26 - x = 1312312312 312C . x -x+26 = 1 D.x-26 - x = 17.一个蜡烛长 20cm. 点燃后每小时燃烧 5cm. 燃烧时剩下的长度为y ( cm )与燃烧时间 x (小时)之间的函数关系用图象表示为下图中的 ( )yy yy20202020A . o 4 xo 4 xD .o 4 xo 4 xB .C .x 3y8. .若把分式2x 的 x 、 y 同时缩小 12 倍 .则分式的值()A .扩大 12 倍B .缩小 12 倍C .不变D .缩小 6 倍 9.要测量河两岸相对的两点 A.B 的距离 .先在 AB 的垂线 BF 上取两点 C.D. 使 CD=BC. 再作出 BF 的垂线 DE. 使 A.C.E 在一条直线上(如图所示) .可以证明△ EDC?≌△ ABC. 得ED=AB. 因此测得 ED 的长就是 AB 的长 .判定△ EDC ≌△ ABC 的理由是()A . S . A .S .B . A . S .A .C . S . S . S .D . A . A . S .1 / 410.一天 .小和爸爸去登山.已知山脚到山的路程300 米.小先走了一段路程 .爸爸才开始出.中两条段分表示小和爸爸离开山脚登山的路程S(米)与登山所用的t(分)的关系(从爸爸开始登山).根据象 .下列法的是()A .爸爸登山 .小已走了50 米B .爸爸走了 5 分 .小仍在爸爸的前面C.小比爸爸晚到山D.爸爸前 10 分登山的速度比小慢.10 分后登山的速度比小快二 .填空 : (每 3 分 .共 18分)x11 .当 x _______ .分式x-1有意;g/cm 3. 用科学数法表示 ____________ g/cm 3;12 .空气的位体量0.00123913 .点 P( 1.2 )关于 y 称点的坐是________________ ;将直 y=3x 向上平移 3 个位后得到的直解析式是 ________________ ;14 .当 m______________.函数 y= ( m- 3) x- 2 中 y 随 x 的增大而减小;15 .小准将平的零用一些存起来.目前他已存有 50 元 .从在起他准每个月存12 元.写出小的存款数 y(元)与从在开始的月份数x(月)之的函数关系式______________________;x3x5x7x916 .察下面一列分式: -y .y2. -y3.y4. ⋯ .根据你的律写出第8 个分式:_________________________.三.解答 :( 共 52 分 )1-1+ ︱- 2 ︱ +( 2 - )0 17 . (4 分 ) ( )2π解:原式 =x2-2x+12-x18 . (4 分 )算:x2-1+x+1解:原式 =1-x3-2x19 . (5 分 )解分式方程:1+ x-2 = x-2解:2 / 41x+21 .其中 x= 220 .(5 分)先化简再求值:(1+ x+1)÷x2-解:原式 =21 . (6 分 ) “苏宁电器”家电部送货人员与销售人员人数之比为 1 :8. 由于今年 4 月以来家电的销量明显增多 .经理决定从销售人员中抽调22 人去送货 .结果送货人员与销售人员人数之比为 2 : 5.求这个商场家电部原来各有多少名送货人员和销售人员.22. (4 分) “兔赛跑龟”是同学们熟悉的寓言故事 .如图所示 .表示了寓言中的龟、兔的路程S 和时间 t 的关系(其中直线段表示乌龟.折线段表示兔子).请看图回答问题 .⑴赛跑中 .兔子共睡了 ___________分钟 .⑵乌龟在这次比赛中的平均速度是__________ 米 /分钟 .⑶乌龟比兔子早达到终点 _________ 分钟 .⑷兔子醒来后赶到终点这段时间的平均速度是__________米/分钟 .s(米)500200010 20 30 40 50 60t(分钟)23 .(7 分)矩形 ABOC 在平面直角坐标系中的位置如图所示.若点 A 的y 坐标为( -3.2 ).则A(-3,2)C(1)求出该矩形面积;(2 )写出点 B、 C 坐标;(3 )求出经过点 B 、 C 的直线的函数关系式 .解:B O x24.( 7 分)直线 y=x - 2 分别交 x、 y 轴于 A、 B 两点 .O 为原点 .y( 1)在平面直角坐标系中画出函数y=x- 2的图象;2( 2)求出△ AOB 的面积;( 3)经过△ AOB 的顶点能不能画出直线把△AOB 分成面积相等1的两部分?若能 .可以画几条?写出其中这样的一条直线所对应的函数关系式 .-2 -1 O12x-13 / 4-2解:25. ( 8 分)如图所示制作一种产品.需先将材料加热达到60 ℃后 . 再进行操作 .设该材料温度为y(℃) .从加热开始计算的时间为x ( min ) .据了解 .设该材料开始加热时. 温度 y 与时间 x 成一次函数关系;停止加热进行操作时.温度 y 与时间 x 成反比例关系(如图) .已知该材料在操作加工前的温度为20℃ .加热 5 分钟后温度达到 60 ℃.⑴分别求出将材料加热和停止加热进行操作时.y 与 x 的函数关系式 .⑵根据工艺要求.材料的温度低于15℃ .需停止操作 .那么从开始加热到停止操作 .共经历了多少时间.解:y(0 C )605040302015100510152025 30x ( mi n )4 / 4。
华师大版数学八年级下学期《期中考试卷》及答案
三、解答题
15.计算:
(1) (2)
16.解方程:(1) (2)
17.解方程
(1) (2)
18.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者 支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
A. B. C. D.
[答案]C
[解析]
[分析]
结合已知条件和反比例函数的性质,根据反比例函数图象上点的特性,即可看出y1与y2的大小关系.
[详解]∵反比例函数 (k<0)的图象在第二、四象限内,在每个象限内,y随x的增大而增大,
∵点 两点在该反比例函数的图象上,且 ,
∴A,B两点分别在第二,四象限的曲线上,
A.(3,5)B.(3,-5)C.(-3,5)D.(-3,-5)
[答案]B
[解析]
[分析]
关于x轴的对称的点的坐标的特征:横坐标相同,纵坐标互为相反数.
[详解]点P(3,5)关于x轴的对称点的坐标为(3,-5)
故选B
[点睛]考核知识点:轴对称和点的坐标.熟记规律是关键.
6.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()
A. B. C. D.
3.若分式 的值为零,则 的值是
A. B. C. D.
4.下列计算正确的是
A. B. C. D.
5.在平面直角坐标系中,点P(3,5)关于 轴对称的点的坐标是()
A.(3,5)B.(3,-5)C.(-3,5)D.(-3,-5)
华师大版八年级下学期数学《期中考试题》含答案
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题:
1.在 , , , , ,中分式的个数有()
A.2个B.3个C.4个D.5个
2.(11·大连)在平面直角坐标系中,点P(-3,2)所在象限 ( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
3.对于函数y=2x﹣1,下列说法正确的是()
A.它的图象过点(1,0)B.y值随着x值增大而减小
C.它的图象经过第二象限D.当x>1时,y>0
4.若分式 值为0,则x的值为()
A 0B. 1C. ﹣1D. ±1
5.下列各式变形正确的是()
A. B.
C. D.
6.函数y= 自变量x的取值范围是( )
① ;
②当0<x<3时, ;
③如图,当x=3时,EF= ;
④当x>0时, 随x的增大而增大, 随x的增大而减小.
其中正确结论的个数是()
A. 1B. 2C. 3D. 4
[答案]C
[解析]
试题分析:对于直线 ,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ (同底等高三角形面积相等),选项①正确;
二、填空题:
11.用科学记数法表示:0.0000002467=_______.
12.在平面直角坐标系中,把直线y=3x-3向上平移3个单位长度后,其直线解析式 ___________________
华东师大版八年级数学下学期期中考试试卷含答案解析
华东师大版八年级数学下学期期中考试试卷一、选择题(共10小题,每小题3分,共30分)1.如果分式的值为零,那么x等于()A.1B.﹣1C.0D.±12.下列计算正确的是()A.=x B.=C.2÷2﹣1=﹣1D.a﹣3=(a3)﹣13.点M(﹣2,1)在第()象限.A.一B.二C.三D.四4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3B.1.2×10﹣3C.1.239×10﹣2D.1.239×10﹣45.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是()A.B.C.D.6.如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC 的面积为2,则k的值为()A.4B.3C.2D.17.某中学要购买一批校服,已知甲做5件与乙做6件的时间相等,两人每天共完成55件,设甲每天完成x件,则下列方程不正确的是()A.=B.=C.=D.6x=5(55﹣x)8.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .249.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )A .B .C .D .10.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC . 其中正确结论的个数为( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,共15分)11.计算+=.12.如图,AB∥DC,AD∥BC,如果∠B=50°,那么∠D=度.13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 y2.(填“>”或“<”).14.若分式方程的解为正数,则a的取值范围是.15.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标为.三、解答题(共8小题,75分)16.(8分)先化简÷(﹣1),然后选取一个合适的数代入再求值.17.(9分)已知在▱ABCD中,∠BDA=90°,AC=10cm,BD=6cm,求AD的长.18.(9分)解方程﹣3=.19.(9分)如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2),求直线和双曲线的解析式.20.(9分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为千元,印刷费为平均每个元,甲厂的费用y l与证书数量x 之间的函数关系式为.(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个元;(3)当印制证书数量超过2千个时,求乙厂的总费用y2与证书数量x之间的函数关系式;(4)若该单位需印制证书数量为8千个,该单位应选择哪个厂更节省费用?请说明理由.21.(10分)超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由.22.(10分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.其中,b=;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.23.(11分)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(提示:小学已学过梯形面积计算方法)(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请写出S关于t的函数解析式.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.如果分式的值为零,那么x等于()A.1B.﹣1C.0D.±1【分析】根据分式的值为0的条件及分式有意义的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=﹣1.故选:B.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.2.下列计算正确的是()A.=x B.=C.2÷2﹣1=﹣1D.a﹣3=(a3)﹣1【分析】分子和分母同乘以(或除以)一个不为0的数,分数值不变.【解答】解:A、,错误;B、,错误;C、2÷2﹣1=4,错误;D、a﹣3=(a3)﹣1,正确;故选:D.【点评】此题考查分式的基本性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变解答.3.点M(﹣2,1)在第()象限.A.一B.二C.三D.四【分析】根据各象限内点的坐标特征解答.【解答】解:点M(﹣2,1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3B.1.2×10﹣3C.1.239×10﹣2D.1.239×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239g/cm3,则用科学记数法表示该数为1.239×10﹣3g/cm3.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是()A.B.C.D.【分析】等腰三角形的两个底角相等,由内角和定理可知:x+x+y=180,从而得y=180﹣2x,由y>0得x<90,又x>0,故0<x<90,据此可得答案.【解答】解:由等腰三角形的性质知y=180﹣2x,且0<x<90,故选:C.【点评】本题考查了三角形内角和定理,一次函数的实际应用及其图象画法,熟练掌握等腰三角形的性质及一次函数图象的画法是解题的关键.6.如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC 的面积为2,则k的值为()A.4B.3C.2D.1【分析】首先表示出BC,AB的长,再利用三角形面积得出k的值.【解答】解:设CO=BO=a,则AB=,∵△ABC的面积为2,∴×2a×=2,解得:k=2.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出三角形面积是解题关键.7.某中学要购买一批校服,已知甲做5件与乙做6件的时间相等,两人每天共完成55件,设甲每天完成x件,则下列方程不正确的是()A.=B.=C.=D.6x=5(55﹣x)【分析】本题用到的等量关系是:工作时间=工作总量÷工作效率,可根据关键语“甲做5件与乙做6件所用的时间相同”来列方程即可.【解答】解:设甲每天作x件,则乙每天做(55﹣x)件.由题意得:.或,或6x=5(55﹣x),故选:C.【点评】此题考查分式方程的应用,本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到合适的等量关系是解决问题的关键.8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED 的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x (单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.【分析】根据题意求出电费与用电量的分段函数,然后根据各分段内的函数图象即可得解.【解答】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100),=60+0.8x﹣80,=0.8x﹣20,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选:C.【点评】本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点评】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.二、填空题(共5小题,每小题3分,共15分)11.计算+=.【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:原式==.故答案为:.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.12.如图,AB∥DC,AD∥BC,如果∠B=50°,那么∠D=50度.【分析】先根据已知,证明所给四边形是平行四边形,然后根据平行四边形的性质对角相等求解.【解答】解:∵AB∥DC、AD∥BC∴四边形ABCD是平行四边形∴∠D=∠B=50°故答案为50.【点评】本题主要考查了平行四边形的判定定理和性质,属于基础题,比较简单.13.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,y2.∴y1<故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.若分式方程的解为正数,则a的取值范围是a<8,且a≠4.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.【解答】解:分式方程去分母得:x=2x﹣8+a,解得:x=8﹣a,根据题意得:8﹣a>0,8﹣a≠4,解得:a<8,且a≠4.故答案为:a<8,且a≠4.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.15.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标为(3,2).【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故答案为(3,2).【点评】本题考查了点的坐标表示方法,点的坐标与平行线的关系.三、解答题(共8小题,75分)16.(8分)先化简÷(﹣1),然后选取一个合适的数代入再求值.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=﹣(x﹣1)=1﹣x∵x≠﹣2和﹣1∴当x=0时,原式=1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)已知在▱ABCD中,∠BDA=90°,AC=10cm,BD=6cm,求AD的长.【分析】在Rt△ADO中,求出OD、OA,再利用勾股定理即可解决问题;【解答】解:∵四边形ABCD是平行四边形∴OA=AC,OD=BD,∵AC=10cm,BD=6cm,∴OD=3cm,OA=5cm,∵∠BDA=90°,∴AD ===4(cm ).【点评】本题考查平行四边形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.18.(9分)解方程﹣3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;【解答】解:去分母得:x ﹣1﹣3x +6=1, 解得:x =2,经检验x =2是增根,分式方程无解.【点评】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.19.(9分)如图,直线y 1=ax +b 与双曲线y 2=交于A 、B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(﹣3,﹣2),求直线和双曲线的解析式.【分析】利用待定系数法即可解决问题.【解答】解:∵点B (﹣3,﹣2)在双曲线y 2=上,∴=﹣2,∴k =6,∴双曲线的解析式为y 2=.把y =6代入y 2=得:x =1,∴A的坐标为(1,6),∵直线y1=ax+b经过A、B两点,∴,解得:,∴直线的解析式为直线y1=2x+4;【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法确定函数解析式,属于中考常考题型.20.(9分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为1千元,印刷费为平均每个0.5元,甲厂的费用y l与证书数量x之间的函数关系式为y l=0.5x+1.(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个 1.5元;(3)当印制证书数量超过2千个时,求乙厂的总费用y2与证书数量x之间的函数关系式;(4)若该单位需印制证书数量为8千个,该单位应选择哪个厂更节省费用?请说明理由.【分析】(1)结合图象便可看出y是关于x的一次函数,从图中可以观察出甲厂的制版费为1千元,一次函数的斜率为0.5即为证书的单价;(2)用2到6千个时的费用除以证件个数计算即可得解;(3)设函数解析式后用待定系数法解答即可;(4)分别求出甲乙两车的费用y关于证书个数x的函数,将x=8分别代入两个函数,可得出选择乙厂可省500元.【解答】解:(1)制版费1千元,y l=0.5x+1,证书单价0.5元;故答案为:1;0.5;y l=0.5x+1;(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个=3÷2=1.5元,故答案为:1.5;(3)设y2=kx+b,由图可知,当x=6时,y2=y1=0.5×6+1=4,所以函数图象经过点(2,3)和(6,4), 所以把(2,3)和(6,4)代入y 2=kx +b ,得,解得,所以y 2与x 之间的函数关系式为;(4)当x =8时,y 甲=×8+1=5,y 乙=×8+=;5﹣=0.5(千元)即,当印制8千张证书时,选择乙厂,节省费用500元.【点评】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.21.(10分)超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t 的一组对应值如下表:(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式; (2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由. 【分析】根据数据猜想v 是t 的反比例函数,应用待定系数法求k ,将t =10﹣7.5=2.5代入比较即可.【解答】解:(1)根据表格中数据,可知V = ∵v =75时,t =4, ∴k =75×4=300∴V =经检验,其它数据满足该函数关系式. (2)不能 ∵10﹣7.5=2.5∴t =2.5时,V ==120>100,∴汽车上午7:30从超越公司出发,不能在上午10:00之前到达新时代市场【点评】本题为反比例函数的应用题,考查了反比例函数的待定系数法及应用函数解析式解决实际问题.22.(10分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0.【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.23.(11分)如图,在平面直角坐标系中,四边形ABCD 的边AD 在x 轴上,点C 在y 轴的负半轴上,直线BC ∥AD ,且BC =3,OD =2,将经过A 、B 两点的直线l :y =﹣2x ﹣10向右平移,平移后的直线与x 轴交于点E ,与直线BC 交于点F ,设AE 的长为t (t ≥0). (1)四边形ABCD 的面积为 20 ;(提示:小学已学过梯形面积计算方法)(2)设四边形ABCD 被直线l 扫过的面积(阴影部分)为S ,请写出S 关于t 的函数解析式.【分析】(1)根据函数解析式得到OA =5,求得AC =7,得到OC =4,于是得到结论; (2)①当0≤t ≤3时,根据已知条件得到四边形ABFE 是平行四边形,于是得到S =AE •OC =4t ;②当3≤t <7时,如图1,求得直线CD 的解析式为:y =2x ﹣4,直线E ′F ′的解析式为:y =﹣2x +2t ﹣10,解方程组得到G (,t ﹣7),于是得到S =S 四边形ABCD ﹣S △DE ′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣,③当t ≥7时,S =S 四边形ABCD =20, 【解答】解:(1)在y =﹣2x ﹣10中,当y =0时,x =﹣5, ∴A (﹣5,0), ∴OA =5, ∴AD =7,把x =﹣3代入y =﹣2x ﹣10得,y =﹣4, ∴OC =4,∴四边形ABCD 的面积=(3+7)×4=20; 故答案为:20;(2)①当0≤t ≤3时,∵BC ∥AD ,AB ∥EF , ∴四边形ABFE 是平行四边形, ∴S =AE •OC =4t ;②当3≤t <7时,如图,∵C (0,﹣4),D (2,0), ∴直线CD 的解析式为:y =2x ﹣4, ∵E ′F ′∥AB ,BF ′∥AE ′, ∴BF ′=AE =t , ∴F ′(t ﹣3,﹣4),直线E ′F ′的解析式为:y =﹣2x +2t ﹣10,解得,,∴G (,t ﹣7),∴S =S 四边形ABCD ﹣S △DE ′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣, ③当t ≥7时,S =S 四边形ABCD =20,综上所述:S 关于t 的函数解析式为:S =.【点评】本题考查了一次函数图象与几何变换,解(1)的关键是利用自变量与函数值的对应关系得出A,C点的坐标;解(2)的关键是利用分类讨论的思想,以防遗漏.。
华师大版数学八年级下学期《期中检测卷》及答案
故答案为:(﹣7,﹣2).
[点睛]本题考查了坐标确定位置:直角坐标系中点与有序实数对一一对应.记住各象限点的坐标特征和坐标轴上点的坐标特征.
13.已知 ,则 _____________________;
①甲乙两地之间的路程是100km;
②前半个小时,货车的平均速度是40km/h;
③8∶00时,货车已行驶的路程是60km;
④最后40 km货车行驶的平均速度是100km/h;
⑤货车到达乙地的时间是8∶24,
其中,正确的结论是()
A. ①②③④B. ①③⑤C. ①③④D. ①③④⑤
[答案]D
[解析]
[分析]
(1)求 的值;
(2)函数图象在哪些象限?在每个象限内, 随 的增大而怎样变化?
(3)当 时,求 的取值范围。
21.如图,已知一次函数 图象与反比例函数 的图象交于点 ,与 轴交于点 ,过点 作 轴,垂足是 ,且 .
(1)求 的值.
(2)若一次函数 的图象与 轴交于点 ,求 的面积.
22.某公司生产 两种设备,已知每台 种设备的成本是 种设备的1.5倍,公司若投入6万元生产 种设备,投人15万元生产 种设备,则可生产两种设备共40台.请解答下列问题:
华 东 师 大 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
第Ⅰ卷选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)
1.函数 的自变量 的取值范围是( )
∵ ,
华东师大版八年级数学下册期中试卷及答案【完整版】
华东师大版八年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、D7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、32或424、10.5、26、32°三、解答题(本大题共6小题,共72分)1、4x =2、x 2-,32-. 3、(1)见解析;(2)经过,理由见解析4、(1)y =x +5;(2)272;(3)x >-3.5、略.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
完整版华东师大版八年级数学下册期中试卷
)华师大八年级数学(下期中测试姓名分)3分,共30(每题一.选择题:yx - y2),1.分式,中,最简分式有( 2222yx+y4x .3个 D C.2个个0A.个B.1)( 2.下列算式错误的是24 2+11x+1c+1y1xcy2.+ 1= D.= C A.+ = 1 B.() = 22cx2xxcx+14xx+1) -n)在( )在第一象限,则点(3.若点(m,nm,D.第四象限.第三象限.第二象限A.第一象限 B C)04.已知在一次函数y=kx+b中,k<,b>0,则这个一次函数的大致图象是(y y y yxo o o x x x oD.C.A.B.y P 轴正半轴上的一个动点,过点,0)是x5.如图,点P(x1 ,当点P沿轴的垂线交双曲线作xy= 于点Q,连结OQx Q)Rtx轴的正方向运动时,△QOP的面积(Ox逐渐减小 B A.逐渐增大.P题)18(第) 第5题(无法确定. D 保持不变C.小时,现在该列火车从甲站到乙次大提速后,6速度提高了26千米/6.一列火车自2007年全国铁路第...千米,设火车提速前的速312站所用的时间比原来减少了1个小时。
已知甲、乙两个车站的路程是) /度为x千米小时,根据题意所列方程正确的是(312312312312= 1 A.-= 1 .B -xx+26xx-26312312312312= 1 D.-- = 1 .Cxx-26x+26x(小时)之x(cm)与燃烧时间5cm7.一个蜡烛长20cm,点燃后每小时燃烧,燃烧时剩下的长度为y) 间的函数关系用图象表示为下图中的(yy y y20202020x o o x x o x o 4444. B C.D ..Ayx?3).8.若把分式倍,则分式的值(、的xy同时缩小12x2A.扩大倍12 6D.不变12B.缩小倍C .缩小倍,BA.9要测量河两岸相对的两点,的距离,CD=BC使,,上取两点的垂线AB先在BFCD,CA使,的垂线BF再作出DE,可以证明△,(如图所示)E,在一条直线上≌△EDC?ABC1)ABC的理由是(EDC得ED=AB,因此测得ED的长就是AB的长,判定△≌△S.A .C.S.S.S.D..A..A.S.A.S.B.AS.A图小军先走了一段路程,爸爸才开始出发.10.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.(分)的关系(从爸爸开始t中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间)登山时计时).根据图象,下列说法错误的是(米.爸爸登山时,小军已走了50A 5分钟,小军仍在爸爸的前面B.爸爸走了.小军比爸爸晚到山顶C 10分钟后登山的速度比小军快D.爸爸前10分钟登山的速度比小军慢,18分):(每题3分,共.二填空题x 有意义;时,分式11.当x _______x-133;,用科学记数法表示为____________12 g/cm.空气的单位体积质量为0.001239 g/cm13.点P(1,2)关于y 轴对称点的坐标是________________;将直线y=3x向上平移3个单位后得到的直线解析式是________________;14.当m______________时,函数y=(m-3)x-2中y随x的增大而减小;15.小张准备将平时的零用钱节约一些储存起来,目前他已存有50元,从现在起他准备每个月存12元,请写出小张的存款数y(元)与从现在开始的月份数x(月)之间的函数关系式______________________;3579xxxx16.观察下面一列分式:- ,,- ,,…,根据你发现的规律写出第8个分式:432yyyy_________________________。
【华东师大版】初二数学下期中试卷(带答案)
一、选择题1.一个多边形的内角和等于它的外角和的3倍,则它是( )边形.A .六B .七C .八D .九2.一个多边形的每个外角都等于相邻内角的13,这个多边形为( ) A .六边形 B .八边形 C .十边形 D .十二边形 3.如图,已知ABC ∆周长为1,连接ABC ∆三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是( )A .201912 B .202012 C .12019 D .120204.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 5.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( ) A .4- B .0 C .3 D .66.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ 7.下列分解因式正确的是( )A .32(1)a a a a -=-B .32244x x y xy ++=2(2)x x y +C .22244(2)x xy y x y -+-=-+D .2216164(42)x x x ++=+8.下列从左到右的变形属于因式分解的是( )A .(x y)ax ay a +=+B .221(2)1x x x x ++=++C .21(1)(1)x x x -=+-D .2(2)(2)4x x x +-=- 9.下列从左到右的变形,属于因式分解的是( )A .(a +1)(a -1)=a 2-1B .2a -2b =2(a -b )C .x (x +1)=x 2+xD .x 2+2x +3=(x +1)2+2 10.在平面直角坐标系中,把点()5,4P -向右平移8个单位得到点1P ,再将点1P 绕原点顺时针旋转90︒得到点2P ,则点2P 的坐标是( )A .()4,3-B .()4,3C .()4,3--D .()4,3- 11.在平面直角坐标系中,将点A (m -1,n +2)先向右平移3个单位,再向上平移2个单位,得到点A ′.若点A ′位于第二象限,则m 、n 的取值范围分别是( )A .m <0,n >0B .m <0,n <-2C .m <-2,n >-4D .m <1,n >-2 12.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm二、填空题13.如图,在平行四边形ABCD 中,∠B=60°,∠BCD 的平分线交AD 点E ,若CD=3,四边形ABCE 的周长为13,则BC 长为__.14.如图,己知ABCD 中,点M 是BC 的中点,线段AM 、BD 互相垂直,AM=3,BD=6,则该平行四 边形的面积为____.15.一艘轮船在静水中的速度为a千米/时,若A、B两个港口之间的距离为50千米,水流的速度为b千米/时,轮船往返两个港口之间一次需____________小时.16.已知x ay b=⎧⎨=⎩,是方程352x y-=的解,则代数式352ab+的值为______.17.因式分解:(1)4a2b2-ab2=____(2)2(x-y)2-x(y-x)=_____18.如图,在ABC∆中,8AB=,6AC=,30BAC∠=,将ABC∆绕点A逆时针旋转60得到11AB C∆,连接1BC,则1BC的长为__________.19.若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x间宿舍,则可列不等式组为____20.如图,等腰三角形ABC的面积为80,底边10BC=,腰AC的垂直平分线EF交,AC AB于点E,F,若D为BC边中点,M为线段EF上一动点,则CDM的周长最小值为________.三、解答题21.一个多边形的每个外角都等于40°,求这个多边形的内角和.22.解下列分式方程(1)42122x xx x++=--;(2)()()21112xx x x=+++-.23.(做一做)计算:①(2)(3)++=x x_____________;②(4)(5)+-=x x_______.(探索归纳)如图甲、乙是两个长和宽都相等的长方形,其中长为()x a+,宽为()x b+.③根据甲图、乙图的特征用不同的方法计算长方形的面积,得到:关于字母x 的系数是1的两个一次式相乘的计算规律用数学式表达是_________________________.(尝试运用)利用因式分解与整式乘法的关系,我们可以逆用上述表达式得到一些二次三项式的因式分解.④因式分解2243()()()++=+++=++x x x a b x ab x a x b ,其中a 、b 可以是__________;⑤若27(9)(2)-+=-+x x m x x ,则m =__________.(拓展延伸)根据你的经验,解答下列问题⑥若29x kx ++可以分解成关于x 的两个一次式乘积的形式,请写出整数k 的一个值______;⑦若24+-x px 可以分解成关于x 的两个一次式乘积的形式,则整数p 的值一定是( )A .3B .3-C .0D .0或3±⑧若24-+x x q 可以分解成关于x 的两个一次式乘积的形式,则整数q 的值一定是( )A .4B .0C .有限个D .有无数个24.如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,AC 、BD 交于M(1)如图1,当α=90°时,∠AMD 的度数为 °;(2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当△OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,不用证明;若不确定,说明理由.25.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.26.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据多边形的内角和等于它的外角和的3倍可列方程求得边数.【详解】解:设多边形的边数为n ,根据题意得:(n−2)×180°=360°×3.解得n =8.故选:C .【点睛】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键. 2.B解析:B【分析】设一个外角是x ,则一个内角是3x ,列得3x+x=180°,求得x ,再用外角和360°除以x 即可得到答案.【详解】设一个外角是x ,则一个内角是3x ,3x+x=180°,解得:x=45°,由于多边形的外角和为360°,则边数为360°÷45°=8,故选:B .【点睛】此题考查多边形内角与外角互补计算,多边形外角和,求多边形边数,熟记多边形外角与内角的关系是解题的关键.3.A解析:A【分析】根据三角形的中位线定理建立周长之间的关系,按规律求解.【详解】根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半, 那么第二个三角形的周长=△ABC 的周长1111222⨯=⨯=, 第三个三角形的周长=△ABC 的周长2211112222⎛⎫⨯⨯== ⎪⎝⎭, ,第n 个三角形的周长112n -=, ∴第2020个三角形的周长201912=.故选:A .【点睛】 本题考查了三角形的中位线定理,解决本题的关键是利用三角形的中位线定理得到第n 个三角形的周长与第一个三角形的周长的规律.4.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得:原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.5.C解析:C【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解.【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠, ∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6, ∴它们的和为51363--++=;故选C .【点睛】本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.6.D解析:D【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程.【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D .【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.解析:B【分析】根据分解因式的方法进行分解,同时分解到不能再分解为止;【详解】A 、()()()32111a a a a a a a -=-=+- ,故该选项错误; B 、()()23222244442x x y xy x x xy y x x y ++=++=+ ,故该选项正确; C 、()()2222244442x xy y x xy y x y -+-=--+=--,故该选项错误;D 、()()222161644441421x x x x x ++=++=+,故该选项错误; 故选:B .【点睛】本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;8.C解析:C【分析】根据因式分解的概念:把一个多项式转化成几个整式积的形式,依次判断可得答案.【详解】解:A 、没把一个多项式转化成几个整式积的形式,故A 错误;B 、没一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选C .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式. 9.B解析:B【分析】直接利用因式分解的定义以及整式的乘法运算法则计算得出答案.【详解】解:A 、(a+1)(a-1)=a 2-1,属于整式乘法,故此选项错误;B 、2a-2b=2(a-b ),属于因式分解,故此选项正确;C 、x (x+1)=x 2+x ,属于整式乘法,故此选项错误;D 、x 2+2x+3=(x+1)2+2,不符合因式分解的定义,故此选项错误.故选:B .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.解析:D【分析】把点()5,4P -向右平移8个单位得到点()13,4P ,再将点1P 绕原点顺时针旋转90︒得到点2P 即可求解.【详解】解:把点()5,4P -向右平移8个单位得到点()13,4P ,再将点1P 绕原点顺时针旋转90︒得到点2P ()4,3-,故选:D .【点睛】本题考查点的坐标变换,掌握点的坐标变换规律是解题的关键.11.C解析:C【分析】根据点的平移规律可得向右平移3个单位,再向上平移2个单位得到(m-1+3,n+2+2),再根据第二象限内点的坐标符号可得.【详解】点A (m-1,n+2)先向右平移3个单位,再向上平移2个单位得到点A′(m+2,n+4), ∵点A′位于第二象限,∴2040m n +<⎧⎨+>⎩解得:m <-2,n >-4,故选C .【点睛】此题主要考查了坐标与图形变化-平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.12.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,=,AD平分BACAB AC∠,∴AN BC⊥,BN CN=,∴90∠=∠=,ANB ANC∠=∠=,EBC E60∴EBM△是等边三角形,=,6BE cm∴6===,EB EM BM cmDF BC,//∴60∠=∠=,EFD EBM∴EFD△是等边三角形,DE cm=,2∴2===,EF FD ED cm∴4=,DM cm△是等边三角形,EBM∴60∠=,EMB∴30∠=,NDM∴2=,NM cm∴4=-=,BN BM NM cm∴28BC BN cm==.故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.二、填空题13.5【分析】利用平行四边形的对边相等且互相平行进而得出DE=CD=3再求出AE+BC=7BC-AE=3即可求出BC的长【详解】∵CE平分∠BCD交AD边于点E∴∠ECD=∠ECB∵在平行四边形ABCD解析:5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC-AE=3,即可求出BC 的长.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD=3,AD=BC ,∠D=∠B=60°,∴∠DEC=∠ECB ,∴∠DEC=∠DCE ,∴DE=CD=3,∴△CDE 是等边三角形,∴CE=CD=3,∵四边形ABCE 的周长为13,∴AE+BC=13-3-3=7①,∵AD-AE ═DE=3,即BC-AE=3②,由①②得:BC=5;故答案为:5.【点睛】此题主要考查了平行四边形的性质,等腰三角形的判定;熟练掌握平行四边形的性质,证出∠DEC=∠DCE 是解题关键.14.12【分析】由题意连接MD 根据三角形同底同高可得再利用平行四边形的性质得出进而运用面积的比例进行分析计算即可求得平行四边形的面积【详解】解:由题意连接MD ∵点M 是BC 的中点∴∵四边形是平行四边形∴∵ 解析:12【分析】由题意连接MD,根据三角形同底同高可得DBM DCM S S =,再利用平行四边形的性质得出 ABD DBC S S =,进而运用面积的比例进行分析计算即可求得平行四边形的面积.【详解】解:由题意连接MD,∵点M 是BC 的中点,∴DBM DCM S S =,22DBC DCM DBM S S S ==,∵四边形ABCD 是平行四边形,∴ABD DBC S S =,∵线段AM 、BD 互相垂直,AM=3,BD=6,∴S 四边形ABMD =1136922AM BD =⨯⨯=, ∵S 四边形ABMD =223DCM ABD DBC DCM DCM DCM DCM DCM ABCD S S S S S S S S S -=+-=+-=, ∴933DCM S=÷=, ∴44312D ABC M D C S S ==⨯=.故答案为:12.【点睛】本题考查平行四边形的性质,熟练掌握三角形同底同高其面积相等以及平行四边形的对角线平分平行四边形的面积是解题的关键.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米 解析:22100a a b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解.【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为:5050a b a b++- ()()()()5050a b a b a b a b -++=+- ()()50505050a b a b a b a b -++=+- 22100a a b =- 故答案为:22100aa b -. 【点睛】本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.1【分析】将代入方程有代入即可计算【详解】解:将代入方程有3a-5b=2有将代入有:故答案为:1【点睛】本题考查了二元一次方程的解及分式的化简其中根据二元一次方程得到从而使用整体代入思想解题是关键解析:1【分析】将x a y b=⎧⎨=⎩,代入方程352x y -=,有253b a +=,代入352a b +即可计算. 【详解】解:将x a y b =⎧⎨=⎩,代入方程352x y -=,有3a -5b =2,有352a b =+, 将352a b =+代入352a b +有:52152b b +=+ 故答案为:1.【点睛】本题考查了二元一次方程的解及分式的化简,其中根据二元一次方程得到352a b =+从而使用整体代入思想解题是关键.17.ab2(4a-1)(y-x )(2y-3x )【分析】(1)直接提取公因式ab2即可;(2)先凑出公因式y-x 然后提取公因式即可【详解】解:(1)4a2b2-ab2=ab2(4a-1);(2)2(x -y解析:ab 2(4a-1) (y-x )(2y-3x )【分析】(1)直接提取公因式ab 2即可;(2)先凑出公因式y-x ,然后提取公因式即可.【详解】解:(1)4a 2b 2-ab 2=ab 2(4a-1);(2)2(x -y )2-x (y -x )=2(y -x )2-x (y -x )=(y-x )[2(y-x)-x]=(y-x )(2y-3x ).【点睛】本题考查了运用提取公因式法因式分解,掌握确定公因式的方法是解答本题的关键. 18.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 19.【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出 解析:()142626x x ≤+--<【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.20.21【分析】连接ADAM 由于△ABC 是等腰三角形点D 是BC 边的中点故AD ⊥BC 再根据三角形的面积公式求出AD 的长再根据EF 是线段AC 的垂直平分线可知点A 关于直线EF 的对称点为点CMA =MC 推出MC +解析:21【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC +DM =MA +DM≥AD ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD =12×10×AD =80,解得:AD =16, ∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =16+12×10=21. 故答案是:21.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键. 三、解答题21.1260︒【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】 解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.①256x x ++;②220x x --;③(x+a)(x+b)= x 2+(a+b)x+ab ;④3,1或1,3;⑤-18;⑥6(答案不唯一);⑦D ;⑧D【分析】①根据多项式乘多项式的法则,即可求解;②根据多项式乘多项式的法则,即可求解;③用两种方法表示矩形的面积,即可得到答案;④由题意得a+b=4且ab=3,进而即可求解;⑤把(9)(2)x x -+展开,即可求解;⑥根据完全平方公式,写出一个符合要求的答案即可;⑦由-4=1×(-4)=(-1)×4=2×(-2),进而即可求解;⑧根据“和为-4的两个整数有无数组”,进而即可求解.【详解】①(2)(3)++=x x 2223656x x x x x +++=++,故答案是:256x x ++;②(4)(5)+-=x x 22542020x x x x x -+-=--,故答案是:220x x --;③∵S 甲=(x+a)(x+b),S 乙=x 2+ax+bx+ab= x 2+(a+b)x+ab ,∴(x+a)(x+b)= x 2+(a+b)x+ab ,故答案是:(x+a)(x+b)= x 2+(a+b)x+ab ;④由题意得:a+b=4且ab=3,∴31a b =⎧⎨=⎩或13a b =⎧⎨=⎩, 故答案是:3,1或1,3;⑤∵27(9)(2)-+=-+x x m x x =x 2-7x-18,∴m=-18,故答案是:-18;⑥∵29x kx ++可以分解成关于x 的两个一次式乘积的形式,∴k 可能为6,故答案是:6(答案不唯一);⑦∵24+-x px 可以分解成关于x 的两个一次式乘积的形式,∴-4=1×(-4)=(-1)×4=2×(-2),∴p=0或±3,故选D ;⑧∵和为-4的两个整数有无数组,∴整数q 的值有无数个,故选D .【点睛】本题主要考查多项式乘多项式的运算法则,通过题目得到结论:2()()()x a b x ab x a x b +++=++,是解题的关键.24.(1)90;(2)120°;(3)存在,∠AMD =180°﹣α【分析】(1)如图1中,设OA 交BD 于K .只要证明△BOD ≌△AOC ,推出∠OBD=∠OAC ,由∠AKM=∠BKO ,得∠AMK=∠BOK=90°可得结论.(2)如图2中,设OA 交BD 于K .只要证明△BOD ≌△AOC ,推出∠OBD=∠OAC ,由∠AKM=∠BKO ,推出∠AMK=∠BOK=60°可得结论.(3)如图3中,设OB 交AC 于K .只要证明△BOD ≌△AOC ,可得∠OBD=∠OAC ,由∠AKO=∠BKM ,推出∠AOK=∠BMK=α.可得∠AMD=180°-α;【详解】解:(1)如图1中,设OA 交BD 于K .∵OA=OB ,OC=OD ,∠AOB=∠COD=α,∴∠BOD=∠AOC ,∴△BOD ≌△AOC ,∴∠OBD=∠OAC ,∵∠AKM=∠BKO ,∴∠AMK=∠BOK=90°,∴∠AMD=180°-90°=90°.故答案为90.(2)如图2中,设OA 交BD 于K .∵OA=OB ,OC=OD ,∠AOB=∠COD=α,∴∠BOD=∠AOC ,∴△BOD ≌△AOC ,∴∠OBD=∠OAC ,∵∠AKM=∠BKO ,∴∠AMK=∠BOK=60°,∴∠AMD=180°-60°=120°,(3)如图3中,设OB 交AC 于K .∵OA=OB ,OC=OD ,∠AOB=∠COD=α,∴∠BOD=∠AOC ,∴△BOD ≌△AOC ,∴∠OBD=∠OAC ,∵∠AKO=∠BKM ,∴∠AOK=∠BMK=α.∴∠AMD=180°-α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.25.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .26.见解析【分析】(1)先作线段AB 的垂直平分线DE ,再延长BC 即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE ,得到答案; (3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC ,证得BE=EF ,又因为AE= BE ,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE是AB的垂直平分线∴DE⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.。
华东师大版八年级数学下册期中试卷及答案【各版本】
华东师大版八年级数学下册期中试卷及答案【各版本】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO 的周长是()A.10 B.14 C.20 D.22二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.21273=___________.3.若m+1m=3,则m2+21m=________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、A6、A7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±323、74、2≤a+2b ≤5.5、46、32°三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、x 2-,32-. 3、0.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
【华东师大版】初二数学下期中试题含答案
一、选择题1.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .一组对边平行,另一组对边相等的四边形是平行四边形C .对于所有自然数n ,237n n -+的值都是质数D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等2.下列计算正确的是( )A .()23232-⨯=±B .2363=C .523-=D .622+= 3.计算132252⨯+⨯的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 4.二次根式32a ,12,35,44a +,22x y +中,是最简二次根式的个数有( )A .1个B .2个C .3个D .4个 5.下列计算正确的是( ) A .42=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 6.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个 7.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则平行四边形ABCD 的周长是( )A .60B .30C .20D .16 8.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案9.下列四组线段中,能构成直角三角形的是( )A .2cm 、4cm 、5cmB .15cm 、20cm 、25cmC .0.2cm 、0.3cm 、0.4cmD .1cm 、2cm 、2.5cm 10.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE上.下列结论:其中正确的有( )①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个 11.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .6412.如图,90ABC ︒∠=,//AD BC ,以B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过点C 作CF BE ⊥,垂足为F .若6AB =,10BC =,则EF 的长为( )A .1B .2C .3D .4二、填空题13.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF 和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .14.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.15.如果最简二次根式123b a ++和3a b +是同类二次根式,则ab =____________. 16.20452-=_______. 17.已知5ab =,则b a a b a b+=__. 18.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)19.已知直角坐标平面内的Rt △ABC 三个顶点的坐标分别为A (4,3)、B (1,2)、C (3,-4),则直角顶点是_________.20.如图,点A 是∠MON=45°内部一点,且OA=4cm ,分别在边OM ,ON 上各取一点B ,C ,分别连接A ,B ,C 三点组成三角形,则△ABC 最小周长为 ________ .三、解答题21.已知:如图,在梯形ABCD 中,//AD BC ,AB CD =,2BC AD =,DE BC ⊥,垂足为点F ,且F 是DE 的中点,联结AE ,交边BC 于点G .(1)求证:四边形ABGD 是平行四边形;(2)如果2AD AB =,求证:四边形DGEC 是正方形.22.如图,在正方形中ABCD ,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)若点G 在AD 上,且45GCE ︒∠=,判断线段GE BE GD 、、之间的数量关系,并说明理由.23.计算:(1)01822202033232++; (224062533. (3)解方程组244523x y x y -=-⎧⎨-=-⎩.(4)解方程组4 34 2312 x yx y⎧+=⎪⎨⎪-=⎩.24.(1)计算:()()()2323251-+--.(2)先化简,再求值:221193xx x+⎛⎫÷-⎪-+⎝⎭,其中32x=+.25.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度4,1BC m BE m==.求滑道AC的长度.26.如图,某人为了测量小山顶上的塔顶离地面的高度CD,他在山下的点A处测得塔尖点D的仰角为45︒,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60︒,求CD的高度(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A进行判断;根据平行四边形的判定对B进行判断;取n=6可对C进行判断;根据三角形全等的知识可对D进行判断.【详解】解:A、钝角三角形的三条高线相交于三角形外一点,所以A选项错误;B、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B选项错误;C 、当n=6时,n 2-3n+7=25,25不是质数,所以C 选项错误;D 、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D 选项准确.故选:D .【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.2.B解析:B【分析】根据二次根式的性质进行化简和计算,然后进行判断即可.【详解】解:A =,所以此选项错误;B ,3===C -D ,故选:B .【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.D解析:D 【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<,∴748<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.4.B解析:B【分析】根据最简二次根式的定义进行求解即可.【详解】=2==2个,故选:B .【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.C解析:C【分析】A 选项利用二次根式的化简判断即可;B 利用合并同类项的运算判断即可;C 利用积的乘方判断即可;D 利用同底数幂的除法判断即可;【详解】A 2= ,不符合二次根式的化简,故该选项错误;B 、22223x x x += ,不符合合并同类项的运算,故该选项错误;C 、()326328a ba b -=-,故该选项正确; D 、()523x x x -÷=- ,不符合同底数幂的除法,故该选项错误;故选:C .【点睛】本题考查了二次根式的化简,合并同类项,整数指数幂,正确掌握公式是解题的关键; 6.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 7.C解析:C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵▱ABCD 中,AD ∥BC ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵在▱ABCD 中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.8.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.9.B解析:B【分析】根据勾股定理逆定理逐项分析即可.【详解】A :2222+45≠ ,不符合题意;B :22215+20=25 ,符合题意;C :2220.2+0.30.4≠ ,不符合题意;D :2221+23≠ ,不符合题意;故选B【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.10.C解析:C【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E ,∴∠DAB =∠ACE ,故②正确;∴∠ACE +∠ACD =∠ACD +∠DCB =90°,∴∠ACE =∠DCB ,在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;∴AE =BD ,∠CEA =∠CDB =45°,∴∠ADB =∠CDB +∠EDC =90°,∴△ADB 是直角三角形,∴AD 2+BD 2=AB 2,∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形,∴AB =2AC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中, 45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△FCD (SAS),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确;故选:C .【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键. 11.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.12.B解析:B【分析】根据题意结合勾股定理可求出AE 长,再根据//AD BC ,可证明AEB CBF ∠=∠,即可证明()ABE FCB AAS ≅,得出结论BF=AE ,即可求出EF .【详解】根据题意可知BC=BE=10,90BAE BFC ∠=∠=︒.在Rt ABE △中,22221068AEBE AB . ∵//AD BC ,∴AEB CBF ∠=∠,∴()ABE FCB AAS ≅,∴BF=AE=8,∴EF=BE-BF=10-8=2.故选:B . 【点睛】本题考查三角形全等的判定和性质,平行线的性质以及勾股定理.利用“角角边”证明ABE FCB ≅是解答本题的关键.二、填空题13.【分析】如图连接OAOBOC 设平行四边形的面积为4S 求出S1S2(用s 表示)即可解决问题【详解】解:如图连接OAOBOC 设平行四边形的面积为4S ∵点O 是平行四边形ABCD 的对称中心∴S △AOB=S △解析:32【分析】如图,连接OA ,OB ,OC .设平行四边形的面积为4S .求出S 1,S 2(用s 表示)即可解决问题.【详解】解:如图,连接OA ,OB ,OC .设平行四边形的面积为4S .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =S , ∵EF=12AB ,GH=13BC , ∴S 1=12S ,S 2=13S , ∴12132123S S S S ==, ∴1232S S =; 故答案为:32. 【点睛】本题考查中心对称,平行四边形的性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 14.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形 2【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=. ∴在Rt MND △中,222222MN MD ===【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND是等腰直角三角形在结合勾股定理求解是解答本题的关键.15.0【分析】根据最简二次根式及同类二次根式的定义得求出ab的值代入计算即可【详解】由题意得解得∴ab=0故答案为:0【点睛】此题考查最简二次根式及同类二次根式的定义解二元一次方程组熟记定义是解题的关键解析:0【分析】根据最简二次根式及同类二次根式的定义得12233ba a b+=⎧⎨+=+⎩,求出a、b的值代入计算即可.【详解】由题意得12233ba a b+=⎧⎨+=+⎩,解得10 ba=⎧⎨=⎩,∴ab=0,故答案为:0.【点睛】此题考查最简二次根式及同类二次根式的定义,解二元一次方程组,熟记定义是解题的关键.16.【分析】先化简二次根式再进行计算即可【详解】解:=故答案为:【点睛】此题主要考查了二次根式加减法关键是灵活运用二次根式的性质时行化简解析:【分析】先化简二次根式,再进行计算即可.【详解】2===故答案为:【点睛】此题主要考查了二次根式加减法,关键是灵活运用二次根式的性质时行化简.17.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+a b =+,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即=±故答案为±【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.18.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB=【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC的长度即为所求,在Rt△ABC中,AB=π•aπ=a,BC=2,则:2222=+=4AC AB BC a+,所以2+4a2+4a2+4a.【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图.19.B【分析】先根据两点间的距离公式得到AB2BC2AC2的值然后根据勾股定理的逆定理即可解答【详解】解:∵A(43)B(12)C(3-4)∴AB2=(4-1)2+(3-2)2=10AC2=(3-4)2解析:B【分析】先根据两点间的距离公式得到AB2、BC2、AC2的值,然后根据勾股定理的逆定理即可解答.【详解】解:∵A(4,3)、B(1,2)、C(3,-4),∴AB2=(4-1)2+(3-2)2=10,AC2=(3-4)2+(-4-3)2=50,BC2=(3-1)2+(-4-2)2=40,∴AC2=AB2+BC2,∴△ABC为直角三角形,∴∠B=90°,即该直角三角形的直角顶点为B.故答案为B.【点睛】本题主要考查勾股定理的逆定理、两点间的距离公式,正确的运用相关的定理、公式成为解答本题的关键.20.4【分析】作A关于OM的对称点A´A关于ON的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合解析:2【分析】作A关于OM的对称点A´,A关于ON的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B,AC=A´´C,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,如图,∴AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90° ∴A´A´´=2244+=42(cm )∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´=42(cm )即△ABC 的周长最小值为42故答案为:42.【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.(1)见解析;(2)见解析【分析】(1)连接AC 和BE ,根据垂直平分线的性质和等腰三角形的性质证明AB ∥EC 和AB EC =即可得到四边形ABEC 是平行四边形,由平行四边形的性质得12BG CG BC ==,即可证明结论; (2)先由(1)的结论证明四边形DGEC 是平行四边形,再由DC EC =得到四边形DGEC 是菱形,再根据勾股定理的逆定理得90GDC ∠=,即可证明结论.【详解】解:(1)如图,连接AC 和BE ,∵DE BC ⊥,F 是DE 的中点,∴DC EC =,由等腰三角形“三线合一”的性质得DCF ECF ∠=∠,∵AD ∥BC ,AB CD =,∴B DCF ∠=∠,∴B ECF ∠=∠,∴AB ∥EC ,∵AB EC =,∴ 四边形ABEC 是平行四边形, ∴12BG CG BC ==, ∵2BC AD =,∴AD BG =,∵AD ∥BG ,∴四边形ABGD 是平行四边形;(2)∵四边形ABGD 是平行四边形,∴AB ∥DG ,AB DG =,∵AB ∥EC ,AB EC =,∴DG ∥EC ,DG EC =,∴四边形DGEC 是平行四边形,∵DC EC =,∴四边形DGEC 是菱形,∴DG DC =,由AD =,即得CG ==,∴222DG DC CG +=,∴90GDC ∠=,∴四边形DGEC 是正方形.【点睛】本题考查平行四边形的性质和判定,正方形的判定,解题的关键是熟练掌握这些性质定理.22.(1)见解析;(2)GE=BE+GD ,理由见解析【分析】(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF ;(2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD .【详解】解:(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA ,∴∠B=∠CDF ,在△CBE 与△CDF 中,BC CD B CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△CBE ≌△CDF (SAS ),∴CE=CF ;(2)GE=BE+GD ,理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF .∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠GCF=∠DCF+∠DCG=45°,在△ECG 与△FCG 中,CE CF GCE GCF GC GC ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ),∴GE=GF ,∴GE=DF+GD=BE+GD .【点睛】本题主要考查正方形的性质以及全等三角形的判定和性质,证两条线段相等往往转化为证明这两条线段所在三角形全等,在第二问中也考查了通过全等找出和GE 相等的线段,从而得出线段GE ,BE ,GD 之间的数量关系.23.(1)2)0;(3)125x y ⎧=⎪⎨⎪=⎩;(4)1083x y =⎧⎪⎨=⎪⎩. 【分析】(1)二次根式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(2)二次根式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的;(3)利用代入消元法解二元一次方程组;(4)利用加减消元法解二元一次方程组【详解】解:(1)023++(211=++211=++=(2)63=⨯-=0=(3)244523x y x y -=-⎧⎨-=-⎩①②由①得24y x =+③把③代入②得()452423x x -+=- 解得:12x =将12x =代入③得12+4=52y =⨯ ∴原方程组的解是125x y ⎧=⎪⎨⎪=⎩ (4)4342312x y x y ⎧+=⎪⎨⎪-=⎩ 原方程组可化为:43482312x y x y +=⎧⎨-=⎩①② ①+②,得660x =∴10x =把10x =代入①得:410348y ⨯+= 解得:83y = ∴方程组的解为1083x y =⎧⎪⎨=⎪⎩【点睛】本题考查二次根式的混合运算及解二元一次方程组,掌握计算步骤和计算法则正确计算是解题关键.24.(1)7-+2)13x - 【分析】(1)利用平方差公式和完全平方式展开,再进行根式的加减运算即可求出答案. (2)先将进行因式分解和括号内的通分运算,再将除法变为乘法即可化简,将3x =【详解】(1)原式()22)51=---.3451=--+.7=-+(2)原式()()2313333x x x x x x ++⎛⎫=÷- ⎪+-++⎝⎭. ()()22333x x x x x ++=÷+-+. ()()23332x x x x x ++=⋅+-+.13x =-.当3x =+2===. 【点睛】 本题考查二次根式的混合运算和分式的化简求值,掌握各运算的运算顺序和方法是解答本题的关键.25.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.26.(90303)m + 【分析】 由题意得出∠DAC=45°,∠DBC=60°,∠DCA=90°,设BC=x ,表示出BD ,CD 和AC 的长,利用AB=60得到方程,求出x ,最后根据DC=3x 得到结果.【详解】解:由题知,∠DAC=45°,∠DBC=60°,∠DCA=90°,∴∠BDC=30°,△ACD 是等腰直角三角形,设BC=x ,∴BD=2x ,∴CD=22BD BC -=3x=AC ,∴AB=AC-BC=3x-x=(3-1)x=60,解得:x=31-=()3031+, ∴DC=3x=90303+,答:塔高约为(90303)m +.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用勾股定理的知识求解,难度一般.。
华东师大版八年级数学下册期中试卷(最新整理)
请 写 出 小 张 的 存 款 数 y( 元 ) 与 从 现 在 开 始 的 月 份 数 x( 月 ) 之 间 的 函 数 关 系 式
______________________;
x3 x5
x7 x9
16. 观 察 下 面 一 列 分 式 : - , , - , , …, 根 据 你 发 现 的 规 律 写 出 第 8 个 分 式 :
y y2
y3 y4
_________________________。
三.解答题:(共 52 分)
17.
(4
分)
1 ()
-1
+︱-2︱+( 2-π)0
2
解:原式=
x2 - 2x + 1 2 - x
18.(4 分)计算:
x2 - 1
+ x+1
解:原式=
2
1 - x 3 - 2x
19.(5 分)解分式方程:1+
9.要测量河两岸相对的两点 A,B 的距离,先在 AB 的垂线 BF 上取两点 C,D,使 CD=BC,
再作出 BF 的垂线 DE,使 A,C,E 在一条直线上(如图所示),可以证明△EDC≌△ABC,
1
得 ED=AB,因此测得 ED 的长就是 AB 的长,判定△EDC≌△ABC 的理由是( )
3
23.(7 分)矩形 ABOC 在平面直角坐标系中的位置如图所示,若点 A 的坐标为(-3,2),则 (1)求出该矩形面积; (2)写出点 B、C 坐标; (3)求出经过点 B、C 的直线的函数关系式。
解:
24.(7 分)直线 y=x-2 分别交 x、y 轴于 A、B 两点,O 为原点。 (1)在平面直角坐标系中画出函数 y=x-2 的图象; (2)求出△AOB 的面积; (3)经过△AOB 的顶点能不能画出直线把△AOB 分成面积相等 的两部分?若能,可以画几条?写出其中这样的一条直线 所对应的函数关系式。
华东师大版八年级数学下册期中测试卷(完美版)
华东师大版八年级数学下册期中测试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知13xx+=,则2421xx x++的值是()A.9 B.8 C.19D.184.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.37.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.21273=___________. 3.分解因式:3x -x=__________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D5、A6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、10023、x (x+1)(x -1)4、(-4,2)或(-4,3)5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1a b-+,-1 3、(1)102b -≤≤;(2)2 4、略.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
【华东师大版】初二数学下期中试题(及答案)
一、选择题1.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF 2.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B AG E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 3.从“+,﹣,×,÷”中选择一种运算符号,填入算式“(3+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A .3+1B .53﹣1C .3﹣2D .1﹣3 4.已知0<x<3,化简2(21)x =+-|x-5|的结果是( )A .3x-4B .x-4C .3x+6D .-x+65.1x -在实数范围内有意义,则x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 6.当2a <时,化简3(2)a a -的结果是( )A .(2)a a a -B .(2)a a a --C .(2)a a a -D .(2)a a a -- 7.如图,以AB 为斜边的Rt ABC 和Rt ABD △位于直线AB 的同侧,连接CD .若135,6BAC ABD AB ∠+∠=︒=,则CD 的长为( )A .3B .4C .32D .33 8.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行 9.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF .若5AF =,3BE =,则EF 的长为( )A .23B .17C .25D .3510.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 11.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.812.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( )A .222(6)10x x ++=B .222(6)10x x -+=C .222(6)10x x +-=D .222610x +=二、填空题13.如图,四边形ABCD 为菱形,以AD 为斜边的Rt AED △的面积为3,2DE =,点E ,C 在BD 的同侧,点P 是BD 上的一动点,则PE PC +的最小值是_____________.14.如图,直线a 过正方形ABCD 的顶点A ,点B 、D 到直线a 的距离分别为1、3,则正方形的边长为_______.15.已知最简根式125b a +-与31b -是同类二次根式,则a =________,b =________.16.已知3352x x y -+-=+,则3x y +的值为_________. 17.比较大小:23_____32(填“>”、“<”或“=”).18.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.19.如图所示的网格是正方形网格,则CBD ABC ∠+∠=______°(点A ,B ,C ,D 是网格线交点)20.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影的部分是一个小正方形EFGH ,这样就组成了一个“赵爽弦图”.若AB =13,AE =12,则正方形EFGH 的面积为___________.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.22.如图,菱形ABCD 的对角线,AC BD 相交于点,O E 是AD 的中点,点,F G 在AB 上,,//EF AB OG EF ⊥.(1)判断四边形OEFG 的形状;(2)若8,6AC BD ==,求菱形ABCD 的面积和EF 的长.23.计算:(1)18322-- (2)20535+- (3)1031|32|2(20201)2-⎛⎫-+⨯+-+ ⎪⎝⎭24.计算:(1)121850322-+; (2)2(56)(56)(51)+---.25.在ABC 中,90,C AC BC ∠=︒=,点D 在射线BC 上(不与点BC 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE .(1)如图1,点D 在BC 边上.①求证:2AB BE BD =+;②若22BE BD ==,求CD 的长.(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB BD BE 、、之间的数量关系(直接写出结论).26.如图,A(-1,0),C(1,4),点B在x轴上,且BC=5.(1)求点B的坐标;(2)求△ABC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【详解】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB、CD、EF、GH各自的长度. 2.B解析:B【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .3.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 3+13+1)=0,故本选项不合题意;B 、(531)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;C 33﹣2)=3,故本选项不合题意;D 3)(132,故本选项不合题意.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b)(a-b)=a2-b2.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.【详解】解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.6.B解析:B【分析】根据二次根式的性质即可化简.【详解】a<解:∵2-<∴a20∴-故选:B.此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.7.C解析:C【分析】取AB 的中点O ,连结OD ,OC ,根据直角三角形的性质可得OA OD OB OC ===,可得BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,根据四边形的内角和为360︒,135BAC ABD ∠+∠=︒,可得出90OCD ODC ∠+∠=︒,由OC OD =,可证得COD ∆是等腰直角三角形,由6AB =,根据勾股定理,即可得出CD 的长.【详解】取AB 的中点O ,连结OD ,OC ,∵Rt ABD ∆和Rt ABC ∆的斜边为AB , ∴12OD AB =,12OC AB =, ∴OA OD OB OC ===, ∴BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,360BAC OCA ABD ODB OCD ODC ∠+∠+∠+∠+∠+∠=︒, ∵135BAC ABD ∠+∠=︒,∴90OCD ODC ∠+∠=︒,∵OC OD =,∴45OCD ODC ∠=∠=︒,∴COD ∆是等腰直角三角形,∵6AB =,∴3OC OD ==, ∴22223332CD OC OD ++=,故选:C.【点睛】本题主要考查了直角三角形斜边上的中线,等腰三角形的性质和以及勾股定理,解题的关键是正确做出辅助线.8.C解析:C【分析】根据矩形和菱形的性质即可得出答案.解:A : 因为矩形的对角线相等,故此选项不符合题意;B :因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C :因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D :因为矩形和菱形的对边都相等且平分,故此选项不符合题意; 故选:C .【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键. 9.C解析:C【分析】如图,过E 作EM AD ⊥于M ,证明//,AD BC 90B ∠=︒,四边形ABEM 为矩形,再证明5AE AF ==,求解43ME AB AM BE ====,,可得:2MF =,再利用勾股定理可得答案.【详解】解:如图,过E 作EM AD ⊥于M ,矩形ABCD ,53AF BE ==,,//,AD BC ∴ 90B ∠=︒, 四边形ABEM 为矩形,,AFE CEF ∴∠=∠由对折可知:,AEF CEF ∠=∠,AFE AEF ∴∠=∠5AE AF ∴==,224AB AE BE ∴=-=,四边形ABEM 为矩形,43ME AB AM BE ∴====,, 2MF ∴=,22+2 5.EF ME MF ∴=故选:.C【点睛】本题考查的是轴对称的性质,矩形的判定与性质,等腰三角形的判定,勾股定理的应用,掌握以上知识是解题的关键.10.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.11.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴OA OB ==∴A所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.12.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 二、填空题13.3【分析】根据菱形的轴对称性可得AC 关于BD 对称当APE 三点共线时的值最小为AE 再根据三角形的面积即可得出答案【详解】解:∵四边形菱形∴AC 关于BD 对称∵点EC 在BD 的同侧∴当APE 三点共线时的值最解析:3【分析】根据菱形的轴对称性可得A 、C 关于BD 对称,当A 、P 、E 三点共线时,PE PC +的值最小为AE ,再根据三角形的面积即可得出答案.【详解】解:∵四边形ABCD 菱形,∴A 、C 关于BD 对称,∵点E ,C 在BD 的同侧,∴当A 、P 、E 三点共线时,PE PC +的值最小,且最小值为AE ;∵以AD 为斜边的Rt AED △的面积为3, 2DE =, ∴112322⨯=⨯=AE DE AE , ∴AE=3,∴PE PC +的最小值是3故答案为:3.【点睛】 本题考查了菱形的性质、最短问题、面积法等知识,解题的关键是利用轴对称解决最值问题,是中考常考题型.14.【分析】先由正方形的性质可知再证明Rt △AFD ≌Rt △BEA 再由全等三角形的性质可得;最后在在Rt △BEA 中由勾股定理得:即得本题答案【详解】解:在正方形中;∵∴;∵∴;在Rt △AFD 和Rt △BEA【分析】先由正方形的性质可知DA AB =,再证明Rt △AFD ≌Rt △BEA ,再由全等三角形的性质可得3DF AE ==,1AF BE ==;最后在在Rt △BEA中,由勾股定理得:AB ==【详解】解:在正方形ABCD 中,AD AB =;∵DF AF ⊥,BE AE ⊥,∴90AFD AEB ∠=∠=︒,90ADF DAF ∠+∠=︒;∵90DAF BAE ∠+∠=︒,∴ADF BAE =∠∠;在Rt △AFD 和Rt △BEA 中,AFD AEB ADF BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △AFD ≌Rt △BEA (AAS ),∴3DF AE ==,1AF BE ==;在Rt △BEA 中,由勾股定理得:AB ===.【点睛】本题主要考查正方形的性质,三角形全等的性质与判定以及勾股定理的知识. 15.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的 解析:72【分析】根据同类二次根式的定义得到122531b a b +=⎧⎨-=-⎩,解方程组即可. 【详解】 由题得:122531b a b +=⎧⎨-=-⎩,解得:721a b ⎧=⎪⎨⎪=⎩.故答案为:72,1. 【点睛】 此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键.16.2【分析】依据二次根式有意义的条件可求得x 的值然后可得到y 的值最后代入计算即可【详解】∵∴∴故答案为:2【点睛】本题主要考查了二次根式有意义的条件依据二次根式有意义的条件得到xy 的值是解题的关键解析:2【分析】依据二次根式有意义的条件可求得x 的值,然后可得到y 的值,最后代入计算即可.【详解】∵52y =+, ∴3x =,5y =.∴2==.故答案为:2.【点睛】本题主要考查了二次根式有意义的条件,依据二次根式有意义的条件得到x 、y 的值是解题的关键.17.<【分析】先把根号的外的因式移入根号内再比较大小即可【详解】∵==<∴<故答案为:<【点睛】本题考查了比较二次根式的大小能选择适当的方法比较两个实数的大小是解此题的关键解析:<【分析】先把根号的外的因式移入根号内,再比较大小即可.【详解】 ∵, ∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.18.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.19.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠,根据勾股定理得221526BD =+=222313BE =+=,222313DE =+= ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.20.49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积【详解】直角三角形直角边的较短边为=5正方形EFGH 的面积=13×13﹣4×=169﹣120=49故解析:49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积.【详解】 221312-,正方形EFGH 的面积=13×13﹣4×5122⨯=169﹣120=49. 故答案为:49.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键. 三、解答题21.(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】(1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.(1)矩形;(2)24,125【分析】(1)先证明四边形OEFG 是平行四边形,再根据垂直即可得到结果;(2)根据菱形的面积求解和等面积法计算即可;【详解】解:()1四边形OEFG 是矩形.在菱形ABCD 中,,DO BO =E 是AD 的中点,,AE DE ∴=//,OE AB ∴//,OE FG ∴又//,OG EF ∴四边形OEFG 是平行四边形.,EF AB ⊥90,EFG ∴∠=︒四边形OEFG 是矩形.()2菱形的面积11862422AC BD =⋅=⨯⨯=.四边形ABCD 是菱形,11,4,322BD AC AO AC BO BD ∴⊥====, 5AB ∴=.由()1知,四边形OEFG 是矩形,,EF OG OG AB ∴=⊥.1122AO BO AB OG ∴⋅=⋅, 125AO BO OG AB ⋅∴==, 125EF ∴=. 【点睛】本题主要考查了矩形和菱形的判定和性质,准确计算是解题的关键.23.(1);(2)0;(3)3. 【分析】(1)先化为最简二次根式,再合并即可;(2)先算除法,再合并即可;(3)先化简再合并即可.【详解】解:(1-=2=;(2)原式13-=2+1-3=0;(3)原式=221-=3.【点睛】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.24.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)121850322-+ =62﹣52+22=32.(2)2(56)(56)(51)+---=5﹣6﹣(5﹣25+1)=﹣1﹣(6﹣25)=﹣1﹣6+25=﹣7+25.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 25.(1)①见解析;②2;(2)2BD BE AB =+【分析】(1)①过点D 作DF CB ⊥交AB 于点F ,证明ADF EDB ≌△△得AFEB =, 再在等腰直角DFB △求出BF 即可得到结论;②首先求出BC 的长,再根据CD=BC-BD 即可得到结论;(2)过点E 作EG DB ⊥于G ,证明△ADC DEG ≅∆和△EGB 为等腰直角三角形即可得到结论.【详解】解:(1)①过点D 作DF CB ⊥交AB 于点F ,如图,则90FDB ∠=︒,由题意可知AD DE =,90ADE ∠=︒.∵∠ADF+∠EDF=90°,∠EDB+∠EDF=90°∴ADF EDB ∠=∠,∵90C ∠=︒,AC BC =,∴45ABC DFB ∠=∠=︒,∴DB DF =.在ADF 和EDB △中AD ED ADF EDB DF DB =⎧⎪∠=∠⎨⎪=⎩∴ADF EDB ≌△△.∴AF EB =.在等腰直角DFB △中,2BF BD =,∴2AB AF FB BE BD =+=+.②∵22BE BD ==∴BD=1,∴BF=2由①得222AB BE BD =+=+,在等腰直角ABC 中222AB BC ==+, ∴21BC =+, ∴2112CD BC BD =-=+-=.(2)过点E 作EG DB ⊥于G ,如图所示,∵90ADE ∠=︒∴∠90EDG DEG +∠=︒,90EDG ADC ∠+∠=︒∴∠DEG ADC =∠∵,90AD DE ACD DGE =∠=∠=︒∴△ADC DEG ≅∆∴DG AC BC ==,EG DC =∴DC BG =∴BG GE =∴△EGB 为等腰直角三角形,∴222222BD DG BG AC BE AB BE =+=+=+∴2BD AB BE =+【点睛】此题主要考查了全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理等知识,熟练掌握相关定理和性质是解答此题的关键.26.(1)B (4,0)或B (-2,0);(2)10或2【分析】(1)过点C 作CD ⊥x 轴,垂足为D ,根据勾股定理可求出BD=3,求出B 点坐标; (2)根据三角形面积公式计算即可.【详解】解:(1)如图,过点C 作CD ⊥x 轴,垂足为D ,可知D 点坐标为(1,0),∵BC=5,CD=4,∴BD=22543-=,当B 点在点D 右侧时,B 点坐标是(4,0),当B 点在点D 左侧时,B 点坐标是(-2,0);(2)当B 点在点D 右侧时,S △ABC =12AB CD ⨯⨯, =1542⨯⨯,=10;当B 点在点D 左侧时,S △ABC =112AB CD ⨯⨯, =1142⨯⨯, =2.【点睛】此题主要考查了勾股定理、利用坐标求线段长、根据坐标轴上线段长求坐标以及利用坐标求三角形的面积,正确的掌握坐标与线段长的关系是解题关键.。
【华东师大版】初二数学下期中试卷(带答案)
一、选择题1.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠2.已知x ,y 为实数,y x 323x 2=-+-+,则y x 的值等于( ) A .6 B .5 C .9 D .83.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13- 4.二次根式32a ,12,35,44a +,22x y +中,是最简二次根式的个数有( )A .1个B .2个C .3个D .4个 5.下列计算正确的是( ) A .336a a a +=B .2331-=C .()325x x =D .642b b b ÷= 6.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .3C .16D .1637.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+8.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .3aD .33a 9.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,610.如图,△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,△ABC 的面积为120,则△BCD 的面积为( )A .20B .24C .30D .4011.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.812.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定二、填空题13.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.14.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.15.已知20202020m a a =--m a =_____________.16.3045a 0.5122240b 542217()x y +中,最简二次根式有__个.17.3124=________. 18.如图,数轴上点A 表示的数是__________.19.如图,ABC 中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,2BD =,114AC =,则边BC 的长为_______.20.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.三、解答题21.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.22.如图,点E 在ABCD 内部,//,//AF BE DF CE .(1)求证:BCE ADF ≅∆;(2)求证:AEDF 1S 2ABCD S =四边形 23.计算: (1)2364|25|(3)25-----+;(2)35|65|--.24.计算:(1)121850322-+; (2)2(56)(56)(51)+---.25.在四边形ABCD 中,90A B ∠=∠=︒,E 为AB 边上的点.(1)连接CE ,DE ,CE DE ⊥;①如图1,若AE BC =,求证:AD BE =;②如图2,若AE BE =,求证:CE 平分BCD ∠;(2)如图3,F 是BCD ∠的平分线CE 上的点,连接BF ,DF ,若4BC =,6CD =,36BF DF ==CF 的长. 26.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A 、B 、C 都是格点.∠是直角,请补全他的思路;(1)小明发现ABC小明的思路AB,BC=_______,AC=_______.从而可得先利用勾股定理求出ABC的三条边长,可得10AB、BC、AC之间的数量关系是_____________________,根据____________________________,∠是直角.可得ABC【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】=,解:A、∵AE CF∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.2.C解析:C【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】解:依题意有3030xx-≥⎧⎨-≥⎩,解得3x=,∴2y=,∴239yx==.故选:C.【点睛】本题主要考查了二次根式有意义的条件,正确把握相关性质是解题关键.3.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A、1)1)0-=,故选项A不符合题意;B、1)1)2⨯=,故选项B不符合题意;C1与C符合题意;D、1)(10+-=,故选项D不符合题意.故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.4.B解析:B【分析】根据最简二次根式的定义进行求解即可.【详解】=2==2个,故选:B.【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.6.A解析:A【分析】由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.7.D解析:D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.8.D解析:D【分析】首先证明△OBC 是等边三角形,在Rt △EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∴OB=OC ,∠BCD=90°,由翻折不变性可知:BC=BO ,∴BC=OB=OC ,∴△OBC 是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:33, 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC 是等边三角形. 9.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、222123+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 10.C解析:C【分析】根据已知条件可知∠A =∠BCD =30°,在Rt △BCD 中设BD =x ,则BC =2x ,由勾股定理求得CD ,在Rt △ACD 中,AC =2BC =,根据△ABC 的面积为120,即11202AC BC ⨯=,求得2x 的值,用三角形的面积公式即可得出△BCD 的面积. 【详解】解:∵△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,∴在Rt △ABC 中,∠A =30°,在Rt △BCD 中,∠BCD =30°,∴ 设BD =x ,则BC =2BD =2x ,CD ==,∴ 在Rt △ACD 中,∠A =30°,∴AC =2BC =,∵△ABC 的面积为120,∴11212022ABC S AC BC x =⨯⨯=⨯⨯=,解得:2x∵21122BCD S BD CD x =⨯⨯=⨯=, 故选:C .【点睛】本题考查了直角三角形中,30°所对的直角边是斜边的一半和勾股定理.熟练掌握各定理所示解题的关键.11.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴OA OB ==∴A 所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.12.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.二、填空题13.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.14.①②③【分析】根据SSS 即可判定△ABF ≌△CFB 根据全等三角形的性质以及等式性质即可得到EC =EA 根据∠EBF =∠EFB =∠EAC =∠ECA 即可得出BF ∥AC 根据E 不一定是BC 的中点可得BE =CE解析:①②③【分析】根据SSS 即可判定△ABF ≌△CFB ,根据全等三角形的性质以及等式性质,即可得到EC =EA ,根据∠EBF =∠EFB =∠EAC =∠ECA ,即可得出BF ∥AC .根据E 不一定是BC 的中点,可得BE =CE 不一定成立.【详解】解:由折叠可得,AD =AF ,DC =FC ,又∵平行四边形ABCD 中,AD =BC ,AB =CD ,∴AF =BC ,AB =CF ,在△ABF 和△CFB 中,AB CF AF CB BF FB =⎧⎪=⎨⎪=⎩,∴△ABF ≌△CFB (SSS ),故①正确;∴∠EBF =∠EFB ,∴BE =FE ,∴BC -BE =FA -FE ,即EC =EA ,故②正确;∴∠EAC =∠ECA ,又∵∠AEC =∠BEF ,∴∠EBF =∠EFB =∠EAC =∠ECA ,∴BF ∥AC ,故③正确;∵E不一定是BC的中点,∴BE=CE不一定成立,故④错误;故答案为:①②③.【点睛】本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.1【分析】根据二次根式有意义的条件列出不等式求出am根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a﹣2020≥0解得a=2020则m=0∴am=20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a、m,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a≥0,a﹣2020≥0,解得,a=2020,则m=0,∴a m=20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.16.2【分析】将各二次根式能化简的依次化简后即可得到答案【详解】解:=======∴是最简二次根式故答案为:2【点睛】此题考查最简二次根式:①被开方数不含分母②被开方数中不含开得尽方的因数或因式以及化简解析:2【分析】将各二次根式能化简的依次化简后即可得到答案.【详解】2,解:22∴是最简二次根式,故答案为:2.【点睛】此题考查最简二次根式:①被开方数不含分母,②被开方数中不含开得尽方的因数或因式,以及化简二次根式.17.【分析】先根据二次根式的性质化简再合并即可【详解】解:故答案为:【点睛】本题考查了二次根式的性质和二次根式的加减运算属于基础题目熟练掌握基本知识是解题关键解析:2【分析】先根据二次根式的性质化简,再合并即可.【详解】==.故答案为:2【点睛】本题考查了二次根式的性质和二次根式的加减运算,属于基础题目,熟练掌握基本知识是解题关键.18.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键.19.【分析】延长BD到F使得DF=BD根据等腰三角形的性质与判定勾股定理即可求出答案【详解】解:延长BD到F使得DF=BD∵CD⊥BF∴△BCF是等腰三角形∴BC=CF过点C作CH∥AB交BF于点H∴∠【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【详解】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C作CH∥AB,交BF于点H ∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=DF=2,AC=114,∴DH=BH-BD=AC-BD=34,∴HF=HC=DF-DH=2-34=54,在Rt△CDH中,∴由勾股定理可知:CD=22CH DH-=1,在Rt△BCD中,∴BC=22BD CD+=5,故答案为:5.【点睛】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.20.8【分析】过B点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B点作于点与交于点作点E关于AM的对称点G连结GD则ED=GD当点BDG三点在解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,则ED=GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.三、解答题21.证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 22.(1)见解析;(2)见解析【分析】(1)先证明CBE DAF ∠=∠,BCE ADF ∠=∠,然后利用ASA 证明:△BCE ≌△ADF ; (2)根据点E 在ABCD 内部,可知:S △BEC +S △AED =12S ▱ABCD ,可得结论. 【详解】解:()1四边形ABCD 是平行四边形, ,//AD BC AD BC =,180,ABC BAD ∴∠+∠=//,AF BE180,EAB BAF ∴∠+∠=︒,CBE DAF ∴∠=∠同理得,BCE ADF ∠=∠()BCE ADF ASA ∴∆≅∆()2点E 在ABCD 内部, ∴12BEC AED ABCD S S S ∆∆+=,由()1知: ,BCE ADF ∆≅∆BCE ADF S S ∆∆∴=∴AEDF 1S 2ADF AED BEC AED ABCD S S S S S ∆∆∆∆=+=+=四边形.【点睛】 此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.23.(1)-2)【分析】(1)先进行开方运算,然后进行加减运算即可;(2)先化简绝对值,然后合并即可.【详解】解:(1|24(23=-+--+423=-+-+=-(2)|===【点睛】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.24.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣7+25.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 25.(1)①见解析;②见解析;(2)562FC =. 【分析】(1)①根据条件得出EDA CEB △≌△,即可求证;②延长DE 交CB 的延长线于点G ,得出EDA EGB △≌△再证明GCE DCE △≌△即可;(2)解法1:过点F 分别作FM CD ⊥,FN CB ⊥,得到FCM FCN △≌△,由222BN BF FN =-,222DM DF FM =-,得到DM BN =,设DM BN x ==,求得5CN =,在Rt FBN △和Rt FCN △中,由勾股定理即可求得CF 的长.解法2:在CD 上截取CF BC '=,得出36FF FD '==,过F 作FG CD ⊥,根据22222FC CG FG F F F G ''-==-,即可求得CF 的长.【详解】(1)①证明:90A B DEC ∠=∠=∠=︒,90ADE AED ∴∠+∠=︒,1809090DEA BEC ∠+∠=︒-︒=︒,ADE BEC ∴∠=∠,在DEA △和ECB 中ADE BEC ∠=∠,A B ∠=∠,AE BC =,EDA CEB ∴△≌△,AD BE ∴=.②证明:延长DE 交CB 的延长线于点G ,AED BEG ∴∠=∠,E 90A BG ∠=∠=︒,AE BE =,EDA EGB ∴△≌△,EG ED ∴=,90DEC =︒∠,18090GEC DEC ∴∠=︒-∠=︒,GEC DEC ∴∠=∠,CE CE =,GCE DCE ∴△≌△,GCE DCE ∴∠=∠,CE ∴平分BCD ∠.(2)解法1:如图,过点F 分别作FM CD ⊥,FN CB ⊥,分别交CD 及CB 的延长线于点M ,N .CE 平分BCD ∠,BCF FCD ∴∠=∠,又FM CD ⊥,FN CB ⊥,90CNF FMC ∴∠=∠=︒,在FCM △和FCN △中BCF FCD ∠=∠,CNF FMC ∠=∠,CF CF =,FCM FCN ∴△≌△,FM FN ∴=,CM CN =,在Rt FDM △和Rt FBN △中MF FN =,FB DF =,222BN BF FN =-,222DM DF FM =-DM BN ∴=,设DM BN x ==,6CD =,4CB =,4CN x ∴=+,6CM x =-,CN CM =,46x x ∴+=-,1x ∴=,415CN CB BN ∴=+=+=,在Rt FBN △和Rt FCN △中222FN FB BN =-,222FC FN CN =+,362BF =, 222223625122FN FB BN ⎫⎛∴=-=-=⎪ ⎪⎝⎭ 222255(41)622FC FN CN =+=++=. 解法2:如图,在CD 上截取CF BC '=,4BC =,6CD =,642DF CD CF ''∴=-=-=,在FCB 和FCF '△中BCF FCD ∠=∠,CF CF =,CB CF '=,FCB FCF '∴△≌△,FF FB '∴=,FB FD =,362FF FD '∴==, 过F 作FG CD ⊥,垂足为G ,112GF GD DF ''∴===, 145CG GF CF ''∴=+=+=, 在Rt FCG △和Rt FF G '△中22222FC CG FG F F F G ''-==-22223651FC ∴-=-⎝⎭562FC ∴=. 【点睛】 本题主要考查了全等三角形的判定和性质,角平分线的判定,以及勾股定理的应用,解题的关键是熟练掌握全等三角形的判定和性质,正确作出辅助线以及利用方程解决问题. 26.(1)10,25,222AB BC AC +=,勾股定理逆定理;(2)见解析.【分析】(1)利用勾股定理和勾股定理逆定理即可填空.(2)作如图所示的图,根据图易证()ADB BEC SAS ≅,推出ABD BCE ∠=∠.继而推出90ABD EBC ∠+∠=︒,即可得出结论90ABC ∠=︒.【详解】(1)先利用勾股定理求出ABC 的三条边长,可得10AB ,10BC =,25AC =.从而可得AB 、BC 、AC 之间的数量关系是222AB BC AC +=,根据勾股定理逆定理,可得ABC ∠是直角.(2)作图如图,由图可得:AD BE =,BD CE =,90ADB BEC ∠=∠=°. 在ADB △和BEC △中,AD BE ADB BEC BD CE =⎧⎪∠=∠⎨⎪=⎩,()ADB BEC SAS ∴≅,ABD BCE ∴∠=∠.在BEC △中,18090BCE EBC BEC ∠+∠=︒-∠=︒,90ABD EBC ∠∴+=∠︒.∵D 、B 、E 三点共线,180ABD EBC ABC ∴∠+∠+∠=︒,180()90ABC ABD EBC ∴∠=︒-∠+∠=︒.【点睛】本题考查直角三角形的判定.熟练利用勾股定理和勾股定理逆定理,三角形全等的判定和性质等知识是解答本题的关键.。
华东师大版八年级数学下册期中试卷带答案
华东师大版八年级数学下册期中试卷带答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.在△ABC 中,AB=10,10,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.21a +8a =__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、C5、B6、A7、C8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、如果两个角互为对顶角,那么这两个角相等4、﹣2<x<25、1 (21,2) n n--6、32°三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、-3.3、(1)见解析;(2)经过,理由见解析4、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
2022年华东师大版八年级数学下册期中试卷(完美版)
2022年华东师大版八年级数学下册期中试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.若12xyx-=有意义,则x的取值范围是()A.1x2≤且x0≠B.1x2≠C.1x2≤D.x0≠3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.184.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A .①②③B .①②④C .②③④D .①②③④9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、B5、A6、B7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、13、如果两个角互为对顶角,那么这两个角相等4、145、206、4三、解答题(本大题共6小题,共72分)1、(1) 52x y =⎧⎨=⎩;(2) 20x y =⎧⎨=⎩2、23、8k ≥-且0k ≠.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)略(2)等腰三角形,理由略6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
华东师大版八年级数学下册期中试卷【参考答案】
华东师大版八年级数学下册期中试卷【参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-3.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5 5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根7.下面四个手机应用图标中是轴对称图形的是()A .B .C .D .8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.216.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、43、204、145、36、32°三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、3.3、(1)12b-≤≤;(2)24、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
【华东师大版】八年级数学下期中试卷(附答案)
一、选择题1.下列各组线段能构成直角三角形的一组是( ) A .30,40,50B .8,12,13C .5,9,13D .3,4,62.下列各式中,一定是二次根式的个数为( )22313,,1,4,1,(0),2132a m x m a a a ⎛⎫+--+<⎪⎭ A .3个 B .4个C .5个D .6个3.已知,()22a =a 那么a 应满足什么条件 ( )A .a >0B .a≥0C .a =0D .a 任何实数4.下列计算正确的是( )A .3236362⨯==B .164=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .()25235410-⨯+⨯++=5.下列四个式子中,与1(2021)2021a a--的值相等的是( )A .2021a -B .2021a --C .2021a -D .2021a --6.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个7.平行四边形一边的长是12cm ,则这个平行四边形的两条对角线长可以是( ) A .4cm 或6cmB .6cm 或10cmC .12cm 或12cmD .12cm 或14cm8.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCDS AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个9.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行10.如图1,分别以直角三角形三边为边向外作正方形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S .其中11S =,23S =,52S =,64S =,则34S S +=( )A .10B .9C .8D .711.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .4512.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A 2B .1C .2D .22二、填空题13.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 14.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.15.已知3352x xy -+-=+,则3x y +的值为_________.16.已知y=22x x -+-+3,则x-y=_____________. 17.计算:()()202020203232+⨯-=___________18.如图,已知圆柱体底面圆的半径为aπ,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)19.5,10,15,则这个三角形的面积是_________________.20.如图,△DEF 为等边三角形,点D 、E 、F 分别为边AB 、BC 、AC 上一点,且∠C =60°,AD 3BD 5=,AE =7,则AC 的长为_________.三、解答题21.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 22.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形 CMAN 是平行四边形; (2)已知4,3DE FN ==.求BN 的长. 23.计算: (1)27125032-+; (2)()3218722-+÷24.计算: (1)121850322-+; (2)2(56)(56)(51)+---. 25.已知,等腰,,在直角边的左侧直线,点关于直线的对称点为,连接,,其中交直线于点.(1)依题意,在图1中补全示意图:当时,求的度数;(2)当且时,求的度数;(3)如图2,若,用等式表示线段,,之间的数量关系,并证明.26.如图①,在ABC 中,90,ACB AC BC ∠=︒=,以C 为顶点作45DCE ∠=︒,且CD CE 、分别与AB 相交于D E 、两点,将ACD △绕点C 逆时针旋转90︒得到BCF △.(1)若64AD EB ==,,求DE 的长;(2)若将DCA ∠绕点C 逆时针旋转使CD 与AB 相交于点D ,边CE 与AB 的延长线相交于点E ,而其他条件不变,如图②所示,猜想DE 与AD EB 、之间有何数量关系?证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确; B 、∵82+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选:A . 【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.A解析:A 【分析】根据二次根式的定义即可作出判断. 【详解】当m <0对于任意的数x ,x 2+1>0是三次方根,不是二次根式;﹣m 2﹣1<0(0)a 是二次根式;当a <12时,2a +1可能小于00)3a ,共3个, 故选:A . 【点睛】主要考查了二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.3.B解析:B 【分析】与a 的取值范围即可得到答案. 【详解】 ∵a 的取值范围是0a ≥a 的取值范围是任意实数,故a 应满足的条件是0a ≥, 故选:B.此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件.4.D解析:D 【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断. 【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确. 故选:D . 【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键.5.D解析:D 【分析】根据二次根式有意义的条件可得出20210a ->,可得20210a -<,由此可将2021a -变形得出答案. 【详解】由题意得:20210a ->,可得20210a -<,∴((2021a a ---==故选:D . 【点睛】本题考查了二次根式的性质与化简,关键是由等式可确定出20210a ->.6.A解析:A 【分析】由平行四边形性质和等腰三角形“三线合一”即可得ED ⊥CA ,根据三角形中位线定理可得EF =12AB ;由直角三角形斜边上中线等于斜边一半可得EG =12CD ,即可得EF =EG ;连接EG,可证四边形DEFG是平行四边形,即可得EH=12 EG.【详解】解:如图,连接FG,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵点E为OA中点,∴ED⊥CA,故①正确;∵E,F,G分别是OA,OB,CD的中点,∴EF∥AB,EF=12AB,∵∠CED=90°,CG=DG=12CD,∴EG=12CD,∴EF=EG,故②正确;∵EF∥CD,EF=DG,∴四边形DEFG是平行四边形,∴EH=HG,即EH=12EG,故③正确;故选:A.【点睛】本题考查了平行四边形性质和判定,三角形中位线定理,三角形面积,直角三角形斜边上中线等于斜边一半,等腰三角形性质等;熟练运用三角形中位线定理、等腰三角形“三线合一”、直角三角形斜边上中线等于斜边一半等性质是解题关键.7.D解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴OA=12AC ,OB=12BD ,A 、∵AC=4cm ,BD=6cm , ∴OA=2cm ,OB=3cm ,∴OA+OB=5cm <12cm ,不能组成三角形,故不符合; B 、∵AC=6cm ,BD=10cm , ∴OA=3cm ,OB=5cm ,∴OA+OB=8cm <12cm ,不能组成三角形,故不符合; C 、∵AC=12cm ,BD=12cm , ∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合; D 、∵AC=12cm ,BD=14cm , ∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合; 故选D . 【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.8.C解析:C 【分析】求得∠ADB=90°,即AD ⊥BD ,即可得到S ▱ABCD =AD•BD ;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE ,进而得出DB 平分∠CDE ;依据Rt △AOD 中,AO >AD ,即可得到AO >DE ;依据O 是BD 中点,E 为AB 中点,可得BE=DE ,利用三角形全等即可得OE ⊥BD 且OB=OD . 【详解】解:在ABCD 中,∵∠BAD=∠BCD=60°,∠ADC=120°,DE 平分∠ADC , ∴∠ADE=∠DAE=60°=∠AED , ∴△ADE 是等边三角形,12AD AE AB ∴==,∴E 是AB 的中点, ∴DE=BE ,1302BDE AED ︒∴∠=∠=,∴∠ADB=90°,即AD ⊥BD , ∴S ▱ABCD =AD•BD ,故①正确; ∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠CDE-∠BDE=60°-30°=30°, ∴∠CDB=∠BDE ,∴DB 平分∠CDE ,故②正确; ∵Rt △AOD 中,AO >AD , ∵AD=DE ,∴AO >DE ,故③错误; ∵O 是BD 的中点, ∴DO=BO, ∵E 是AB 的中点, ∴BE=AE=DE ∵OE =OE∴△DOE ≌△BOE(SSS) ∴∠EOD=∠EOB ∵∠EOD+∠EOB=180° ∴∠BOE=90°∴OE 垂直平分BD ,故④正确; 正确的有3个, 故选择:C .【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,三角形全等判定与性质,熟练掌握平行四边形的性质,等边三角形的性质,直角三角形的性质定理和等边三角形判定定理,三角形全等判定方法和性质是解题的关键.9.C解析:C 【分析】根据矩形和菱形的性质即可得出答案. 【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.10.A解析:A【分析】由题意可得S1+S2=S3, S5+S6=S4,然后根据S1=1,S2=3,S5=2,S6=4,然后求出S3+S4的值即可.【详解】解:如图:∵S1=a2,S2=b2,S3=c2,∴a2+b2=c2,即S1+S2=S3,同理可得:S5+S6=S4,∵S1=1,S2=3,S5=2,S6=4∴S3+S4=(1+3)+(2+4)=4+6=10.故答案为A.【点睛】本题主要考查勾股定理的应用以及正方形的面积、圆的面积的解法,审清题意、灵活运用数形结合的思想成为解答本题的关键.11.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.12.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 二、填空题13.9cm12cm34cm36cm 【分析】(1)根据平行四边形对角线互相平分对边相等可得结果;(2)根据△AOB 的周长和AB 的长度得到AO+BO 从而得到AC+BD 【详解】解:(1)在平行四边形ABCD 中解析:9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB 的周长和AB 的长度,得到AO+BO ,从而得到AC+BD .【详解】解:(1)在平行四边形ABCD 中,∵AC=18cm ,BD=24cm ,∴AO=12AC=9cm=CO ,BO=12BD=12cm=DO , ∵AB=13cm ,∴CD=13cm ,∴COD △的周长为CO+DO+CD=9+12+13=34cm ,故答案为:9cm ,12cm ,34cm ;(2)∵△AOB 的周长为30cm ,∴AB+AO+BO=30cm ,∵AB=12cm ,∴AO+BO=30-12=18cm ,∴AC+BD=2AO+2BO=36cm .【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等. 14.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的 解析:2020212 【分析】 由21ABCC AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C n C =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7, 21ABC C AB BC AC ∴=++=, 111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C n C =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键.15.2【分析】依据二次根式有意义的条件可求得x 的值然后可得到y 的值最后代入计算即可【详解】∵∴∴故答案为:2【点睛】本题主要考查了二次根式有意义的条件依据二次根式有意义的条件得到xy 的值是解题的关键解析:2【分析】依据二次根式有意义的条件可求得x 的值,然后可得到y 的值,最后代入计算即可.【详解】∵52y =+, ∴3x =,5y =.∴2==.故答案为:2.【点睛】本题主要考查了二次根式有意义的条件,依据二次根式有意义的条件得到x 、y 的值是解题的关键.16.﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x -y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键. 17.1【分析】根据积的乘方逆运算求解即可【详解】解:===1故答案为:1【点睛】此题主要考查了积的乘方熟练掌握积的乘方运算法则是解答此题的关键解析:1【分析】根据积的乘方逆运算求解即可.【详解】 解:()()202020203232+⨯- =()()2020[3232]+- =2020(1)-=1故答案为:1【点睛】此题主要考查了积的乘方,熟练掌握积的乘方运算法则是解答此题的关键.18.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB=解析:2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 19.【分析】根据勾股定理的逆定理判断这是一个直角三角形再结合面积公式求解【详解】解:∵∴∴该三角形为直角三角形∴其面积为故答案为:【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则熟练掌握勾股定理 522【分析】根据勾股定理的逆定理,判断这是一个直角三角形,再结合面积公式求解.【详解】解:∵221(5)()015+=,2(15)15=,∴222(5)()10()15+=,∴该三角形为直角三角形,∴其面积为15510222⨯⨯=, 故答案为:522. 【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则,熟练掌握勾股定理的逆定理是解决本题的关键. 20.8【分析】以CE 为边作等边△CEH 证明△CEF ≌△HED 可得∠DHE=60°DH ∥BC 则设AH=3xCH=5x 过点E 作EM ⊥AC 于点M 在△AEM 中解得x=1则答案得出【详解】解:以CE 为边作等边△C解析:8【分析】以CE 为边作等边△CEH ,证明△CEF ≌△HED ,可得∠DHE=60°,DH ∥BC ,则AH 3CH 5=,设AH=3x ,CH=5x ,过点E 作EM ⊥AC 于点M ,在△AEM 中,22253117(x)(x)22=+,解得x=1,则答案得出.【详解】解:以CE 为边作等边△CEH ,连接DH ,∴CE=EH ,∠EHC=60°,∵△DEF 为等边三角形,∴∠DEF=60°,DE=EF ,∴∠DEH=∠CEF ,在△CEF 和△HED 中∵CE HE CEF HED EF ED =⎧⎪∠=∠⎨⎪=⎩∴△CEF ≌△HED (SAS ),∴∠DHE =∠FCE =60°,∴∠DHE =∠HEC =60°,∴DH//BC , ∴AD AH BD CH =, ∵AD 3BD 5=, ∴AH 3CH 5=, 过点E 作EM ⊥AC 于点M ,设AH =3x ,CH =5x ,则EC=5x ,22155311,,2222x x MC EC ME EC MC AM AC MC x ===-==-=, 在△AEM 中,22253117(x)(x)2=+, ∴x =1,∴AC =8.故答案为:8.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,勾股定理,掌握全等三角形的判定方法能正确作出辅助线是解题的关键.三、解答题21.(1)见解析;(2)BC <AC【分析】(1)画射线BD ,以B 为端点取BC=a ,过点C 作BD 的垂线,再以点B 为圆心,c 为半径画弧,与该垂线交于点A 即可;(2)根据直角三角形的性质得到AB ,利用勾股定理求出AC ,再比较大小即可.【详解】解:(1)如图,△ABC 即为所作;(2)如图,直角三角形ABC 中,∠C=90°,D 为AB 中点,则CD=5,BC=7,∴AB=10,∴AC=22107-=51,∵7=49<51,∴BC <AC .【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.22.(1)见解析;(2)5【分析】(1)只要证明CM ∥AN ,AM ∥CN 即可.(2)先证明△DEM ≌△BFN 得BN =DM ,再在Rt △DEM 中,利用勾股定理即可解决问题.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴CD ∥AB ,∵AM ⊥BD ,CN ⊥BD ,∴AM ∥CN ,∴CM ∥AN ,AM ∥CN ,∴四边形AMCN 是平行四边形.(2)∵四边形AMCN 是平行四边形,∴CM =AN ,∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴DM =BN ,∠MDE =∠NBF ,在△MDE 和△NBF 中,MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NBF (AAS ),∴ME =NF =3,在Rt △DME 中,∵∠DEM =90°,DE =4,ME =3,∴DM =222234DE ME +=+=5,∴BN =DM =5.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.23.(1)6;(2)7. 【分析】(1)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可; (2)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可.【详解】解:(1)原式9425=3-2+5 =6;(2322182722=16396=4-3+6=7.【点睛】(0,0)a a a b b b =≥>是解题关键.24.(1)2;(2)﹣5【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)121850322=222=32. (2)2(56)(56)(51)+---=5﹣6﹣(5﹣25+1)=﹣1﹣(6﹣25)=﹣1﹣6+25=﹣7+25.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 25.(1);(2)或;(3),证明见解析 【分析】(1)由轴对称的性质和等腰三角形的性质得出,得出,证出AE=AC ,由等腰三角形的性质和三角形内角和定理即可得出结果 (2)分两种情况:当时,当时分别求解即可 (3)作CG ⊥AP 于G ,由AAS 证明,得出CG=AM ,证出点A 是的外接圆的圆心,,得出和是等腰直角三角形,由勾股定理即可得出结论【详解】解:(1)补全示意图如图所示连接AE ,设AP 与BE 交于点M ,如图:由轴对称的性质得AE=AB ,BM=EM ,AM ⊥BE ,∵是等腰直角三角形∴AB=AC∴AE=AC∴(2)当时,如图:由(1)得,,在中∴∴∴∵AE=AB,AF=AF,FE=FB∴∴当时,如图:∵AE=AB,AF=AF,FE=FB∴∴∵AE=AB=AC∴∴即在与中,∴∴由上可知,的度数为或(3),理由如下: 由(2)得:FE=FB ,∴∴∵在中 ∴【点睛】 本题考查了轴对称的性质,三角形全等的判定及性质,等腰直角三角形的性质,勾股定理等内容,熟练运用这些性质进行推理是解本题的关键26.(1)213DE =;(2)222DE AD BE =+,证明见解析.【分析】(1)证明△ECD ≌△ECF (SAS ),然后证明∠EBF=90°,利用全等三角形的性质以及勾股定理解决问题即可.(2)利用全等三角形的性质以及勾股定理解决问题即可.【详解】解:如图①中,∵ACD △绕点C 逆时针旋转90︒得到BCF △∴90ACD BCF ACB DCF ∠=∠=︒≌, ∴6ACD BCF A CBF CD CF AD BF ∠=∠∠=∠===,,, ∵45DCE ∠=︒ ∴45DCE ECF ∠=∠=︒ ∵CE CE = ∴ECD ECF ≌ ∴DE EF = ∵90AC BC ACB =∠=︒, ∴45A ABC CBF ∠=∠=∠=︒ ∴90EBF ∠=︒∴222246213DE EF BE BF ==+=+=(2)解:222DE AD BE =+理由:如图②中,连接EF∵CBF 是由CAD ∠旋转得到∴45ACD BCF CD CF AD BF A CBF ∠=∠==∠=∠=︒,,,∴90ACB DCF ∠=∠=︒∵45DCE ∠=︒∴45ECF ECD ∠=∠=︒∵CE CE =∴ECD ECF ≌∴DE EF =∵4545ABC CBF ∠=︒∠=︒,∴90ABF EBF ∠=∠=︒∴222BF BE EF +=∵BF AD EF DE ==,∴222DE AD BE =+【点睛】 本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大八年级数学 期中测试
(下)
姓名
•选择题:(每题3分,
,共30分)
1 .分式[,:+ V 2
4x x 2+y 2
,2y 2中,取简分式有
()
A . 0个
B . 1个
C . 2个
D . 3个
2.下列算式错误的是
( )
1 x
A . x+1 1
x+1 = =1 B .(2-)2 = 4^
1 x+1 C
. x +1= x D . c+1 c 2+1 c =歹
3. 若点(m , n )在第一象限,则点(m , -n )在(
)
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.
已知在一次函数 y=kx+b
中,k v 0 , b > 0,则这个一次函数的大致图象是
( )
5.
如图,点P (x ,0)是x 轴正半轴上的一个动点,过点
P
1
作x 轴的垂线交双曲线 y=-于点Q ,连结OQ ,当点P 沿
x 站所用的时间比原来减少了
1个小时。
已知甲、乙两个车站的路程是
312千米,设火车提速前的速
度为x 千米/小时,根据题意所列方程正确的是 ( ) 312 A . 312 1 B . 312 312 - =1 x
x 轴的正方向运动时, Rt △ QOP 的面积( )
A.逐渐增大
B. 逐渐减小
C.保持不变 D
.无法确定
6.—列火车自2007 年全国铁路第 6次人提速后,速度提咼了
7.—个蜡烛长20cm ,点燃后每小时燃烧 间的函数关系用图象表示为下图中的
5cm ,燃烧时剩下的长度为 y (cm )与燃烧时间x (小时)之
)
*
V
& •若把分式的
2x
A .扩大12倍
B .缩小 9.要测量河两岸相对的两点
A ,
B 的距离,先在AB 的垂线BF 上取两点 C,D ,使CD=B
C ,
再作出BF 的垂线DE ,使A , C , E 在一条直线上(如图所示),可以证明△ EDC?◎△ ABC ,
V V V
现在该列火车从甲站到乙
26千米/小时, (
D .缩小
4
-
12倍 C .不变
x-x-26 =x+26
31 2! 312312312
C. x-x+26 :=1
D. x-26 -=1
x
得ED=AB ,因此测得 ED 的长就是 AB 的长,判定△ EDC ◎△ ABC 的理由是( )
A . S . A . S .
B . A . S . A .
C . S. S . S .
D . A . A . S .
10 . 一天,小军和爸爸去登山,已知山脚到山顶的路程为 300米.小军先走了一段路程,爸爸才开始出发.图 中两条线段分别表示小军和爸爸离开山脚登山的路程 S (米)与登山所用的时间t (分)的关系(从爸爸开始 登山时计时).根据图象,下列说法错误的是( )
A .爸爸登山时,小军已走了 50米
B .爸爸走了 5分钟,小军仍在爸爸的前面
C .小军比爸爸晚到山顶
D .爸爸前10分钟登山的速度比小军慢, 10分钟后登山的速度比小军快
二填空题:(每题3分,共18分) X
11 .当X _______ 时,分式有意义;
12 .空气的单位体积质量为 0.001239 g/cm 3,用科学记数法表示为 _______________ g/cm 3;
13 .点P (1 , 2)关于y 轴对称点的坐标是 _____________________ ;将直线y=3x 向上平移3个单位后得 到的直线解析式是 ___________________ ;
14 .当m _____________ 时,函数y= ( m-3) x- 2中y 随x 的增大而减小; 15 .小张准备将平时的零用钱节约一些储存起来,
目前他已存有50元,从现在起他准备每个月存 12元,
16
.观察下面一列分式: x 3
-
y ,
x 5 x 7 x 9
y 2 , y 3 , y 4 , o
••,根据你发现的规律写出第
8个分式:
三.
解答题:(共52分)
17 .(4 分)(2)-1
+ 1 -2 | +( .'2 -
n 0
解:
原式=
解:原式=
请写出小张的存款数y (元)
与从现在开始的月份数x (月)之间的函数关系式
18 . (4分)计算: x 2- 2x+1
2-x
x 2-1
+
x+1
解:
1 x+2
20 . (5分)先化简 再求值:(1+ X+1)十X^,其中x= 2 解:原式=
21 . (6分)“苏宁电器”家电部送货人员与销售人员人数之比为 1 :
8,由于今年4月以来家电的销量明 显增多,经理决定从销售人员中抽调
22人去送货,结果送货人员与销售人员人数之比为
2 : 5,求这
个商场家电部原来各有多少名送货人员和销售人员。
22. (4分)龟兔赛跑”是同学们熟悉的寓言故事。
如图所示,表示了寓言中的龟、 兔的路程S 和时间t 的关系 (其中直线段表示乌龟, 折线段表示兔子),请看图回答问题。
⑴赛跑中,兔子共睡了 _____________ 分钟。
⑵乌龟在这次比赛中的平均速度是 _____________ 米/分钟。
⑶乌龟比兔子早达到终点 ___________ 分钟。
⑷兔子醒来后赶到终点这段时间的平均速度是 ______________ 米/分钟。
19 . (5分)解分式方
程: 1-x x-2 3-2x x-2
(分
钟)
x
23 . (7分)矩形ABOC 在平面直角坐标系中的位置如图所示,若点
的坐标为(-3,2),则 A(-3,2)
(1) 求出该矩形面积; (2) 写出点B 、C 坐标;
(3) 求出经过点B 、C 的直线的函数关系
式。
解:
24 .(7分)直线y=x-2分别交x 、y 轴于A 、B 两点,O 为原点。
(1 )在平面直角坐标系中画出函数 y=x-2的图象; (2) 求出△ AOB 的面积;
(3) 经过△ AOB 的顶点能不能画出直线把△ AOB 分成面积相等
的两部分?若能,可以画几条?写出其中这样的一条直线所 对应的函数关系式。
解:
2, 1 ”
----- V ---- < --- * ----- V ---- -2 -1 O 1 2 x
-1 -2
25. (8分)如图所示制作一种产品,需先将材料加热达到 60 C 后,
再进行操作。
设该材料温度为 y (C ),从加热开始计算的时间为 x (min )。
据了解,设该材料开始加热时,温度
y 与时间x 成一次函
数关系;停止加热进行操作时, 温度y 与时间x 成反比例关系(如 图)。
已知该材料在操作加工前的温度为 20 C,加热5分钟后温度
达到60 C 。
⑴分别求出将材料加热和停止加热进行操作时,
y 与x 的函数关系 式。
⑵根据工艺要求,材料的温度低于
15 C,需停止操作,那么从开始 加热到停止操作,共经历了多少时间。
解:
(mi n )。