二次根式提高练习题(含答案)

合集下载

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共小题)30 .计算:1﹣+)+((1)+;(2)()..计算:2-20.)﹣﹣﹣)(π3.14)2| +| (1﹣(﹣).﹣4(+(2)2.(3)(x﹣3)﹣2 )(3﹣x)﹣(x.计算化简:3.6 +3)++(1)(22﹣.计算4.2)×÷(1()+﹣.计算:5.2(+3×)1×2)+3﹣26(.计算:602)×﹣2﹣))(1(+|)((2|﹣页)1第页(共122)﹣2+)(2)(2﹣)+(;(3)2﹣3+(4)(7+4.计算7÷2a≥0))(((1)?))3+﹣﹣)()(3+﹣4((.计算::8(+÷.)(+3﹣1()+2)﹣.计算921+((+)1+12)(﹣)(÷+﹣4)(1.).计算:10)﹣+)4﹣)1((2﹣(+2页)2第页(共120.1)﹣(﹣﹣);(4)+3()(2 +)(2.计算:112.2)+92x?﹣(3(1)(+﹣4)÷.计算:122.﹣②(;7+4 )(7 4)﹣()3﹣1﹣①4++4.计算题13+2)××1(2)﹣()÷(4(+1)(﹣﹣)(﹣(3 1))﹣.÷)5()×﹣6(+页)3第页(共1222+3ab+b的值..已知:,求b=a=,a1415.已知x,y 都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;20162015﹣()()(3.)18.计算:.2+ y=19.已知的值.y,计算x﹣﹣420.已知:a、b、c 是△ABC的三边长,化简.21.已知1<x<5,化简:﹣| x﹣5|.第4页(共12页)22.观察下列等式:①==;②==;③==回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++?+.23.观察下面的变形规律:=,=,=,=,?解答下面的问题:(1)若n 为正整数,请你猜想=;)×()(2)计算:(++?+24.阅读下面的材料,并解答后面的问题:==﹣1=﹣=;==﹣(1为正整数)的结果;)观察上面的等式,请直接写出(n(2)计算(;)=)((3)请利用上面的规律及解法计算:(+++?+)().第5页(共12页)25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算22﹣+12)﹣(1)(2﹣1)(2+7﹣1()9 5+2(.)29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算22﹣1)(﹣1+1)﹣(9(1))((+25﹣+72)第6页(共12页)《二次根式计算专题训练》参考答案与试题解析30 小题)一.解答题(共+5=7;).计算:(11= 2+)+(﹣(2)(=4+2+2﹣=6+.+20﹣﹣2| ﹣﹣﹣)+|+()π﹣3.142.计算:(1)(=1+24+9=12﹣5;(2)﹣4 ﹣(﹣)=2 ﹣4×﹣+2=+222(3)(x﹣3)(3﹣x)﹣(x﹣2)=﹣x+6x ﹣9﹣(x﹣2﹣13=﹣2x+10x4x+4)3.计算化简:=5+2++;(1)=2 +3 +2= 2×2 ﹣﹣(2)26 +36×+3×4= 14 4.计算(1)﹣2﹣2.﹣+= 6= 2+4(2)÷×.=2 ÷3 ×3= 2×)25.计算:(1×= 7+3+30= 37﹣2(2)2﹣6= 14+3+12= 420)﹣2+| ﹣| = 3﹣1+)(6.计算:(1=)(2()×(﹣﹣)×= 24=3﹣﹣+2)3(3﹣= 412+5= 8+52)(2﹣)+(2+)(2)(7+4﹣(4)22(2﹣)+(2+)=1+1=2)(2﹣()=2+=)a≥07.计算(1)(= 6a?)(2÷===2 +3 ﹣2 ﹣4=2 ﹣(3)+3﹣﹣)(﹣)=3 ﹣3+(4)(3 +2 ﹣5﹣﹣2=8.计算:(1)2﹣+;﹣=2=+3(2)3 +(﹣)+=+﹣2+= .÷第7页(共12页)9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;2(2)(1﹣)(1+ )+(1+ )=1﹣5+1+2 +5 =2+2 .10.计算:(1)﹣4﹣2;=2++=3()=2 2﹣3)﹣;﹣﹣(=3+2+2+(3)(2)(2=6;﹣)=12﹣6+0 =1)﹣﹣1(4).﹣(=4+1+3+11.计算:2×2x ﹣43﹣(1)()÷+3=4+=(﹣29 +)÷4﹣2=74÷=8.=5;=22 2x﹣)(2+912.计算:﹣①4 +2;﹣+2=7+4=4 +3+42)﹣(3)(7 7+4②(﹣4﹣﹣(﹣)﹣.)﹣1=45+6=49 4845+1613.计算题=2×3×(1)5 =30;××=== ;(2)﹣+2=×4 ﹣2 +2×=2 ﹣2 +)(1﹣(3)(﹣1﹣+1)=﹣(1+)=﹣(1﹣5)=4;)(﹣)=2)=2=12;(4)÷(﹣﹣÷÷()(5÷÷﹣﹣;×=4++=4+2)6(.===22+3ab+b的值.,求.已知:,b=a14a=2﹣,解:=2+ ,b= a=则a+b=4,ab=1,第8页(共12页)222 +ab=(a+ba)+3ab+b.=17,求x,y 都是有理数,并且满足.已知15的值.,y 的值,因此,将已知等式变形:【分析】观察式子,需求出x,都是有理数,可得x,y ,求解并使原式有意义即可.,【解答】解:∵.∴2也是有理数,与y+4 x,y 都是有理数,∴x+2y ﹣17 ∵解得∴有意义的条件是∵,≥x y,﹣∴取x=5,y= 4.∴此类问题求解,或是转换式子,求出各个未知数的值,然后代入求【点评】解.或是将所求式子转化为已知值的式子,然后整体代入求解..a﹣16.化简:﹣=﹣a,=【分析】分别求出,代入合并即可..【解答】解:原式=)=+(﹣a+1﹣a时,时,=a,当a≤0 0 【点评】本题考查了二次根式性质的应用当a≥a.=﹣.计算:17;=712﹣=9 ﹣1()9+53+10;×22=××)(22= 220162015﹣)()((3.)2015)])(=[(+﹣)?(+ 2015)()﹣(= 5 6? +)=+﹣(.﹣﹣=页)第页(共9 1218.计算:.2解:原式=+1﹣)﹣2 ++(=3+3﹣2+1﹣2+.=4﹣2的值.﹣y4,计算x19.已知y=+﹣【分析】的值,进,解不等式组可得x 根据二次根式有意义的条件可得:2 y求值即可.y 的值,然后代入x﹣而可求出【解答】解:由题意得:,解得:x=,+把x=代入y=﹣4,得y=﹣4,2=﹣16=﹣14.当x=,y=﹣4时x﹣y20.已知:a、b、c 是△.ABC的三边长,化简【解】解:∵a、b、 c 是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=| a+b+c| ﹣| b+c﹣a|+| c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣| x﹣5|.解:∵1<x<5,∴原式=| x﹣1| ﹣| x﹣5|=(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==?回答下列问题:(1)利用你观察到的规律,化简:第10 页(共12 页).+2)计算:+++?(=1)根据观察,可发现规律;【分析】(,根据规律,可得答案;分子分母都乘以分母两个数的差,2)根据二次根式的性质,(可分母有理化.= =【解答】解:(1)原式;)++2)原式=(+?+1).=(﹣,=,=,23 .观察下面的变形规律:=?解答下面的问题:=,;﹣n 为正整数,请你猜想(1)若=)计算:(2))×((+?++)+1)+?+(﹣]()=[解:原式(﹣1)+(﹣)+(﹣)=)(+1(﹣1.﹣﹣221)=(1 = 2015=2016.阅读下面的材料,并解答后面的问题:241﹣==;﹣==﹣==;((1)观察上面的等式,请直接写出n 为正整数)的结果﹣;=1 ))((2)计算()请利用上面的规律及解法计算:3()(++(++?).)?﹣+)(+﹣1+﹣=()(﹣=(1)+11=2017﹣.=2016页)第页(共11 1225.计算:(1)6﹣2 ﹣3= 6﹣5= 6﹣;+﹣+4=4 +3 )4﹣2=7+2.(2+4﹣2| = 2﹣﹣26.计算(1)|﹣2+2;=+2)(2+×﹣﹣×﹣﹣.===5+1+27.计算.﹣10=(6)÷+4﹣=(106)÷+418﹣40=()÷+8=30÷.=1528.计算(1)9﹣20+=;+7﹣5+2= 9 +142(2)(2 ﹣1)(2 +1)﹣(1﹣2 )= 12﹣1﹣1+4 ﹣12 = 4 ﹣2.29.计算下列各题.=6﹣6 +=6﹣﹣)×(1)(+35 ;﹣+=+1﹣+1﹣(2)2 .﹣×= 2=.计算30+7﹣)(195+2+14 ﹣20+=;= 92(2)(﹣1)(+1)﹣(1﹣2 )=3﹣1﹣(1+12﹣4 )=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

二次根式提高练习习题(含答案)

二次根式提高练习习题(含答案)

《二次根式》提高题(一)填空题:(每小题2分,共20分)1、当x __________时,式子31-x 有意义. 2、化简-81527102÷31225a = . 3、a -12-a 的有理化因式是____________.4、当1<x <4时,|x -4|+122+-x x =________________.5、方程2(x -1)=x +1的解是____________.6、已知233x x +=-x 3+x ,则x 的取值范围是 。

7、在实数范围内分解因式2233a a -+=______________.8、已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______. 9、比较大小:-721_________-341.10、化简:(7-52)2000·(-7-52)2001=______________.11、若1+x +3-y =0,则(x -1)2+(y +3)2=____________.12、x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(二)选择题:(每小题3分,共15分)13、已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤014、m 为实数,则245m m ++的值一定是( )(A )整数 (B )正整数 (C )正数 (D )负数15、设a =19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和5 16、已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -17、若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18、若0<x <1,则4)1(2+-x x -4)1(2-+x x 等于………………………( ) (A )x 2 (B )-x2 (C )-2x (D )2x 19、化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20、当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(三)计算题:21、(235+-)(235--); 22、1145--7114--732+;23、 (a 2m n -m ab mn +m n n m )÷a 2b 2m n ;24、(a +ba ab b +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).25、已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.26、当x =1-2时,求2222a x x a x x +-++222222a x x x a x x +-+-+221a x +的值.27、若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-x y y x +-2的值.28、若实数,x y 满足111y x x <-+-+,求11y y --的值.29、 若a=15+, b=15-,求a 2b+ab 2的值.30、若x ,y 是实数,且314114+-+-=x x y ,求)25()4932(3xy x xy x x +-+的值。

二次根式难题及答案

二次根式难题及答案

二次根式难题及答案【篇一:二次根式提高练习习题(含答案)】判断题:(每小题1分,共5分)21.(?2)ab=-2ab.???????()2.-2的倒数是3+2.()23.(x?1)=(x?1)2.?()4.ab、5.8x,13a3b、?2a是同类二次根式.?() xb1,9?x2都不是最简二次根式.() 31有意义. x?3(二)填空题:(每小题2分,共20分)6.当x__________时,式子7.化简-15828.a-a2?1的有理化因式是____________. 9.当1<x<4时,|x-4|+x2?2x?1=________________.ab?c2d2ab?cd2210.方程2(x-1)=x+1的解是____________. 11.已知a、b、c为正数,d为负数,化简12.比较大小:-=______.127_________-14.y?3=0,则(x-1)2+(y+3)2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy-y2=____________.(三)选择题:(每小题3分,共15分)16.已知x3?3x2=-xx?3,则??????()(a)x≤0(b)x≤-3(c)x≥-3(d)-3≤x≤0222217.若x<y<0,则x?2xy?y+x?2xy?y=?????????()(a)2x(b)2y(c)-2x(d)-2y 18.若0<x<1,则(x?)?4-(x?(a)1x212)?4等于?????????() x22(b)-(c)-2x(d)2x xx?a3(a<0)得????????????????????????() 19.化简a(a)?a(b)-a(c)-?a(d)a20.当a<0,b<0时,-a+2ab-b可变形为???????????????()(a)(a?b)2 (b)-(a?b)2 (c)(?a??b)2 (d)(?a??b)2(四)计算题:(每小题6分,共24分)21.(5??2)(5?3?2);22.54?-42-;?73?23.(a2abn-mmmn+n24.(a+a?babb?ababab?bab?aa?(五)求值:(每小题7分,共14分)x3?xy23?2?25.已知x=,y=,求4的值. 3223xy?2xy?xy3?2?226.当x=1-2时,求xx?a?xx?a2222+2x?x2?a2x?xx?a222+1x?a22的值.六、解答题:(每小题8分,共16分)27.计算(2+1)(1111+++?+).1?22??4?28.若x,y为实数,且y=?4x+4x?1+(一)判断题:(每小题1分,共5分)1xyxy.求?2?-?2?的值. 2yxyx2、【提示】1?23?4?223、(x?1)=|x-1|,(x≥1).两式相等,必须x≥1.但等式左边x 可取任何数.【答(x?1)2=x-113a3b、?2a化成最简二次根式后再判断.【答案】√. xb6、【提示】x何时有意义?x≥0.分式何时有意义?分母不等于零.【答案】x≥0且x≠9.7、【答案】-2aa.【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a-a2?1)(________)=a2-(a2?1)2.a+a2?1.【答案】a+a2?1. 9、【提示】x2-2x+1=()2,x-1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.【答案】3. 10、【提示】把方程整理成ax=b的形式后,a、b分别是多少?2?1,2?1.【答案】x=3+22. 11、【提示】c2d2=|cd|=-cd.【答案】ab+cd.【点评】∵ ab=(ab)2(ab>0),∴ ab-c2d2=(ab?cd)(ab?cd). 12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较-111,的大小,最后比较-与2848281的大小. 48【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】x?1≥0,y?3≥0.当x?1+y?3=0时,x+1=0,y-3=0.15、【提示】∵ 3<<4,∴ _______<8-<__________.[4,5].由于8-介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分) 16、【答案】d.【点评】本题考查积的算术平方根性质成立的条件,(a)、(c)不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴x2?2xy?y2=(x?y)2=|x-y|=y-x.x2?2xy?y2=(x?y)2=|x+y|=-x-y.【答案】c.【点评】本题考查二次根式的性质a2=|a|.18、【提示】(x-12111)+4=(x+)2,(x+)2-4=(x-)2.又∵ 0<x<1, xxxx11∴ x+>0,x-<0.【答案】d.xx【点评】本题考查完全平方公式和二次根式的性质.(a)不正确是因为用性质时没有注意当0<x<1时,x-1<0. x19、【提示】?a3=?a?a2=?aa2=|a|?a=-a?a.【答案】c. 20、【提示】∵ a<0,b<0,∴-a>0,-b>0.并且-a=(?a)2,-b=(?b)2,ab=(?a)(?b).【答案】c.【点评】本题考查逆向运用公式(a)2=a(a≥0)和完全平方公式.注意(a)、(b)不正确是因为a<0,b<0时,a、b都没有意义.(四)计算题:(每小题6分,共24分)21、【提示】将?看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(5?)2-(2)2=5-2+3-2=6-2. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4?)4(?)2(3?)--=4+---3+7=1.16?1111?79?7abnm1nm-)22 mn+mmnabmn1nnmmmm?-? mn?+22mabmabmnnnn11a2?ab?1-+=. aba2b2a2b223、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a21b21=2b=【解】原式=24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.a??b?abaa(a?)?b(a?b)?(a?b)(a?b)a?bab(a?)(a?b)a?ba2?aab?bab?b2?a2?b2a?bab(a?)(a?b)=a?bab(a?b)(a?)=-?.a?b?ab(a?b)【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x=3?2=(3?2)2=5+2,3?23?2y==(3?2)2=5-26.3?2∴ x+y=10,x-y=46,xy=52-(26)2=1.2x(x?y)(x?y)x?y46x3?xy26.====2243223xy(x?y)xy(x?y)1?105xy?2xy?xy【点评】本题将x、y化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=(x2?a2)2,∴ x2+a2-xx2?a2=x2?a2(x2?a2-x),x2-xx2?a2=-x (x2?a2-x).【解】原式=xx?a(x?a?x)2222-2x?x2?a2x(x?a?x)22+1x?a22=x2?x2?a2(2x?x2?a2)?x(x2?a2?x)xx?a(x?a?x)xx2?a2(x2?a2?x)2222222222222=x?2xx?a?(x?a)?xx?a?x=(x2?a2)2?xx2?a2=xx2?a2(x2?a2?x)x2?a2(x2?a2?x) xx2?a2(x2?a2?x)11.当x=1-2时,原式==-1-2.【点评】本题如果将前两个“分式”分拆成两个“分x1?2122x式”之差,那么化简会更简便.即原式=-2x?x?a+22222222x?ax?a(x?a?x)x(x?a?x)11111=(=1. ?)+?)-(2xx?a2?xxx2?a2x2?a2?xx2?a2=六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(2?13?24??+++?+) 2?13?24?3100?99=(25+1)[(2?1)+(?2)+(4?)+?+(?)]=(25+1)(00?1)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.1?x???1?4x?0?4]28、【提示】要使y有意义,必须满足什么条件?[? ]你能求出x,y的值吗?[?14x?1?0.??y?.?2?1?x???1?4x?0111?4【解】要使y有意义,必须[?,即?∴ x=.当x=时,y=.442?4x?1?0?x?1.?4?又∵xxyxy??2?-?2?=(yyxyxy2-xy2 )(?)xyx【篇二:二次根式及经典习题及答案】>知识点一:二次根式的概念形如()的式子叫做二次根式。

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。

100道二次根式含答案 (2)

100道二次根式含答案 (2)

100道二次根式题目及答案第一部分:简单题(共50题)1. $\\sqrt{9}$答案:32. $\\sqrt{25}$答案:53. $\\sqrt{81}$答案:94. $\\sqrt{64}$答案:85. $\\sqrt{100}$答案:106. $\\sqrt{121}$答案:11答案:128. $\\sqrt{169}$ 答案:139. $\\sqrt{196}$ 答案:1410. $\\sqrt{225}$ 答案:1511. $\\sqrt{256}$ 答案:1612. $\\sqrt{289}$ 答案:1713. $\\sqrt{324}$ 答案:18答案:1915. $\\sqrt{400}$ 答案:2016. $\\sqrt{441}$ 答案:2117. $\\sqrt{484}$ 答案:2218. $\\sqrt{529}$ 答案:2319. $\\sqrt{576}$ 答案:2420. $\\sqrt{625}$ 答案:25答案:2622. $\\sqrt{729}$ 答案:2723. $\\sqrt{784}$ 答案:2824. $\\sqrt{841}$ 答案:2925. $\\sqrt{900}$ 答案:3026. $\\sqrt{961}$ 答案:3127. $\\sqrt{1024}$ 答案:32答案:3329. $\\sqrt{1156}$ 答案:3430. $\\sqrt{1225}$ 答案:3531. $\\sqrt{1296}$ 答案:3632. $\\sqrt{1369}$ 答案:3733. $\\sqrt{1444}$ 答案:3834. $\\sqrt{1521}$ 答案:39答案:4036. $\\sqrt{1681}$ 答案:4137. $\\sqrt{1764}$ 答案:4238. $\\sqrt{1849}$ 答案:4339. $\\sqrt{1936}$ 答案:4440. $\\sqrt{2025}$ 答案:4541. $\\sqrt{2116}$ 答案:46答案:4743. $\\sqrt{2304}$ 答案:4844. $\\sqrt{2401}$ 答案:4945. $\\sqrt{2500}$ 答案:5046. $\\sqrt{2601}$ 答案:5147. $\\sqrt{2704}$ 答案:5248. $\\sqrt{2809}$ 答案:53答案:5450. $\\sqrt{3025}$答案:55第二部分:中等题(共25题)51. $\\sqrt{10} + \\sqrt{2}$答案:$\\sqrt{10} + \\sqrt{2}$52. $\\sqrt{5} + \\sqrt{20}$答案:$\\sqrt{5} + 2\\sqrt{5} = 3\\sqrt{5}$53. $\\sqrt{15} + \\sqrt{12}$答案:$\\sqrt{15} + \\sqrt{12} = \\sqrt{15} + 2\\sqrt{3}$ 54. $\\sqrt{7} - \\sqrt{8}$答案:$\\sqrt{7} - \\sqrt{8}$55. $\\sqrt{9} - \\sqrt{6}$答案:$\\sqrt{9} - \\sqrt{6} = 3 - \\sqrt{6}$答案:$\\sqrt{26} + \\sqrt{14}$57. $\\sqrt{30} - \\sqrt{10}$答案:$\\sqrt{30} - \\sqrt{10}$58. $\\sqrt{5} \\cdot \\sqrt{10}$答案:$\\sqrt{5} \\cdot \\sqrt{10} = \\sqrt{50}$59. $\\sqrt{10} \\cdot \\sqrt{2}$答案:$\\sqrt{10} \\cdot \\sqrt{2} = 2\\sqrt{5}$60. $\\sqrt{18} \\cdot \\sqrt{3}$答案:$\\sqrt{18} \\cdot \\sqrt{3} = 3\\sqrt{6}$61. $\\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{32} - \\sqrt{8} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$ 62. $\\sqrt{24} - \\sqrt{6}$答案:$\\sqrt{24} - \\sqrt{6} = 4\\sqrt{6} - \\sqrt{6} = 3\\sqrt{6}$答案:$(\\sqrt{2} + \\sqrt{3})^2 = 2 + 2\\sqrt{2}\\sqrt{3} + 3 = 5 +2\\sqrt{6}$64. $(\\sqrt{2} - \\sqrt{3})^2$答案:$(\\sqrt{2} - \\sqrt{3})^2 = 2 - 2\\sqrt{2}\\sqrt{3} + 3 = 5 - 2\\sqrt{6}$65. $(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3})$答案:$(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3}) = 2 - 3 = -1$66. $(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6})$答案:$(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6}) = 5 - 6 = -1$67. $3\\sqrt{2}(\\sqrt{2} - \\sqrt{3})$答案:$3\\sqrt{2}(\\sqrt{2} - \\sqrt{3}) = 3\\sqrt{2} \\cdot \\sqrt{2} -3\\sqrt{2} \\cdot \\sqrt{3} = 6 - 3\\sqrt{6}$68. $(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6})$答案:$(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6}) = \\sqrt{2\\cdot 5} \\cdot \\sqrt{3\\cdot 6} = \\sqrt{10} \\cdot \\sqrt{18} = \\sqrt{180}$69. $\\frac{\\sqrt{8}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{8}}{\\sqrt{2}} = \\sqrt{4} = 2$70. $\\frac{\\sqrt{15}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{15}}{\\sqrt{5}} = \\sqrt{3}$71. $\\frac{\\sqrt{18}}{\\sqrt{6}}$答案:$\\frac{\\sqrt{18}}{\\sqrt{6}} = \\sqrt{3}$72. $\\frac{\\sqrt{50}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{50}}{\\sqrt{2}} = \\sqrt{25} = 5$73. $\\frac{\\sqrt{35}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{35}}{\\sqrt{5}} = \\sqrt{7}$74. $\\frac{\\sqrt{40}}{\\sqrt{8}}$答案:$\\frac{\\sqrt{40}}{\\sqrt{8}} = \\sqrt{5}$75. $\\frac{\\sqrt{72}}{\\sqrt{18}}$答案:$\\frac{\\sqrt{72}}{\\sqrt{18}} = \\sqrt{4} = 2$第三部分:困难题(共25题)76. $\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6}$答案:$\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6} = \\sqrt{6} + \\sqrt{6} = 2\\sqrt{6}$答案:$\\sqrt{7} \\cdot \\sqrt{11} - \\sqrt{77} = \\sqrt{7\\cdot11} - \\sqrt{77} = \\sqrt{77} - \\sqrt{77} = 0$78. $(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2$答案:$(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2 =4\\sqrt{3}\\sqrt{5} = 4\\sqrt{15}$79. $(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2$答案:$(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2 =4\\sqrt{2}\\sqrt{5} = 4\\sqrt{10}$80. $\\sqrt{2\\sqrt{2}}$答案:$\\sqrt{2\\sqrt{2}} = \\sqrt{\\sqrt{2^2}\\sqrt{2}} =\\sqrt{\\sqrt{4}\\sqrt{2}} = \\sqrt{2}\\sqrt{2} = 2$81. $\\sqrt{3\\sqrt{3}}$答案:$\\sqrt{3\\sqrt{3}} = \\sqrt{\\sqrt{3^2}\\sqrt{3}} =\\sqrt{\\sqrt{9}\\sqrt{3}} = \\sqrt{3}\\sqrt{3} = 3$82. $\\sqrt{5\\sqrt{5}}$答案:$\\sqrt{5\\sqrt{5}} = \\sqrt{\\sqrt{5^2}\\sqrt{5}} =\\sqrt{\\sqrt{25}\\sqrt{5}} = \\sqrt{5}\\sqrt{5} = 5$答案:$(\\sqrt{5} + \\sqrt{3})^2 + 2\\sqrt{15} = 5 + 3 + 2\\sqrt{15} = 8 + 2\\sqrt{15}$84. $(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6}$答案:$(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6} = 2 - 2\\sqrt{2}\\sqrt{3} + 3 + 2\\sqrt{6} = 5 + 2\\sqrt{6}$85. $3\\sqrt{2} - \\sqrt{8}$答案:$3\\sqrt{2} - \\sqrt{8} = 3\\sqrt{2} - 2\\sqrt{2} = \\sqrt{2}$86. $2\\sqrt{3} + \\sqrt{12}$答案:$2\\sqrt{3} + \\sqrt{12} = 2\\sqrt{3} + 2\\sqrt{3} = 4\\sqrt{3}$87. $\\sqrt{8} + \\sqrt{72}$答案:$\\sqrt{8} + \\sqrt{72} = 2\\sqrt{2} + 6\\sqrt{2} = 8\\sqrt{2}$88. $\\sqrt{5}\\sqrt{10} - \\sqrt{10}$答案:$\\sqrt{5}\\sqrt{10} - \\sqrt{10} = \\sqrt{5\\cdot10} - \\sqrt{10} = \\sqrt{50} - \\sqrt{10} = 5\\sqrt{2} - \\sqrt{10}$89. $\\sqrt{3}\\sqrt{6} + \\sqrt{18}$答案:$\\sqrt{3}\\sqrt{6} + \\sqrt{18} = \\sqrt{3\\cdot6} + \\sqrt{18} =\\sqrt{18} + \\sqrt{18} = 2\\sqrt{18} = 6\\sqrt{2}$90. $\\sqrt{16} - \\sqrt{32}$答案:$\\sqrt{16} - \\sqrt{32} = 4 - 4\\sqrt{2} = 4(1 - \\sqrt{2})$91. $\\sqrt{12} - \\sqrt{20} + \\sqrt{5}$答案:$\\sqrt{12} - \\sqrt{20} + \\sqrt{5} = 2\\sqrt{3} - 2\\sqrt{5} + \\sqrt{5} = 2\\sqrt{3} - \\sqrt{5}$92. $\\sqrt{7}\\sqrt{35} - \\sqrt{7}$答案:$\\sqrt{7}\\sqrt{35} - \\sqrt{7} = \\sqrt{7\\cdot35} - \\sqrt{7} =\\sqrt{245} - \\sqrt{7}$93. $\\sqrt{50} + \\sqrt{200} - \\sqrt{8}$答案:$\\sqrt{50} + \\sqrt{200} - \\sqrt{8} = 5 + 10\\sqrt{2} - 2\\sqrt{2} = 5 + 8\\sqrt{2}$94. $5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32}$答案:$5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32} = 5\\sqrt{2} - 2\\cdot3\\sqrt{2} + 4\\sqrt{2} = 9\\sqrt{2}$95. $\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8} = 6\\sqrt{2} -3\\sqrt{2} + 4\\sqrt{2} - 2\\sqrt{2} = 5\\sqrt{2}$96. $\\sqrt{3}(\\sqrt{15} - \\sqrt{5})$答案:$\\sqrt{3}(\\sqrt{15} - \\sqrt{5}) = \\sqrt{3}\\sqrt{15} -\\sqrt{3}\\sqrt{5} = \\sqrt{45} - \\sqrt{15} = 3\\sqrt{5} - \\sqrt{15}$97. $\\sqrt{2}(\\sqrt{16} - \\sqrt{8})$答案:$\\sqrt{2}(\\sqrt{16} - \\sqrt{8}) = \\sqrt{2}\\cdot4\\sqrt{2} - \\sqrt{2}\\cdot2\\sqrt{2} = 8 - 4\\sqrt{2} = 4(2 - \\sqrt{2})$98. $\\sqrt{5}(\\sqrt{12} + \\sqrt{3})$答案:$\\sqrt{5}(\\sqrt{12} + \\sqrt{3}) = \\sqrt{5}\\cdot2\\sqrt{3} + \\sqrt{5}\\sqrt{3} = 2\\sqrt{15} + \\sqrt{15} = 3\\sqrt{15}$99. $\\sqrt{7}(\\sqrt{7} + \\sqrt{11})$答案:$\\sqrt{7}(\\sqrt{7} + \\sqrt{11}) = \\sqrt{7}\\cdot\\sqrt{7} + \\sqrt{7}\\sqrt{11} = 7 + \\sqrt{77}$100. $\\sqrt{8}(\\sqrt{6} - \\sqrt{2})$答案:$\\sqrt{8}(\\sqrt{6} - \\sqrt{2}) = \\sqrt{8}\\cdot2\\sqrt{2} - \\sqrt{8}\\cdot\\sqrt{2} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$结束语本文共提供了100道二次根式题目及其答案。

二次根式 专题练习(含答案)

二次根式 专题练习(含答案)

二次根式专题练习(含答案)一.选择题(共10小题)1.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.已知:m,n是两个连续自然数(m<n),且q=mn.设,则p()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数3.化简二次根式的结果是()A.B. C.D.4.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.95.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.A.0 B.1 C.2 D.36.若实数x,y满足x﹣y+1=0且1<y<2,化简得()A.7 B.2x+2y﹣7 C.11 D.9﹣4y7.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.158.下列计算中正确的是()A. B.C.D.9.若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2B.﹣3≤k≤3C.﹣1≤k≤1D.k≥﹣110.已知,,则的值为()A.3 B.4 C.5 D.6二.填空题(共8小题)11.二次根式中字母x的取值范围是.12.若y=++2,则x y=.13.若=3﹣x,则x的取值范围是.14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.15.已知xy=3,那么的值是.16.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=.17.若a、b、c三个数在数轴上对应点的位置如图所示,化简:=.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).三.解答题(共10小题)19.化简求值:,其中.20.已知:a=,b=.求代数式的值.21.已知:,求的值.22.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.23.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.24.已知y=+2,求+﹣2的值.25.已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.26.观察下列等式:①==﹣1②==﹣③==﹣…回答下列问题:(1)化简:=;(n为正整数)(2)利用上面所揭示的规律计算:+++…++.27.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.28.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=;(2)利用上面所提供的解法,请化简:的值.参考答案与试题解析一.选择题(共10小题)1.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.【点评】本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.2.已知:m,n是两个连续自然数(m<n),且q=mn.设,则p()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数【分析】m、n是两个连续自然数(m<n),则n=m+1,所以q=m(m+1),所以q+n=m(m+1)+m+1=(m+1)2,q﹣m=m(m+1)﹣m=m2,代入计算,再看结果的形式符合偶数还是奇数的形式.【解答】解:m、n是两个连续自然数(m<n),则n=m+1,∵q=mn,∴q=m(m+1),∴q+n=m(m+1)+m+1=(m+1)2,q﹣m=m(m+1)﹣m=m2,∴=m+1+m=2m+1,即p的值总是奇数.故选A.【点评】本题的关键是根据已知条件求出p的值,判断p的值.3.化简二次根式的结果是()A.B. C.D.【分析】根据二次根式找出隐含条件a+2≤0,即a≤﹣2,再化简.【解答】解:若二次根式有意义,则﹣≥0,﹣a﹣2≥0,解得a≤﹣2,∴原式==.故选B.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式,且不改变原式符号.4.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.9【分析】观察已知等式可知,两个括号里分别有m2﹣2m,n2﹣2n的结构,可由已知m、n的值移项,平方得出m2﹣2m,n2﹣2n的值,代入已知等式即可.【解答】解:由m=1+得m﹣1=,两边平方,得m2﹣2m+1=2即m2﹣2m=1,同理得n2﹣2n=1.又(7m2﹣14m+a)(3n2﹣6n﹣7)=8,所以(7+a)(3﹣7)=8,解得a=﹣9故选C.【点评】本题考查了二次根式的灵活运用,直接将m、n的值代入,可能使运算复杂,可以先求部分代数式的值.5.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.A.0 B.1 C.2 D.3【分析】对已知条件变形整理并平方,解方程即可得到a的值,求出后直接选取答案.【解答】解:根据二次根式有意义的条件,可得a≥1.原方程可以变形为:a﹣=,两边同平方得:a2+1﹣﹣2a=a﹣,a2+1﹣2=a.a2﹣a﹣2+1=0,解得=1,∴a2﹣a=1,a=(负值舍去).a≈1.618.所以[a]=1,故选B.【点评】此题首先能够根据二次根式有意义的条件求得a的取值范围,然后通过平方的方法去掉根号.灵活运用了完全平方公式.6.若实数x,y满足x﹣y+1=0且1<y<2,化简得()A.7 B.2x+2y﹣7 C.11 D.9﹣4y【分析】求出y=x+1,根据y的范围求出x的范围是0<x<1,把y=x+1代入得出+2,推出+2,根据二次根式的性质得出|2x+1|+2|x﹣3|,根据x的范围去掉绝对值符号求出即可.【解答】解:∵x﹣y+1=0,∴y=x+1,∵1<y<2,∴1<x+1<2,∴0<x<1,∴,=+2,=+2,=+2,=|2x+1|+2|x﹣3|,=2x+1+2(3﹣x),=7,故选A.【点评】本题考查了完全平方公式,二次根式的性质,绝对值等知识点的应用,主要考查学生综合运用性质进行化简和计算的能力,题目具有一定的代表性,但是一道比较容易出错的题目,有一定的难度.7.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【分析】由a﹣b=2+,b﹣c=2﹣可得,a﹣c=4然后整体代入.【解答】解:∵a﹣b=2+,b﹣c=2﹣,∴a﹣c=4,∴原式====15.故选D.【点评】此题的关键是把原式转化为的形式,再整体代入.8.下列计算中正确的是()A. B.C.D.【分析】根据二次根式的性质对各选项分析判断后利用排除法求解.【解答】解:A、+不能进行运算,故本选项错误;B、==×,负数没有算术平方根,故本选项错误;C、x﹣x=(﹣)x,故本选项正确;D、不能进行运算,=a+b,故本选项错误.故选C.【点评】本题考查了二次根式的性质与混合运算,是基础题,比较简单,但容易出错.9.若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2B.﹣3≤k≤3C.﹣1≤k≤1D.k≥﹣1【分析】依据二次根式有意义的条件即可求得k的范围.【解答】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.已知,,则的值为()A.3 B.4 C.5 D.6【分析】先分母有理化求出a、b的值,再求出a2+b2的值,代入求出即可.【解答】解:∵a===+2,b==﹣2,∴a2+b2=(a﹣b)2+2ab=42+2×(5﹣4)=18,∴==5,故选C.【点评】本题考查了分母有理化,二次根式的化简,关键是求出a、b和a2+b2的值,题目比较好,难度适中.二.填空题(共8小题)11.二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.若y=++2,则x y=9.【分析】根据二次根式有意义的条件得出x﹣3≥0,3﹣x≥0,求出x,代入求出y即可.【解答】解:y=有意义,必须x﹣3≥0,3﹣x≥0,解得:x=3,代入得:y=0+0+2=2,∴x y=32=9.故答案为:9.【点评】本题主要考查对二次根式有意义的条件的理解和掌握,能求出x y的值是解此题的关键.13.若=3﹣x,则x的取值范围是x≤3.【分析】根据二次根式的性质得出3﹣x≥0,求出即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.15.已知xy=3,那么的值是±2.【分析】先化简,再分同正或同负两种情况作答.【解答】解:因为xy=3,所以x、y同号,于是原式=x+y=+,当x>0,y>0时,原式=+=2;当x<0,y<0时,原式=﹣+(﹣)=﹣2.故原式=±2.【点评】此题比较复杂,解答此题时要注意x,y同正或同负两种情况讨论.16.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=4.【分析】根据x的取值范围确定m的取值范围,然后在其取值范围内求得最小的整数.【解答】解:∵﹣4≤x≤1,∴4+x≥0,1﹣x≥0,∴不等式两边平方得:m2>5+2∵当x=﹣1.5时,最大为2.5,∴m2>10∴满足条件的最小的整数为4.故答案为4.【点评】本题考查了二次根式有意义的条件,关键是确定m的取值范围.17.若a、b、c三个数在数轴上对应点的位置如图所示,化简:=3.【分析】先根据数轴判断出a、b、c的大小及符号,再根据有绝对值的性质及二次根式的定义解答.【解答】解:由数轴上各点的位置可知,a<b<0,c>0,|a|>|b|>c,∴=﹣a;|a﹣b|=b﹣a;|a+b|=﹣(a+b);|﹣3c|=3c;|a+c|=﹣(a+c);故原式====3.故答案是:3.【点评】解答此题的关键是根据数轴上字母的位置判断其大小,再根据绝对值的规律计算.绝对值的规律:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共10小题)19.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.20.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.21.已知:,求的值.【分析】首先化简a=2﹣,然后根据约分的方法和二次根式的性质进行化简,最后代入计算.【解答】解:∵a==2﹣<1,∴原式==a﹣3+=2﹣﹣3+2+=1.【点评】此题中注意:当a<1时,有=1﹣a.22.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.【分析】观察问题中的三个式子,不难发现规律:用平方差公式完成分母有理化.【解答】解:(1)原式==;(2)原式==;(3)原式==.【点评】要将中的根号去掉,要用平方差公式()()=a﹣b.23.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.24.已知y=+2,求+﹣2的值.【分析】由二次根式有意义的条件可知1﹣8x=0,从而可求得x、y的值,然后将x、y的值代入计算即可.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式的被开方数大于等于零是解题的关键.25.已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.【分析】首先化简x与y,可得:x=()2=2n+1﹣2,y=2n+1+2,所以x+y=4n+2,xy=1;将所得结果看作整体代入方程,化简即可求得.【解答】解:化简x与y得:x=,y=,∴x+y=4n+2,xy=1,∴将xy=1代入方程,化简得:x2+y2=98,∴(x+y)2=x2+y2+2xy=98+2×1=100,∴x+y=10.∴4n+2=10,解得n=2.【点评】此题考查了二次根式的分母有理化.解题的关键是整体代入思想的应用.26.观察下列等式:①==﹣1②==﹣③==﹣…回答下列问题:(1)化简:=;(n为正整数)(2)利用上面所揭示的规律计算:+++…++.【分析】(1)根据平方差公式,进行分母有理化,即可解答;(2)根据(1)中的规律化简,即可解答.【解答】解:(1)=;故答案为:.(2)+++…++=…+=﹣1.【点评】本题考查了分母有理化,解决本题的关键是发现分母有理化的规律.27.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.28.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=;(2)利用上面所提供的解法,请化简:的值.【分析】(1)通过观察题目中的解题过程可以看出:相邻的两个数算术平方根的和的倒数等于它们算术平方根的差;(2)根据规律,先化简成二次根式的加减运算,再进行计算就可以了.【解答】解:(1)=;(2)由题意可知:==.【点评】本题考查的是分式的加减运算,同时还考查了根据题目的已知来获取信息的能力,总结规律并运用规律是近年中考的热点之一.。

二次根式计算专题训练附答案

二次根式计算专题训练附答案

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣|(2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+=2+5=7;(2)(+)+(﹣=4+2+2﹣=6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2=1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)=2﹣4×﹣+2=+(3)(x﹣3)(3﹣x)﹣(x﹣2)2=﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++=2+3+2=5+2;(2)2﹣6+3=2×2﹣6×+3×4=144.计算(1)+﹣=2+4﹣2=6﹣2.(2)÷×=2÷3×3=2.5.计算:(1)×+3×2=7+30=37(2)2﹣6+3=4﹣2+12=146.计算:(1)()2﹣20+|﹣|=3﹣1+=(2)(﹣)×=(3﹣)×=24(3)2﹣3+=4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)=1+1=27.计算(1)•(a≥0)==6a(2)÷==(3)+﹣﹣=2+3﹣2﹣4=2﹣3(4)(3+)(﹣)=3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2=1﹣5+1+2+5=2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6=6;(4)+﹣(﹣1)0=+1+3﹣1=4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2=49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5=30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab=17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3=9+10﹣12=7;(2)2=2×2×2×=;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5|=(x﹣1)﹣(5﹣x)=2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12=2016﹣1=2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1=2016.25.计算:(1)6﹣2﹣3=6﹣5=6﹣;(2)4+﹣+4=4+3﹣2+4=7+2.26.计算(1)|﹣2|﹣+2=2﹣﹣2+2=;(2)﹣×+=﹣×5+=﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2=9+14﹣20+=;(2)(2﹣1)(2+1)﹣(1﹣2)2=12﹣1﹣1+4﹣12=4﹣2.29.计算下列各题.(1)(﹣)×+3=﹣+=6﹣6+=6﹣5;(2)﹣×=+1﹣=2+1﹣2.30.计算(1)9+7﹣5+2=9+14﹣20+=;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.。

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣= 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)= 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式演习01一.填空题 1.下列和数1415926.3)1(.3.0)2(722)3(2)4(38)5(-2)6(π (3030030003).0)7( 个中无理数有________,有理数有________(填序号)2.94的平方根________,216.0的立方根________. 3.16的平方根________,64的立方根________. 4.算术平方根等于它本身的数有________,立方根等于本身的数有________.5.若2562=x ,则=x ________,若2163-=x ,则=x ________.6.已知ABC Rt ∆双方为3,4,则第三边长________.7.若三角形三边之比为3:4:5,周长为24,则三角形面积________.8.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.9.假如0)6(42=++-y x ,则=+y x ________. 10.假如12-a 和a -5是一个数m 的平方根,则.__________,==m a11.三角形三边分离为8,15,17,那么最长边上的高为________.12.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 二.选择题13.下列几组数中不克不及作为直角三角形三边长度的是( )A.25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b aD.17,8,15===c b a14.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C.29英寸(cm 74) D .34英寸(cm 87)15.等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16.三角形三边c b a ,,知足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17.2)6(-的平方根是( )A .6-B .36C.±6D.6±18.下列命题准确的个数有:a a a a ==233)2(,)1((3)无穷小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( )A .1个 B. 2个 C .3个D.4个19.x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B.7C.3,7D. 1,720.直角三角形边长度为5,12,则斜边上的高( )A. 6B.8C.1318D.1360 21.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A.2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+22.如图一向角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B.cm 3 C.cm 4D.cm 5三.盘算题23.求下列各式中x 的值:24.用盘算器盘算:(成果保存3个有用数字)四.作图题25.在数轴上画出8-的点.26.下图的正方形网格,每个正方形极点叫格点,请在图中画一个面积为10的正方形. 五.解答题27.已知如图所示,四边形ABCD中,,12,13,4,3cm CD cm BC cm AD cm AB ====090=∠A 求四边形ABCD 的面积.28.如图所示,在边长为c 直角边为b a ,勾股定理吗?写出来由.29.如图所示,15cm 60)堆在一路,30.如图所示,在ABC Rt ∆中,∠若AD=8,BD=2,求CD.31.在△ABC 中ABC 周长.二次根式演习01AEBDC第22题图第25题图第26题图第28题图 A第30题图AD答案:一.填空题:1.4.6.7,1.2.3.5;2.32±,0.6;3.±2,2;4.0和1,0和±1;5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1 二.选择题:13-22:ACBCCBDDDB 三.盘算题:23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用盘算器盘算答案略 四.作图题:(略)五.解答题:27.提醒:贯穿连接BD,面积为56;28.提醒:应用面积证实;29.327.8;30.CD=4;31.周长为42.二次根式演习02一.选择题(每小题2分,共30分) 1.25的平方根是( )A.5B.–5C.5±D.5± 2.2)3(-的算术平方根是( )A.9B.–3C.3±D.3 3.下列论述准确的是( )2.0± B.32)(--的立方根不消失C.6±是36的算术平方根D.–27的立方根是–34.下列等式中,错误的是( ) A.864±=± B.1511225121±= C.62163-=- D.1.0001.03-=- 5.下列各数中,无理数的个数有( )A.1B.2C.3D.46.假如x -2有意义,则x 的取值规模是( )A.2≥xB.2<xC.2≤xD.2>x 7.化简1|21|+-的成果是( )A.22-B.22+C.2D.28.下列各式比较大小准确的是( )A.32-<-B.6655->-C.14.3-<-πD.310->-9.用盘算器求得333+的成果(保存4个有用数字)是( )A.3.1742B.3.174 C 10.假如mmm m -=-33成立,则实数m 的取值规模是( )A.3≥mB.0≤mC.30≤<mD.30≤≤m11.盘算5155⨯÷,所得成果准确的是( )A.5B.25C.1D.5512.若0<x ,则xx x 2-的成果为( )A.2B.0C.0或–2D.–213.a.b 为实数,在数轴上的地位如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14.下列算式中准确的是( )A.333n m n m -=-B.ab b a 835=+C.1037=+x xD.52523521=+ 15.在二次根式:①12;④27中,与3是同类二次根式的是( )A.①和③B.②和③C.①和④D.③和④二.填空题(每小题2分,共20分)16.–125的立方根是_____.17.假如9=x ,那么x =________;假如92=x ,那么=x ________.18.要使53-x 有意义,则x 可以取的最小整数是. 19.平方根等于本身的数是________;立方根等于本身的数是_______20.x 是实数,且02122=-x ,则.____=x21.若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22.盘算:①____;)32(2=-②._____1964522=-23.2.645==,24.盘算:._____1882=++ 25.已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23(3)若6=+b a ,则ab ≤3依据以上三个命题所供给的纪律猜测:若9=+b a ,则ab ≤________. 三.解答题(共50分) 26.直接写出答案(10分)④⑦348-⑧()225+⑨27.盘算.化简:(请求有须要的解答进程)(18分) ①8612⨯②)7533(3-③32 -321+2④123127+-⑤(2+2363327⨯-+28.探讨题(10分)=______.依据盘算成果,答复:(1)a吗?你发明个中的纪律了吗?请你用本身的说话描写出来.(2).应用你总结的纪律,盘算①若2x〈,则=②29.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(准确到)30.(6分)已知yx、知足0|22|132=+-+--yxyx,求yx542-的平方根.附加题:31.(5分)已知21,31==yx,求下列各式的值①3223441yxyxyx++②32241yxyyx+-32.(5分)已知ABC∆的三边为cba、、.化简根式002参考答案一.CDDBCCDCBCCACDC二.-5; ±9; ±3; 2; 0; ±1.0; ±0.5; 2;12;314;122.8;;92;三.12;±23;-0.4;5;;9+33;0.5;6;34;13;0;不必定.a=;2-x; 3.14π-;6cm;±4c.二次根式演习03一.填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数规模内分化因式:a4-4=____________.二.选择题(每题4分,共20分)15.下列说法准确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三.盘算题(各小题6分,共30分)四.化简求值(各小题5分,共10分)五.解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径若干?32cm2,假如将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是若干(保存3个有用数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19.A 20. D23. 2430.二次根式演习04一.填空题(每题3分,共54分)2.-27的立方根=.二.选择题(每题4分,共20分)15.下列式子成立的是( ). 17.下列盘算准确的是( ).三.盘算题(各小题6分,共30分)四.化简求值(各小题8分,共16分)五.解答题(各小题8分,共24分)根式004答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19.B 20. A二次根式演习05二次根式:1..2. 当__________时.3.11m+意义,则m的取值规模是.4. 当__________x时是二次根式.5. 在实数规模内分化因式:429__________,2__________x x-=-+=.6. 2x=,则x的取值规模是.7. 2x=-,则x的取值规模是.8. )1x的成果是.9. 当15x≤时5_____________x-=.10. 把.11.11x=+成立的前提是.12.若1a b-+互为相反数,则()2005_____________ab-=.13. 在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A. 2个B. 3个C. 4个D. 5个14. 下列各式必定是二次根式的是()15. 若23a,)A. 52a- B. 12a- C. 25a- D. 21a-16.若A==()A. 24a+ B. 22a+ C. ()222a+ D.()224a+17. 若1a≤,)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值规模是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开端出错的步调是()A. ()1B. ()2C. ()3D. ()421. 2440y y-+=,求xy的值.22. 当a取什么值时,1取值最小,并求出这个最小值.23. 去失落下列各根式内的分母:24. 已知2310x x-+=,.25. 已知,ab为实数,(10b-=,求20052006a b-的值.二次根式演习05答案:二次根式:1. 4x ≥;2. 122x -≤≤; 3. 01m m ≤≠-且; 4. 随意率性实数;5. ()((223;x x x x +; 6. 0x ≥;7. 2x ≤; 8.1x -;9. 4; 10. 1x ≥; 12. -1; 13——20:CCCABCDB21. 4; 22. 12a =-,最小值为1; 23.()()3121x x +;二次根式演习061. 当0a ≤,0b时__________=.2.,则_____,______m n ==.3.__________==.4.盘算:_____________=.5.面积为,则长方形的长约为(准确到0.01).6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式( )8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9.-和-)A. 32-- B. 32--C. -=-D. 不克不及肯定10.以下说法中不准确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 盘算: 12. 化简:13. 把根号外的因式移到根号内:二次根式演习0621.2 二次根式的乘除:1. - 6——10: DDCAB11. ()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. ()()()123.0ab ;13. ()()1.2. 根式013答案: 1——5: ABDDD6. 25x ≤≤; 7. 8; 8. ; 9. ()(22x x x +; 10. 0;11.36-15. 底面边长为; 高为; 16. 26x -; 17. ()41.3x y =⎧⎨=⎩. ()2.5 二次根式演习071. 下列根式中,)2. 下面说法准确的是( )A. 被开方数雷同的二次根式必定是同类二次根式D. 同类二次根式是根指数为2的根式3.)4. 下列根式中,是最简二次根式的是()D.5. 若12x,()A. 21x- B. 21x-+ C. 3 D. -36.10=,则x的值等于()A. 4B. 2±C. 2D. 4±7.x,小数部分为y,y-的值是()A. 38. 下列式子中准确的是()=a b=-C. (a b=-22==9.,.是同类二次根式,则____,____a b==.11.,则它的周长是cm.12.式,则______a=.13.已知x y==则33_________x y xy+=.14.已知x =则21________x x -+=.15. )()20002001232______________+=.16. 盘算:⑴.⑵(231⎛++ ⎝⑶. (()2771+--⑷. ((((22221111+17. 盘算及化简:⑴. 22-⑵⑶⑷. a b a b ⎛⎫+--18.已知:x y ==求32432232x xy x y x y x y -++的值.19. 已知:11a a +=+求221a a +的值.20. 已知:,xy 为实数,且13yx -+,化简:3y -.21. 已知11039322++=+-+-y x x x y x ,求的值. 二次根式演习07答案21.3 二次根式的加减:1——8:BAACCCCC9. ; 10. 1.1; 11. (; 12. 1; 13. 10;14. 42; 16. ()()()()122,3.454.4-+; 17. ()()()()()21.4,23.,4.1x yy x-+-;18. 5; 19. 9+二次根式演习08一.选择题1.假如-3x+5是二次根式,则x的取值规模是()A.x≠-5B.x>-5C.x<-5D.x≤-52.等式x2-1 =x+1 ·x-1 成立的前提是()A.x>1B.x<-1C.x≥1D.x≤-13.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A.3B.4C.5D.64.下列二次根式中,x的取值规模是x≥2的是()A.2-xB.x+2C.x-2D.1 x-25.鄙人列根式中,不是最简二次根式的是()A.a2 +1 B.2x+1 C.2b4D.0.1y6.下面的等式总能成立的是()A.a2 =aB.a a2 =a2C. a · b =abD.ab = a · b7.m为实数,则m2+4m+5 的值必定是()A.整数B.正整数C.正数D.负数8.已知xy>0,化简二次根式x-yx2的准确成果为()A.yB.-yC.-yD.--y9.若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值规模是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.下列根式不克不及与48 归并的是()A.0.12B.18C.113D.-7511.假如最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的规模是()A.x≤10B.x≥10C.x<10D.x>1012.若实数x.y知足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A.1B.32+ 2 C.3+2 2 D.3-2 2二.填空题1.要使x-13-x有意义,则x的取值规模是.2.若a+4 +a+2b-2 =0,则ab=.3.若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 =.4.若y=1-2x +2x-1 +(x-1)2 ,则(x+y)2003=.5.若 2 x>1+ 3 x,化简(x+2)2-3(x+3)3 =.6.若(a+1)2 =(a-1)2 ,则a=.7.比较大小:⑴3 5 2 6 ⑵11 -10 14 -138.若最简根式m2-3 与5m+3 是同类二次根式,则m=.9.已知223=223,338=338,4415=4415,…请你用含n的式子将个中蕴涵的纪律暗示出来:.10.若 5 的整数部分是a,小数部分是b,则a-1b=.11.已知x =1a- a ,则4x+x2 =.12.已知a=3- 5 -3+ 5 ,则化简a得.三.盘算与化简1.( 3 + 2 )-1+(-2)2 +3-82.13 +1+15 - 3+15 +33.(1+ 2 - 3 )(1- 2 + 3 )+2 64.9a + a31a +12aa 3 四.先化简再求值1.已知a=3,b= 4,求[4( a + b )( a - b ) +a +b ab ( b - a ) ]÷ a - bab的值.2.化简:a+2+a 2-4 a+2-a 2-4 - a+2-a 2-4 a+2+a 2-4 取本身爱好的a 的值盘算.3.当a= 3 + 2 3 - 2 ,b= 3 - 2 3 + 2 时,求a 2-3ab+b 2的值.4.当a= 21- 3 时,求a 2-1a -1 - a 2+2a+1 a 2+a - 1a 的值.五.解答下列各题1.解方程: 3 (x -1)= 2 (x+1)2.3.已知直角三角形两直角边长分离为a= 12 3 -11 ,b= 12 3 +11 ,求斜边的长.4.先浏览下列的解答进程,然后作答:形如m ±2n 的化简,只要我们找到两个数a.b 使a+b=m,ab=n,如许( a )2+( b )2=m, a · b =n,那么便有m ±2n =( a ± b )2= a ± b (a>b)例如:化简7+4 3 解:起首把7+4 3 化为7+212 ,这里m=7,n=12;因为4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 · 3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2=2+ 3 由上述例题的办法化简:⑴13-242 ⑵7-40 ⑶2- 3二次根式演习08参考答案一.选择题1.C2.C3.)C4.C5.D6.C7.C8.D9.C10.B11.A12.C二.填空题1.1≤x<32.-123.04.15.-2x-56.07.>>8.69.n+nn2-1=nnn2-1(n≥2且n为整数)10.- 511.1a-a12.- 2三.盘算与化简1. 3 - 22. 3 +13.-4+4 64.236 a四.先化简再求值1. 3 -22.a3.954.- 3五.解答下列各题1.x=5+2 62.x=2 3 -2 y=6-2 33.464.⑴7 - 6 ⑵ 5 - 2 ⑶ 2 - 62二次根式演习09一.选择题1.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是( )A.a 2+3 B.-a 2+3 C.±a 2+3 D.±a+3 2.若式子(x -1)2+|x -2|化简的成果为2x -3,则x的取值规模是( )A.x ≤1B.x ≥2C.1≤x ≤2D.x>03.下列说法错误的是( )A.a 2-6x+9 是最简二次根式 B. 4 是二次根式 C.a 2+b 2长短负数 D.a 2+16 的最小值是44.式子m m +6mm 4 -5m 21m的值是( ) A.正数 B.负数 C.非负数 D.可为正数也可为负数 5.等式x ÷1-x =x1-x成立的前提是( )A.0≤x ≤1B.x<1C.x ≥0D.0≤x <16.下列各组代数式中,互为有理化因式的是( )A.3x +1与1-3xB.x +y 与-x -yC.2-x 与x -2D.x 与 3 x7.下列断定中准确的是( )A.m -n 的有理化因式是m+nB.3-2 2 的倒数是2 2 -3C. 2 - 5 的绝对值是 5 - 2D. 3 不是方程x+1x -1-3x=2的解 8.下列盘算准确的是( )A. 2 + 3 = 5B.2+ 2 =2 2C.63 +28 =57D.8 +18 2= 4 +99.已知a<0,那么(2a -|a|)2的值是( ) A.a B.-a C.3a D.-3a10.在5a ,8b ,m 4,a 2+b 2 ,a 3中,是最简二次根式的有( )A.1个B.2个C.3个D.4个11.不等式(2- 5 )x<1的解集为( )A.x<-2- 5B.x>-2- 5C.x<2- 5D.x>-2+ 512.已知ba -ab =3 2 2 ,那么b a +a b的值为( )A.52B.72C.92D.132 二.填空题1. 2 2分数(填“是”或“不是”)2.最简二次根式a 2+a 与a+9 是同类二次根式,则a=. 3.将a-1a根号外的因式移入根号内的成果是.4.代数式(x +1)2 +(x -3)2的最小值是. 5.代数式2-a +9 的最值是.6.合适不等式15 ≤x ≤27 的整数x 的值是.7.化简:aa -ba 2-ab a 3-2a 2b+ab2 (a>b)=. 8.化简:(12 +1 +13 + 2 +14 + 3 +…+12006 +2005)(2006 +1)=.9.分化因式x 2(x - 3 )-3(x - 3 )=. 10.当a 时,a+2a -4是二次根式. 11.若(-2a )2=2a,则a=. 12.已知x+1x =4,则x -1x = .三.盘算与化简1. 6 ÷(12 +13 )2.22(212 +418-348 ) 3.22 -( 3 -2)0+20 4.22- 3 -12 +( 3 +1)25.aa -ab - ba -b 6.(ab -ab a +ab)·ab -ba -b7.a -9 a +3 8.1x +3 四.化简求值1.已知x= 3 +1,,求x21+2x+x2 的值.2.已知a= 2 5 +2 ,y=10 +2 2 ,求x 2+2xy+y 2+18 (x-y)的值.五.解答题1.解不等式: 2 x-1< 3 x2.解方程组:3.设等式a(x-a) +a(y-a) =x-a -a-y 在实数规模内成立,个中a.x.y是两两不合的实数,求3x2+xy-y2x2-xy+y2的值.4.已知x>0,y>0,且有x (x +2y )=y (6x+5y )求x+xy -y2x+xy +3y的值.5.若a+b=2ab (a>0,b>0),求a+b3a+5b的值.6.已知实数a知足|2003-a|+a-2004 =a,则a-20032的值是若干?二次根式演习09参考答案一.选择题1.C2.B3.A4.负数5.D6.A7.C8.C9.D10.B11.B12.D二.填空题1.不是2.-33.--a4.45.大 26.4或57.a(a-b)2a-b8.20059.(x- 3 )2(x+ 3 )10.a>4或a≤-211.012.±3 3三.盘算与化简1.6 3 -6 22.2-8 33. 2 -1+2 54.8+2 35.16.a7. a -38.当x≠9时,原式=x -3x-9当x≠9时,原式=16四.化简求值1. 3 -12.16五.解答题1. x>- 2 - 32.x=3 2 +2 35,y=3 3 -2 253.36.2004二次根式演习10一.选择题1.下列断定⑴12 3 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,个中错误的个数是( ) A.3 B.2 C.1 D.02.假如a 是随意率性实数,下列各式中必定有意义的是( ) A. a B.1a2 C.3-a D.-a 23.下列各组中的两个根式是同类二次根式的是( ) A.52x 和3x B.12ab 和13abC.x 2y 和xy 2D. a 和1a2 4.下列二次根式中,是最简二次根式的是( ) A.8x B.x 2-3 C.x -y xD.3a 2b 5.在27 .112.112中与 3 是同类二次根式的个数是( )A.0B.1C.2D.36.若a<0,则|a 2-a|的值是( ) A.0 B.2a C.2a 或-2a D.-2a 7.把(a -1)11-a根号外的因式移入根号内,其成果是( )A.1-aB.-1-aC.a -1D.-a -1 8.若a+b4b 与3a +b 是同类二次根式,则a.b 的值为( )A.a=2.b=2B.a=2.b=0C.a=1.b=1D.a=0.b=2 或a=1.b=19.下列说法错误的是( )A.(-2)2的算术平方根是2 B. 3 - 2 的倒数是3 + 2C.当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D.方程x+1 +2=0无解10.若 a + b 与 a - b 互为倒数,则( )A.a=b -1B.a=b+1C.a+b=1D.a+b=-1 11.若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( )A.1-a 1+aB.a -11+aC.1-a 2D.a 2-112.在化简x -y x +y时,甲.乙两位同窗的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y )=(x -y)(x -y )(x )2-(y )2 =x -y 乙:x -y x +y =(x )2-(y )2x +y =(x -y )(x +y )x +y=x -yA.两人解法都对B.甲错乙对C.甲对乙错D.两人都错( )二.填空题1.要使1-2x x+3 +(-x)0有意义,则x 的取值规模是.2.若a 2=( a )2,则a 的取值规模是.3.若x 3+3x 2=-x x+3 ,则x 的取值规模是.4.不雅察下列各式:1+13 =213 ,2+14=314,3+15=415,……请你将猜测到的纪律用含天然数n(n ≥1)的代数式暗示出来是. 5.若a>0,化简-4ab =.6.若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 =.7.化简:||-x 2-1|-2|=.8.在实数规模内分化因式:x 4+x 2-6=.9.已知x>0,y>0且x -2xy -15y=0,则2x+xy +3yx+xy -y =.10.若5+7 的小数部分是a,5-7 的小数部分是b,则ab+5b=.11.设 3 =a,30 =b,则0.9 =. 12.已知a<0,化简4-(a+1a)2-4+(a -1a)2=.三.盘算与化简 1.13(212 -75 ) 2.24 - 1.5 +223 - 3 + 2 3 - 23.(-2 2 )2-( 2 +1)2+( 2 -1)-14.7a 8a -2a218a+7a 2a 5.2nm n -3mn m 3n 3 +5m m 3n (m<0.n<0) 6.1a+ b7.x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8.x+xyxy +y+xy -y x -xy 四.化简求值1.已知x= 2 +12 -1 ,y= 3 -13 +1,求x 2-y 2的值.2.已知x=2+ 3 ,y=2- 3 ,求x +yx -y -x -yx +y的值.3.当a= 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1a 2-a 的值. 五.已知x +1x =4,求x -1x的值.二次根式演习10参考答案 一.选择题 1.B 2.C 3.B 4.B 5.C 6.D7.B 8.D 9.C 10.B 11.A 12.B 二.填空题1.x ≤x ≠-3,x ≠02.a ≥03.-3≤x ≤04. -55 (n+1) 1n+25.-2b -ab6.2x7.18.(x+ 3 )(x+ 2 )(x - 2 ) 9.2927 10.2 11.3a b12.-4三.盘算与化简 1. -1 2. 6 6 -53.6- 24.412 a 2a5.-10mn6. (1)当a ≠ b 时,原式=12a 或 b2b (2)当a= b 时,原式=a - ba 2-b7.18.(x+y)xy xy四.化简求值1.-11+12 2 +16 62.2 3 33.3五.±2 3。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式练习01f填空JS1、卜列和«1(1)3 141592( (2)0.3 (3)≡- (4)√2 (5)-√8(6)y (7)0 3030030003.■其中无理数有 ______ •有理数右 ________ (填序号)42、亍的平力H _______ ・0 216的立方H.3、JlB的平方根________ .阿的立方根 ___________ .4、球术平方根等于它本身的数有_______ ・立方根等于本身的数右________5、若X2 = 256. W-IX= ________ ・若x j = -216. WX= ___________ .6、LI)IlRtMBC两边为3∙ 4・则第三边长_________ >7、若三角形三边之比为3: 4:5∙网长为24.则三角形向枳_______& L!⅛∣≡A形L 2n+ IJn1 ÷2n f2n2 + 2n+ Ln为止整数.則此三角滞是三角形.9. ⅛ι⅛√χ34+(y+6)j -0 ・則x + y- _______________10.如果2a-lfπ 5-a是一个数m的平方根•则& = ____________ m= _______ IU三角形二边分别为& 15. 17.那么仪长边上的岛为_____________ .12. K角三角形三角形FWiftft边长为3和4・三角形内一点到备边铢离相等.那么这个丽离为________二.13. 卜刊几组数中不能作为H角二角形三边长度的足< )Aa = 6t b= 24»C= 25 Ba = 1.5,b = 2»C= 2.52 5C. a ≡ —t b ■ 2f c ■ —D. a ■ 15,b ■& C ■ 173 414. 小强Ift御家甲.彩电荧屏的长为58cm •宽为46cm •则这台电视机尺寸足( >A 9 英Q (23 Cm )B 21 英寸(54Cnl) C.29 英寸(74Cm )D S4 英寸« 87Cm)15. 等腰二角形腰长IOan.底边16cm.则面积( >A 96Cm I B. 48Cm i C. 24cm1 D 32Cm J16. 三何形二边a,b,c满足(a+b)'∙c∣+ 2ab∙则这个三角形足()A 角形B.钝ffj^∑flj形 C. H角三角形D等腰三角形17. (-6)'的平方根足( )A - 6B 36 C. 士6 D. ±麻18. bħj∣⅛jg∣E确的个故冇,(I)Va7 = a t(2)√aτ≡a(3)无限小数都足无珅数<4)有眼小数郝是有理数(5)实数分为IE实数和岁实数两类( 〉A l个 B.2个 C 3个D4个19. x½(-√9)2的平方Mi∙ y足64的立方根•则χ + y= <>A 3 B.7 C3. 7 D l. 720. Fnfl三角形边长度为5. 12.則斜边上的高( )IS 60A 6B 8 C. — D —13 132k Γ{ffi~∕fi形边K为a,b.斜边I•高为h∙则卜列冷犬总能成立的地(A. ab= Ii 2 B a 1÷b 2 = 2h i22. ⅛ιffl ∙fi∕{j Ξ角形尿片.两HftJ 边AC-6αnBC-8αn ・现将直角边AC 沿Fl 线AD 折叠.便它落在料边AB 上•且,j AE ⅛fr.则CD 等F ()(3×2Xr = -824.用i ∣∙nsi ∣∙W:(结果保留3个有效数字)A. 2cm B 3an C 4cm 三、计算层23.求F 列待式中X 的值:(1)16X 2-49=0第 22 JSra(2XX-1)2 = 25(4A(x∙F J7(I)VB四、作图题(?)VB(3)√6-< (4)2√3-3√225.庄数轴上Bii 岀■罷的点•D.5an% 25 Sffl26. IT的JI方形网格■毎个止方形顶点叫格点•请在图和Bi—个面枳为10的正方形•五■解善JR27.已Ial如图所示•四边形ABCD 中AB- 3cnχAD- 4α∏BC - 13ClnCD - 12an ZA- 90°求四边形ABCD 的∣6i⅛U«27 JSffl28. ⅛ι附所示•在1⅛长为C的正方形中.有四个斜边为c∙宜角边为a,b的全肆Hfn三和彤.你虢利用这个图说明勾股定円叫?耳出Pf由“%2Sβffl 229.如图所示・】5只空油饲(毎只油桶底面虫径均为60Cm >堆在•起.妥给它盖一个遮甬棚•逋甬棚起码耍多奇?(结呆保昭一位小数〉30.如图所示∙ ΛlRtΔABC 中∙ ZACB- 90° . CDALAB 边上高•若 AD=S.引.XZSABC 中.AB≡15. AC≡13・ BC 边 l:A AD=12.试求/.ABC 周长.BD=2. 求CD,二次根式练习1一.填空题:1. 4. 6. 7. k 2、3、5; 2・0. 6:3. ±2∙ 2: 4. 0 和1∙ 0 和±hL PO 5・±16∙・4: 6・5Λ√7 :7・ 24: S.宜角:9・・2: 10.)・ 81: 11. ≤-:二选择业:13-22: ACBCCBDDDB三.It WSSi23. (1) (2)x=6 或x≡4 (3) x≡-l: (4) x≡6: 24.用il 弊器4计“答案略BL作图題,(«)五、解答题* 27. Ie示,遗箔BD.面税为56: 28.捉川利用面农证明ι 29. 327. S:二次根式练习2 30. CD-4∣ 31.周长为42.二次根式练习02一.选择题〈毎小题2分.共30分) h 25的平方根是()c. V≡2l6--6 D. -Vδ^δol≡-o 15. 下列各数中.无理数的个数有()-O lOlooh √7. 丄 -?• √2-√3. 0, -√1642AV 1 B 、 2 CU 3D 、 46. 如果J 口有总义.則X 的取值范围是()A. X ≥ 2B. X < 2C. X≤ 2D. X > 27. 化简∣1-√2∣+1的结果是()C∙ ±5 D. ±√52、 (-3)】的算术平方桟是()AK 9 B.・3 C 、±3 3. 下列叙述正确的是()A. 0.4的平方根是±0 2 C. ±6是36的算术平方根 4.下列等式中,钳误的是()D. 3B. -(-2?的立方根不存在 D.・27的立方根是・3A . 2- √2B ∙ 2 + √2c 、2 O. √2 8∙下列各式比较大小正确的是() A. -√2<.√3 趴-営八徑56C. -n < -3 14 D 、- VTO >-3 9∙用计算澎求得√3 + V3的络果(保留4个有效数字)是(A. 3. 1742 B % 3.174 CW 3. 175 2'如果栏F=In成立,则实数m 的取值范围是(IK 计鼻5→√5×-^t 所得络果正飜的是( A 、 5 B 、 2512、若x<0,则匚五[的结果为()X13. ∙∙b 为实数.在数轴上的位置如图所示.则ja-b ∣÷√Γβ的值是(—bB. bC. b —2DD.2a —b14. 下列算式中正确的是()AW m λ∕3 - n√3 = m - n√3 B 、5λ∕a + 3√b = 8x ^b C 、7√x+3>∕x≡ IOD∙ ^J545 ■ 2√5D. 3. 1743A. m≥ 3Bi m≤0C% 0 < m≤ 3D∙ O≤m≤3A. 2B. O C∙ O 或-2 D.■ ・15. 左二次根式:ω√Γ5;②爲;③個;④Q 中.与書是同类二次根式的是()A.①蜩B、②和③ C、①她D.③和④二.填空題〈哥小题2分.共20分〉16. - 125的立方根是 ____17. 如果∣3∣≡9t那么L ________ I如果X2 = 9t那么X= _________ •18. 要使心匚3有慮义,则”可以取的嵌小整数是 __________ •19. 平方根等于本身的数是_______ ;立方根需于本身的数是________20. X是实数•且2"・y-0,则______________21. 若仏b是实数・Ia-II+J2b + l = θ. Wa2-2b= _______________22、计算:Φ(-2√3)* = _②启事= _____________________23, SVrS5 = 1 22& = 2 645.则"1850000=.24. 计算:√2 + √8 + √18≡ 25、已知正数"和九有下列命SL(1) Sa+b≡2f M√ab≤l(2)若a+b≡3, M√ab≤∣■(3〉若a+b = 6. M√ab≤3根聞以上三个命題所提供的规徉豹想:若a+b≡9t则屈W _______________三.解答題(共50分)26. ■接写岀答案OO分)Φ√144②士」(■二$③ V-O O64④斗5)f⑤^6×y∕8CD√48-√3⑧(√I + 2∣1φ(√3÷√5)(√5-√3)27■计Jr化閒:(熨求有必夏的解答过程)(18分〉②書(3√I - √7¾6^)√T7-J ∣+√I?TF= 5pj r = ---------------- ∫⅛r =--------------------- √θr = -------------------- •根据计算结果•回答:(1)・ Q —定等于a 吗?你发现其中的规律了吗?谄你用自己的语言描 述出来.(2).利用你总纽的规律,计算①若X 〈人M √(x - 2): - _____________② √(3.14-π)1= ________ ____⑤(-√3),÷√32-2^I28.探究題(10分)29. (6分)己知一个正方形边长为3c叫另一个正方形的面积是它的面积的4 倍.求第二个正方形的边长•饰确到O ICm). --------------- 4 30. (6分)已知X、y满足√2x-3y-l+∣x- 2y+2∣= 0.求2x-<y的平方根附加掘31. (5分)已WX-Iy- L9求下列各式的值32. (5分)已知AZBC的三边为(U b、c・化简J(a +b + c)' + J(a _ b_ cj + Jp- C — a),- — a — b)i根式002参考答案_■ CODBCa)C BeCACOC二• 一5;±9ι±3{2; O S ±K 0; ±0.5; 2; 12;122∙ 8∣三、12J ±|; -0.4i5; 4√3 ; -y-53√3 s9+4√5 ; 2{ 1.5;3; ^6;;羽;牛曲;3+V∑; 1;3; 0. 5; 6:扌;J ; 0;不一定•因为■ IaI ; 2-x; J -3.14 ;6cm;± 2>∕3;;4c •二次根式练习03填空题:每题2分,共28分)1.4的平方根是_________________ .2. 旅的平方根是__________________ •3. 如数亿师数轴上的住置如图所示.则化简7?歹的结昊足------------- 1-------- 1 --------------- ! ------------a o »4. _______________________________________ -右的豆方碎僧数= _______________________________________________ ・5∙己知S b∣ = ?上=Z I,则Ja 4∙ 2b = __________ ・6. ・J(I -刖≡冲7则尸点取7I•范围是____________________ .7. 在实数范IS内分解因式:#-4 = ____________________ ・≡∙化简:捋M9∙化简吋13.妇^J(6-R(X-4沪=0-耳圧?则命取值范围是14・己夕DQY 0,则J^ = ________________ ・二、迭择題(每题4分,共20分〉15.下列说法正确的是( ).(A) 7伏绝对值的平方根是1⑻0的平方根是0(C) £是最简二戻視式(D) G)冷亍才16 •计M(√2-iχ√2+l)啲鉛黑敏)・(A) √2 + l (B) 3血- I (C) 1 (D) -1】7.若寸X+J,÷1 = 2,则& +昭値杲( )•ω±√3⑻±1 (C)I (D) √318.下列各工〔展于最商相式的呈( )•(A) 7771 (B) TΛ7 (C) √i2(D) √0519•式子<ΞI的耽值取值范围().才+ 2(A) x≥ 1(B) x> 1 且x≠-2(C) x≠-2 (D)才勿且x≠-220. <2, Mr-3∣+J,(Λ-]/的值为( )・(A) 2L4(B)-2 (C)4-2x (D) 2三、计算题(各小题6分.共30分)21. h--2^./45+2√20 ・22∙∕lW居z∕l∙23∙(3-√5)% +(3+毎・24+阿"∙卜 3.f-25.∣√27√÷6x.J∣-z21j∣-√iθ8^.10吒傍「諾卜岳四.化简求值(各小题5分,共10分)27.当X詁J = Q81时,求X£-州・点・*77值.+ √36∑y).其中入=#•*27.五、解答βr各小題8分,共24分)29.有一块面积为(2a * t>)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a・6),疗,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32c√,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?14.15・ B 16. A 17. D 18. A 19. A20・D1. ±22. ±23. - ab4. -25. 0 或 46. ∕π≥17.(^3 + 2)(Λ+√2X<J -√2)8.軾9∙ ⅛Za 2 +⅛2 Ia12. -Jr X 门・Λ≤4根式003答案21. 亘_2不3 22. 10√2 23・ 24 24. — '[ΛB25. 4:7 —6∖Λ^ — 丄,22G. -各、隔 27. +振-3石;-2. 45 29. 2√2^5 30・ 0.900二次根式练习04一•填空赣(毎題3分,共农分)1. 0.4的平方根 ____________ ,吉的舁术平方根是______________2. -27的立方根3・己知α <-6■则∣3-$46/ + 9卜_________________ •4. 式子也手有意义∙QH得肢值范區是_______________________x+25. 写出两个与誓是同类二矢根武的根式杲_____________________6. 当X < 0,M1 -=入若数P在数粘上如图所示,则化简/百y4√(p-2f捋=10.已知2凸*代,则;T=___________________ .11・当么VO且时,化简厶:加十丄=a - CI13. ________________________________________________________ 己丸;Cj 为实数,y - X 一9+ 9一“ +',则X +y - _______________兀一3W.观察下列各式后,再芫成化简:丿3十2旋=√2 + 2^+l = M十A二血十1.Vτ÷2√10 = V5 + 2√l0+2 = 7(75+ √2)a= √5 + √2, .Jg+2√β= ・祢能曰一个相同炖的化简题吗?頁在横线上, __________________________ 二、选择題(每题4分,共20分)15•下列式子成立的是().(A)Ja2 ÷62 =(2 + ∂(B) “ J-2 = -J- ab(D)J-a "b" = —Λ⅛16. 若/芬与囲赤最筠同娄很式.则•甜=值杲().(A)O φ)l (C)-I (D)I17. 下列计算正确的是( ).(A]√2 +x^≡√5(B)2 + ,β ≡ 2√2(C)^3+√28=5Λ∕7(D)^⅛^ = √4÷√9218. 若b<O r化简+二?的结果是( )•(A) - b后(B)fe√≡^ (C)-£> Pab (P)b^fab19. 把儿Jg阴外的因式移入根号内,结果化简为(>(A)F CB)- V (C)∙Λ£)-石20. 満足廣十"=倚的整敖对(XJ)的个数是] ).(盘)多于?个⑻3个©2个(D)I个三.计算題(各小题6分•共30分) 21.9岳-7√127 4 2√6 3馬.23 .(7 + 4√3)(2 -4)2 十(2 十 √3×2 -M)- √124.舟、乔J 耳+ 6碾.22.2(l + ⅛ + √,48 +四.化简求值(各小题8分,共16分)27•巳哑手君'且曲如^,1+χ,J⅞τr28. α > αD > Q■屈运+爲j= 3血書+MI求竺空t逅的危. a -b五■解答題(各小题8分.共24分〉29. = 2-√5.‰4 -8α5+ 16αa -α÷l.50. i⅛等式JeX■小+ Jeyu TXP-Ja-丿在买数范51内成立・矣中"。

《二次根式》提高练习题(含答案)

《二次根式》提高练习题(含答案)

《二次根式》提高训练题(一)判断题:1.ab 2)2(-=-2ab . ( ) 2.3-2的倒数是3+2. ( ) 3.2)1(-x =2)1(-x . ( ) 4.ab 、31b a 3、bax 2-是同类二次根式. ( ) 5.x 8,31,29x +都不是最简二次根式. ( ). (二)填空题:6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a =___________. 8.a -12-a 的有理化因式是__________. 9.当1<x <4时,|x -4|+122+-x x =__________. 10.方程2(x -1)=x +1的解是____________. 11.比较大小:-721______-341.12.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=_________.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:16.已知233x x +=-x 3+x ,则………………………………………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………………( )(A )x 2 (B )-x2(C )-2x (D )2x19.化简aa 3-(a <0)得……………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)在实数范围内因式分解:21.9x 2-5y 2; 22.4x 4-4x 2+1.(五)计算题:(每小题6分,共24分)23.(235+-)(235--); 24.1145--7114--732+;25.20102009)23()23(+∙-; 26.(a 2m n -m abmn +m nn m )÷a 2b 2mn (六)求值:27.已知a -1a求a +1a 的值。

数学提高题专题复习二次根式练习题含答案

数学提高题专题复习二次根式练习题含答案

一、选择题1.下列各式计算正确的是( )A .235+=B .2222+=C .236⨯=D .1222= 2.下列各式成立的是( )A .2(3)3-=B .633-=C .222()33-=-D .2332-=3.下列运算中,正确的是( )A .325+=B .321-=C .326⨯=D .332÷= 4.要使2020x -有意义,x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 20205.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:()()()S p p a p b p c =---,其中2a b c p ++=,若一个三角形的三边长分别为2,3,4,则其面积( ) A .3154 B .3152 C .352 D .354 6.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .7.已知a 满足2018a -+2019a -=a ,则a -2 0182=( )A .0B .1C .2 018D .2 019 8.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定9.在二次根式1x -中,x 的取值范围是( ) A .x ≥1 B .x >1 C .x ≤1 D .x <110.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题11.已知112a b +=,求535a ab b a ab b++=-+_____. 12.若实数x ,y ,m 满足等式 ()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.13.已知:5+22可用含x 2=_____. 14.已知a ,b 是正整数,若有序数对(a ,b )使得11)a b的值也是整数,则称(a ,b )是11)a b 的一个“理想数对”,如(1,4)使得112(a b=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________. 15.已知整数x ,y满足y =,则y =__________. 16.若0xy >,则二次根式________. 17.已知1<x <2,171x x +=-_____. 18.,3,,,则第100个数是_______. 19.已知4a|2|a -=_____. 20.有意义,则x 的取值范围是____. 三、解答题21.计算及解方程组:(1-1-) (2)2+ (3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩ 【答案】(1)2)7;(3)102x y =⎧⎨=⎩. 【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可;(3)首先将第二个方程化简,然后利用加减消元法即可求解.【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y -=⎧⎪⎨+-=⎪⎩①② 由②得:50x y -= ③②-③得: 10x =把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】 本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的: 因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:= - .(2)…(3)若a ,求4a 2-8a +1的值. 【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.计算:(1(2))((222+-+.【答案】(1)【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2=024.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120 (2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x=代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则. 26.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.27.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x y x-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析: 2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x x x x x y x y -⎛⎫---⋅ ⎪+-⎝⎭ =y x x y x x y---⋅+ x y x-=-把x y ==代入得:原式1==-+考点:分式的化简求值.28.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=,故选项D错误.故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b cp+++==∴其面积为4 S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.6.D解析:D【解析】【分析】根据等腰直角△ABC被直线a和b所截的图形分为三种情况讨论:①当0≤x≤1时,y是BM+BD;②当1<x≤2时,y是CP+CQ+MN;当2<x≤3时,y=AN+AF,分别用x表示出这三种情况下y的函数式,然后对照选项进行选择.【详解】①当0≤x≤1时,如图1所示.此时BM=x,则DM=x,在Rt△BMD中,利用勾股定理得BD=2x,所以等腰直角△ABC的边位于直线a,b之间部分的长度和为y=BM+BD=(2+1)x,是一次函数,当x=1时,B点到达N点,y=2+1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF=2(3﹣x),y=AN+AF=(﹣1﹣2)x+3+32,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x7.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.【详解】 解:等式20182019a a +--=a 成立,则a ≥2019,∴a-2018+2019a -=a ,∴2019a -=2018,∴a-2019=20182,∴a-20182=2019.故选D .【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.8.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.9.A解析:A【分析】根据二次根式有意义的条件:被开方数x -1≥0,解不等式即可.【详解】解:根据题意,得x -1≥0,解得x ≥1.故选A .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10.A解析:A【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题11.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 12.3【解析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.13.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 14.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 15.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.16.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 17.-2 【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2=4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.【分析】原来的一列数即为,,,,,,于是可得第n 个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.19.-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】a,∵4∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

完整版二次根式经典提高练习习题含答案

完整版二次根式经典提高练习习题含答案

13. 化简:(7 — 5'、2)2000( — 7— 5・.2 ) 2001= _____________________.14. ______________________________________________________ 若 X 1 +、y3 = 0,则(x — 1)2+ (y + 3)2= __________________________________________________________ . 15.x , y 分别为8— . 11的整数部分和小数部分,贝U2xy — /= _____________ .(三)选择题:(每小题3分,共15分)16. .................................................................................... 已知 x 3 3x 2 = — x 、x 3,则 .................................................... ( )(A ) x w 0 ( B ) x w — 3 (C ) x >— 3 (D )— 3< x < 0 17. .................................................................................................................................若 x v y v 0,则 J x 2 2xy y 2 + /x 2 2xy y 2 = ......................................................................... ((A ) 2x ( B ) 2y (C )— 2x( D )— 2yx 1)24 — .. (x 1)2..... 4 等于 (x x22(A ) —( B )— —( C )— 2x( D ) 2xxx19. 化简(a v 0)得 ...............................................a《二次根式》(一)判断题:(每小题1分,共5 分) 1.( 2) ab = - 2 J ab ................ ( )2. . 3 — 2 的倒数是、3 + 2.( ) 3.上―1)2 = ( . x 1)2 .…( ) 4. ■- ab 、5. 、/8x , (二)填空题: 1 Ja 3b 、 2尼是同类二次根式.…( 3 x T b ,9 x 2都不是最简二次根式.( (每小题2分,共20分) 1 时,式子 --------有意乂. V x 36 .当 x __________ 8. a — .a 2 1的有理化因式是/ 29 .当 1 V X V 4 时,|x — 4|+、x 2x 1 =10. 方程V2 (x — 1)= x + 1的解是 ______ 11. 已知a 、b 、c 为正数,d 为负数,化简 ab c 2d 2.ab 、c 2d 212.比较大小:—12、. 7 14*3))( )( )“ b)218.若 0v x v 1,则、((A) a ( B) —、- a (C) —■■:/ a (D) 、.. a20. 当a v 0 ,b v 0 时,一a+ 2 ab —b 可变形为.............................(A )(、.a .. b)2( B) — (、a b)2(C) (•. a 一b)2( D)(•一a(四)计算题:(每小题6分,共24分)21. (■ 5 .3 2 )(..5 、/3.2 );22.23 . (a2V mab ——mn + m :) 亠姒m ;24 . (■■ a +b ab) + (... +a b 、ab bbab aV b)( a 工b)..ab(五)求值:(每小题7分,共14分)25.已知x= 3 、23 、2,y=3 2,求丁3 2 x yxy26 . 当x= 1 —、2时,求x2a23 22x y的值.2x x2a22 2 2x x x a(每小题8分,共16分)_1 1 1 1(2 5 + 1) ( ------------- + ----------- + -------------------------- +…+ ) •1 V2 寸 2 V3 73 V4 寸 99 V100若 x , y 为实数,且炸 1 4x + .4X 1+ 2 .求 y2 X - y 2X(一) 判断题:(每小题1分,共5 分) 1、【提示】.(2)2 = |-2|= 2 •【答案】X.-l^-2 =-( ,3 + 2).【答案】X.3 43、 【提示】...(X 1)2 = X — 1|,(打x 1)2 = X — 1 (x > 1).两式相等,必须 x > 1 .但等式左边 X 可取任何数.【答案】X.4、 【提示】1 , a 3b 、2..a化成最简二次根式后再判断.【答案】/3xF b25、 9 x 是最简二次根式.【答案】X. (二) 填空题:(每小题2分,共20分)6、 【提示】 x 何时有意义? x > 0 .分式何时有意义?分母不等于零. 【答案】x >0且X M 9.7、 【答案】—2a-. a .【点评】注意除法法则和积的算术平方根性质的运用. 8、 【提示】(a - Ja 21 ) ( _________ ) = a 2— (Ja 21)2.a+P a 21 .【答案】a + Ja 21 .9、 【提示】x 2— 2x + 1=() 2, x — 1•当1 v x v 4时,x — 4, x — 1是正数还是负数?x — 4是负数,x — 1是正数.【答案】3.10、 【提示】把方程整理成 ax = b 的形式后,a 、b 分别是多少? .2 1 , , 2 1 .【答案】x =3+ 2-..2 .11、 【提示】;c'd? = |cd| = — cd .f -- ---------------------------- C Q -【答案】Jab + cd .【点评】T ab = (Jab) (ab >0),二 ab — c 2d 2=( Jab cd ) (ab cd ). 12、 【提示】2 . 7 = ■-, 28 , 4= ^48 .—— —— 1 1【答案】v.【点评】先比较一 28 , ,48的大小,再比较1,1的大小,最后比丁28 V 481 1较一一^—与一一^—的大小.六、解答题: 27 •计算 28. 的值.2、【提示】*'28 V4813、【提示】(—7—5庞)2001= ( —7 —5 ^2 )2000.( ____________ ) [ —7 —5^2 .](7 —5 .2 ) •(—7 —5 ... 2 )=?[1.]【答案】—7— 5 .. 2 .【点评】注意在化简过程中运用幕的运算法则和平方差公式.14、【答案】40.【点评】.X 1 > 0, y 3》0.当.X 1 + .. y 3 = 0 时,x+ 1 = 0, y —3= 0.15、【提示】T 3V “后V4,二___________v8—v __________ . [4, 5].由于8 —<11介于4与5之间,则其整数部分x=?小数部分y=? [x= 4, y= 4 —. 11 ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、( C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】T x v y v 0,「. x—y v 0, x+ y v 0.L2 2 2X 2xy y = . (x y) = |x—y|= y —x.X 2xy y 2 = (x y)2 = |x + y|=- x -y .【答案】C .【点评】本题考查二次根式的性质.a 2 = |a|.1 11 118、 【提示】(X - )2+ 4= (x + )2,(X + )2-4= (x - )2.又•••0V X V 1,x x x x11X + _ > 0, x - V 0.【答案】D .x x【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注1意当 O v x v 1 时,x - V 0.x19、 【提示】』a =、. a a = J a • a = |a| a =- a ::•: a .【答案】C . 20、 【提示】T a v 0, b v 0,—a > 0, — b >0.并且一a = (J a) , — b = G ; b) , -f ab = J ( a)( b).【答案】C .【点评】本题考查逆向运用公式 Ca)2 = a(a >0)和完全平方公式.注意(A )、 (B )不正确是因为 a v 0, b v 0时,..a 、、、b 都没有意义.【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.原式= aVab b Tab 亠 a*a(JaJb) b^b^fa Vb) (a b)(a b)V a 寸b【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】T x = _^2 =(站3 J2)2 = 5+ 2^/6 ,(四)计算题:(每小题6分,共24分) 【提示】将 5,3看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(-5,3)2- (、2)2= 5-2 . 15 + 3- 2= 6 — 2.15 .【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(411)-4(117)-2(37)= 4 + .11 - 11 -. 7 - 3 +16 1111 79 721、 22、 23、 11 7 .7 = 1.【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 1 i 解】原式=(rm -半a b •n __ j n m—b 2m n1 1=~2- +b 2ab1 mab 1~~2 2 =a bm mn + V n a 2ab 1^~2a bn m m ma 2b 2n n24、 Jab (la Jb )(Va 划b )a ,ab b ab b 2a 2b 2b2 亠a_"ab (Va Jb )(Va 血)「ab (恋a 恋b )(^a 恋b ) =_ 掐 V bab (a b )J3 V228、32 —— 2y = ----- -- = ( 3 、、2) = 5— 2、. 6 .3 ,2x + y = 10, x — y = 4 .. 6 , xy = 52 — (2、,6)2=1 . x 3 xy2 x 4y 2x 3y 2__X^y 3【点评】本题将x 、y 化简后, 而使求值的过程更简捷. =x(x y)(x y) = X y2 2X y(x y) xy(x y)根据解题的需要,先分别求出“出=〈6.5x - y 、 xy . 从1 10x + y ”、26、【提示】注意:x 2 + a 2= (qf x ? a?)?,a 2 = Vx 2 a 2 ( v x 2 + a 2-x . x 2 —X ) • x 2 a 2 — x ), x 2-x . x 2 a 2 =-x( /x 厂a 2 (:x 2— 匕2) xJx 2 a 2 (Jx 2 x 2 2x x 2 a 2 ( x 2 a 2)2 xjx 2 a 2(Jx 2 a 21•当x = 1- . 2时,原式= x 【解】原式=x'X .x 2 a 2 (2x 、x X ) x( .. X 2 2x 、x 2 a 2 2 a 2 a x(、x 2 a 2 x)a 2 x) x x 2 a 2 x 2 = ( x 2 a 2 )2 1x) 、 x 2 a 2 x x 2 a 2 a 2 x) 2 2 , 2 2x a ( x a x ,x 2 a 2 ( . x 2a 2 x) X ) x) x. x 2 a 2 ( x 2—1=- 1 - -.. 2 •【点评】本题如果将前两个“分式”分1 、2 拆成两个“分式” 之差,那么化简会更简便.即原式= x a 2bx 2X) / 2 x( X 2 2a a 2 X ) + 1x 2 a 2 =( ------ 1x 2 a 2 六、 解答题:(每小题8分,共16分) 27、 【提示】先将每个部分分母有理化后,再计算. 、2 1 .3 、2 - . 4 、•. 3 + 【解】原式=(2 _ 5 + 1)( 2 1 3 =(2+ 1)[ ( 2 1 ) + ( .3 =(2 .5 +1) ( .100 1) =9 (2 .5 + 1). 【点评】本题第二个括号内有 99个不同分母, 将分母化为整数,从而使每一项转化成两数之差, 相消法.99 + ' +…+ 2 4 3 ,2 ) + ( .. 4 ) + •••+ (、100 ..99 )] 100 99 不可能通分.这里采用的是先分母有理化, 然后逐项相消•这种方法也叫做裂项x1 4X 0【提示】要使y 有意义,必须满足什么条件?[ ]你能求出x,y 的值吗?[4x 1 0y1 ;] 2.【解】要使y有意义,必须[1 4x 0,即4x 1 0x=丄•当x=丄时,41y=—2X2y — x —1—2y = y x y x .=1 1x•—yy|—1xxyy「.・x又•••「7)'y x1x=4-(x y)y=丄,2x y- y x = 2 X 当x= 1y=-时,y■. x x y ' y42原式=原式=2求出y的值.1412=、2•【点评】解本题的关键是利用二次根式的意义求出x的值,进而。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.计算题:
1. (235+-)(235--);
2. 11
45--
7
114--7
32+

3.(a 2
m n -m
ab mn +m
n
n
m )
÷a 2b
2m
n ;
4.(a +b a ab b +-)÷(b ab a
++
a a
b b
--ab b a +)
(a ≠b ). 二.求值: 1.已知x =
2
323-+,y =
2
32
3+-,求
322342
3
2y
x y x y x xy x ++-的
值.
2.当x =1-
2
时,求
2
2
2
2
a
x x a x x
+-++
2
2
2
22
2a
x x x a
x x +-+-+221
a x +的值. 三.解答题: 1.计算(2
5+1)(211
++
3
21++431
++…
+100991
+)
. 2.若x ,y 为实数,且y =
x 41-+14-x +21
.求
x
y y x ++2-
x
y y x +-2的值.
计算题:
1、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式. 【解】原式=(35-)2
-2
)2(=5-215+3-2=6-215. 2、【提示】先分别分母有理化,再合并同类二次根式.
【解】原式=1116)114(5-+-711)
711(4-+-
79)
73(2--=4+
11-11-
7
-3+
7=1.
3、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.
【解】原式=(a 2
m n -m
ab mn +
m
n n m )·2
21b a n
m
=2
1b n
m m n ⋅-mab
1n
m mn ⋅

2
2b ma n n m n m ⋅
=21b -ab 1+221b a =2221
b a ab a +-.
4、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.
【解】原式=b
a a
b b ab a +-++÷)
)(()
)(()()(b a b a ab b a b a b a b b b a a a -+-+-+--

b
a b a ++÷)
)((2
2
2
2
b a b a ab b
a b ab b ab a a -++----

b a b a ++·)
()
)((b a ab b a b a ab +-+-=-
b a +.
【点评】本题如果先分母有理化,那么计算较烦琐. 求值: 1.、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵
x =
232
3-+=
2
)
23(+=5+26,
y =
2
32
3+-=2
)
23(-=5-26.
∴ x +y =10,x -y =46,xy =52-(26)2=1.
322342
32y
x y x y x xy x ++-=
2
2)
())((y x y x y x y x x +-+=)
(y x xy y x +-=
10164⨯=6
5
2. 【点评】本题将x 、y 化简后,根据
解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.
2、【提示】注意:x 2
+a 2
=2
22
)(a x +,
∴ x 2+a 2-x
2
2a
x +=
2
2a
x +(2
2
a x +-x ),x
2-
x
2
2a
x +=-x
(2
2a
x +-x ). 【

】原
式=)
(2
2
2
2
x a x a x x
-++-
)(222
2
2
x a x x a
x x -++-+2
21a x +

)
(()2(2
222
2
2
2
2
2
2
x a x a x x x x a x x a x x -+++
++-+-

)
()(22
2
2
2
2
2
2
2
2
2
2
2
2
x a x a x x x
a x x a x a x x x -++-+++++-=
)
()(2
22
22
2222x a x a x x a
x x a x -+++-+=
)()(2
2
2
2
2
222x a x a x x x a x a x -++-++
=x 1.当x =1-
2时,原式=2
11
-=-1-2.【点评】本题如果将前
两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=
)
(2
222x a x a x x
-++-
)(2222
2
x a x x a
x x -++-+221
a x +

)
11(
2
2
2
2
a
x x
a x +-
-+-
)
11
(22x x a x --++221a
x +=x 1.
解答题: 1、【提示】先将每个部分分母有理化后,再计算.
【解】原式=(25+1)(121
2--+2323--+3434--+…+9910099
100--)
=(25+1)[(12-)+(23-
)+(34-)+…
+(99100-)]
=(25+1)(1100-)
=9(25+1).
【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消
法. 2、【提示】要使y 有意义,必须满足
什么条件?]
.014041[⎩⎨⎧≥-≥-x x 你能求出x ,y
的值吗?]
.2141[⎪⎪⎩
⎪⎪⎨⎧==y x
【解】要使
y 有意义,必须⎩⎨
⎧≥-≥-0140
41[x x ,
即⎪⎪⎩⎪⎪⎨

≥≤.4141x x ∴ x =41.当x =4
1时,y =2
1
. 又∵
x y y x ++2-
x y
y x +-2=
2)(x
y y
x +-2
)(x y y
x
-
=|x y y x +|-|x y y x -|∵ x =41,y =21
,∴ y x <x y . ∴ 原式=x y y x +-y x
x
y +=2y x 当x =41,y =21时,
原式=22141=2.【点评】解本
题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

相关文档
最新文档