动态静力分析4

合集下载

单自由度机械动力学分析方法——动态静力法

单自由度机械动力学分析方法——动态静力法



关键词: 单自由度; 动力学; 动态静力法; 连杆机构

【 bt c】 i ldge o r dmm c i r ia as sd n e po ui . i t s t a s A s at S g e ef e o ah e l y ue a r c gKn o t ial i r n e r f e n ys w i r l d n e - ac n y s《
: 罗阿妮 1 邓 宗全 刘荣强 , 2

’・ 卜
(哈尔滨工业大学 机 电工程学 院 , 尔滨 100 ) 哈尔滨工程大 学 机电工程学 院 , 哈 50 1( 哈尔滨 100 ) 50 1
Kie o s a i n lss o n e r e o r e o ma hn r y a c n t — t t a ay i fo e d g e f e d m c ie y d n mis c f
2 《
础、 分析方法, 以及运用该方法解决典型连杆机构动力学问题。
1 动态静力法的理论基础
11 论 基础 .理
间的动力学关系 , 则必须借助典力学即牛顿力学的基础之上。 通过对 运动几何关系可以建立起机构内部各个构件之间的运动位移关系, 加 于机械系统中的单独构件进行受力分析 , 运用构件加速度与合外 对该位移关系式进行求导即可得到机构内部构件之间运动速度 、

【 要】 由 摘 单自 度机械在生产实 经常 践中 遇到, 其动力学 对于 分析方法中的 静力法 动态 进行了系 2
2 统的介绍。 给出了 使用该方法进行动力学分析的详细步骤。 通过用该方法来解决典型的反正弦连杆机械 i 5 系统动力学问题, 进一步阐述了该方法在进行机械动力学分析过程中的运用。 5

机械原理课程设计六杆机构运动与动力分析

机械原理课程设计六杆机构运动与动力分析

机械原理课程设计六杆机构运动与动⼒分析⽬录第⼀部分:六杆机构运动与动⼒分析⼀.机构分析分析类题⽬ 3 1分析题⽬ 32.分析内容 3 ⼆.分析过程 4 1机构的结构分析 42.平⾯连杆机构运动分析和动态静⼒分析 53机构的运动分析8 4机构的动态静⼒分析18 三.参考⽂献21第⼆部分:齿轮传动设计⼀、设计题⽬22⼆、全部原始数据22三、设计⽅法及原理221传动的类型及选择22 2变位因数的选择22四、设计及计算过程241.选取两轮齿数242传动⽐要求24 3变位因数选择244.计算⼏何尺⼨25 五.齿轮参数列表26 六.计算结果分析说明28 七.参考⽂献28第三部分:体会⼼得29⼀.机构分析类题⽬3(⽅案三)1.分析题⽬对如图1所⽰六杆机构进⾏运动与动⼒分析。

各构件长度、构件3、4绕质⼼的转动惯量如表1所⽰,构件1的转动惯量忽略不计。

构件1、3、4、5的质量G1、G3、G4、G5,作⽤在构件5上的阻⼒P⼯作、P空程,不均匀系数δ的已知数值如表2所⽰。

构件3、4的质⼼位置在杆长中点处。

2.分析内容(1)对机构进⾏结构分析;(2)绘制滑块F的运动线图(即位移、速度和加速度线图);(3)绘制构件3⾓速度和⾓加速度线图(即⾓位移、⾓速度和⾓加速度线图);(4)各运动副中的反⼒;(5)加在原动件1上的平衡⼒矩;(6)确定安装在轴A上的飞轮转动惯量。

图1 六杆机构⼆.分析过程:通过CAD制图软件制作的六杆机构运动简图:图2 六杆机构CAD所做的图是严格按照题所给数据进⾏绘制的。

并机构运动简图中活动构件的序号从1开始标注,机架的构件序号为0。

每个运动副处标注⼀个字母,该字母既表⽰运动副,也表⽰运动副所在位置的点,在同⼀点处有多个运动副,如复合铰链处或某点处既有转动副⼜有移动副时,仍只⽤⼀个字母标注。

见附图2所⽰。

1.机构的结构分析如附图1所⽰,建⽴直⾓坐标系。

机构中活动构件为1、2、3、4、5,即活动构件数n=5。

机械原理教案07不计摩擦的机构动态静力分析效、率和自锁

机械原理教案07不计摩擦的机构动态静力分析效、率和自锁

图5-2驱动力F 在理想情况下克服的工作阻力为0Q ,则00F1Q Q v Fv η==,整理得:00F QF Q η==式中,0F ——理想情况下所需驱动力;F ——实际情况下所需的驱动力;Q ——实际克服的工作阻力;0Q ——理想情况下克服的工作阻力。

4、力矩形式:dd r rM M M M 00==η 式中,0d M ——理想情况下所需驱动力矩;d M ——实际所需驱动力矩;r M ——实际克服的工作阻力矩;0r M ——理想情况下所能克服的工作阻力矩。

对已有的机械,效率可以用计算的方法获得,也可通过实验测定,对于正在设计的机械,常根据表5-2估取。

(二) 机组的效率 1. 串联机组的效率如图示的串联机组,总效率:121121121K K K K K d K K dP P P P PP P P P P ηηηηη----==⋅⋅=可见,串联机组的效率等于组成该机组的各个机器效率的连乘积,它小于其中任何一个单机的效率。

2. 并联机组的效率如图示并联机组的总效率:123112233123KK KdKP PP P P P P P P P P P P ηηηηη''''++++++++==++++上式表明,并联机组的效率不仅与各部分的效率有关,而且与总功率分配到各分支的情况有关。

并联机组的效率总是介于各部分的最大效率和最小效率之间。

3. 混联机组的效率求解方法是应先划分出串联部分和并联部分,分别处理。

如图4-12c 所示的混联机组,其总的机械效率()rrdP P P η''+=。

式中,总的输入功率212d P P ηη=22234345r r P P P P P ηηηηη''''''=+=+''''''''内 容反行程相当于松开过程,工作阻力矩为()2tan 2r v d M G αϕ=-,理想阻力矩20tan 2r dM G α=,得反行程的效率0()v r r tg M M tg αϕηα-==, . 求反行程的自锁条件方法一:令工作阻力矩()2tan 02r v d M G αϕ=-≤,得:v ϕα≤。

机械原理第四章 力分析

机械原理第四章 力分析

FN21/2
G
FN21/2
式中, fv为 当量摩擦系数 fv = f / sinθ
若为半圆柱面接触: FN21= k G,(k = 1~π/2)
摩擦力计算的通式:
Ff21 = f FN21 = fvG
其中, fv 称为当量摩擦系数, 其取值为:
G
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
说明 引入当量摩擦系数之后, 使不同接触形状的移动副中 摩擦力的计算和比较大为简化。因而这也是工程中简化处理问题
的一种重要方法。
(2)总反力方向的确定
运动副中的法向反力与摩擦力 的合力FR21 称为运动副中的总反力, 总反力与法向力之间的夹角φ, 称 为摩擦角,即
φ = arctan f
FR21
FN21
机械原理
第四章 平面机构的力分析
§4-1 概述 §4-2 运动副中总反力的确定 §4-3 不考虑摩擦时平面机构的动态静力分析 §4-4 机械的效率和自锁 §4-5 考虑摩擦时机构的受力分析
§4-1 概述
一、作用在机械上的力
有重力、摩擦力、惯性力等,根据对机械运动的影响,分为两类: (1)驱动力 驱动机械运动的力。 与其作用点的速度方向相同或者成锐角; 其功为正功, 称为驱动功 或输入功。
放松:M′=Gd2tan(α φv)/2
三、转动副中摩擦力的确定
G
1 径向轴颈中的摩擦 1)摩擦力矩的确定
转动副中摩擦力Ff21对轴颈的摩
擦力矩为 Mf = Ff21r = fv G r
轴颈2 对轴颈1 的作用力也用
ω12
Md O

牛头刨床导杆机构的运动分析、动态静力分析

牛头刨床导杆机构的运动分析、动态静力分析

摘要——牛头刨床运动和动力分析一、机构简介与设计数据1、机构简介牛头刨床是一种用于平面切削加工的机床,如图1-1a。

电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2 –3 –4 –5 –6 带动刨头6和刨刀7作往复运动。

刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生常率。

为此刨床采用有急回作用的导杆机构。

刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1 – 9 – 10 – 11 与棘轮带动螺旋机构(图中未画),使工作台连同工件做一次进给运动,以便刨刀继续切削。

刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H的空刀距离,图1-1b),而空回行程中则没有切削阻力。

因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减少电动机容量a b图目录摘要 (III)1设计任务 (1)2 导杆机构的运动分析 (2)导杆机构的动态静力分析 (4)3.1运动副反作用力分析 (4)3.2力矩分析 (6)4方案比较 (7)5总结 (10)6参考文献 (10)《机械原理课程设计》说明书1设计任务机械原理课程设计的任务是对机器的主题机构进行运动分析。

动态静力分析,确定曲柄平衡力矩,并对不同法案进行比较,以确定最优方案。

要求根据设计任务,绘制必要的图纸和编写说明书等。

2 导杆机构的运动分析2.1 速度分析取曲柄位置1’对其进行速度分析,因为2和3在以转动副相连,所以V A2=V A3,其大小等于ω2l02A,指向于ω2相同。

取构件3和4的重合点A进行速度分析。

列速度矢量方程,得υA4 = υA3 + υA4A3大小 ? √ ?方向⊥O4A ⊥O2A ∥O4B选比例尺μv=0.004(m/s)/mm,做出速度矢量图(见图a)νA4=0.088m/sνA3=0.816m/s取5构件作为研究对象,列速度矢量方程,得υC5 = υB5 + υC5B5大小 ? √ ?方向∥XX ⊥O4B ⊥BC取速度极点p,选比例尺μv=0.004(m/s)/mm,做出速度矢量图(见图a)νC5=0.16m/sνC5B5=0.044m/s2.2 加速度分析取曲柄位置“1”进行加速度分析。

平面机构的动态静力分析

平面机构的动态静力分析

▼对相应构件加上惯性力;
▼动力学反问题求解。已知运动状态和工作阻力,求平衡力
矩,运动副反力及变化规律。在此基础上求机座的摆动力和
摆动力矩。
主要内容
§1-1刚体运动惯性力的简化 §1-2平面连杆机构的动态静力分析 §1-3平面凸轮机构的动态静力分析
机械动力学
§1-1刚体运动惯性力的简化
机械系统是由各种构件组成,每一个构件是一个刚体,刚体的
yc3
xc3
2
3 xd
(2)取整体为对象:受力如图。
F3 yI
其中:
Md
F3 xI
F4 xI
FRAy
M 3Ic
FRDy
机械动力学
(3)列方程求解
取AB为对象:
F3 yIMd来自F4 xIFRAx FRAy
M 3Ic
F3 xI
FRDy
机械动力学
§1-2平面连杆机构的动态静力分析 方法2:达朗贝尔原理求解
机械动力学
§1-1刚体运动惯性力的简化
一、刚体作平移 向质心C简化:
刚体平移时惯性力系合成为一过质心的合力。
FI1
FI
FI2
FIn
机械动力学
§1-1刚体运动惯性力的简化
二、定轴转动刚体
条件: 具有质量对称平面,质量对称 平面垂直于转轴,质心在质量对称平面内 的简单情况。
直线 i :平移,过Mi点,
作用线过C点
机械动力学
§1-2平面连杆机构的动态静力分析
一、构件的惯性力简化
当构件作一般的平面运动时, 某瞬时的角速度和角加速度及 质心加速度分别为
构件的质量及对质心的转动惯 量为
mi riC
J iCi
将虚加在构件上的惯性力向质心简化

平面连杆机构动态静力分析

平面连杆机构动态静力分析
平面连杆机构是由若干刚性构件通过低副(转动副或移动副)连接,且各构件 的运动平面均相互平行的机构。
分类
根据构件之间的相对运动关系,平面连杆机构可分为闭式连杆机构和开式连杆 机构两大类。闭式连杆机构的构件数目较多,形成一个或多个封闭环;开式连 杆机构的构件数目较少,没有封闭环。
工作原理及特点
工作原理
03
多体动力学仿真技 术不足
发展多体动力学仿真技术,实现 机构运动学和动力学的精确模拟。
未来发展趋势预测
智能化设计
利用人工智能、机器学习等技术,实现平面连杆机构 的自动化设计和优化。
高性能计算应用
借助高性能计算技术,提高分析速度和精度,实现复 杂机构的实时仿真。
多学科交叉融合
结合机械工程、计算机科学、数学等多学科知识,推 动平面连杆机构动态静力分析技术的发展。
案例二:复杂平面连杆机构
机构描述
复杂平面连杆机构通常由较多的构件组成,且构件之间的连接和运动关系更为复杂,如多 杆机构为复杂的分析方法和计算工具,如有限元分析、多体 动力学仿真等,以准确地求解机构的动态静力参数。
案例分析
例如,对于多杆机构,可以通过建立机构的刚体动力学模型,分析其运动过程中的动态静 力特性,如构件的应力、变形以及整体机构的稳定性等。
例如,对于一种高速平面连杆机构, 可以通过优化设计方法提高其动态平 衡性能,减少振动和噪音;同时,通 过精确的加工和装配工艺保证其运动 精度和稳定性。
实验验证与结果讨论
05
实验设计思路及步骤
设计思路
通过搭建平面连杆机构实验平台, 模拟机构的实际运动情况,采集相
关数据进行动态静力分析。
搭建实验平台
平面连杆机构的工作原理是通过各构件之间的相对运动来传 递运动和动力。在机构运行过程中,主动件作等速转动或往 复移动,从动件则根据机构类型和参数的不同,实现预期的 复杂运动规律。

机械原理(第4章 平面机构的力分析)

机械原理(第4章 平面机构的力分析)

一、作用在机构上的力: 作用在机构上的力:
6.附加动压力:在运动副反力中,由惯性力引起的部分, 6.附加动压力:在运动副反力中,由惯性力引起的部分,称为 附加动压力 附加动压力。对于高速机械来讲,其值比较大。 附加动压力。对于高速机械来讲,其值比较大。 而机械在静态时对应的是静态附加动压力。 而机械在静态时对应的是静态附加动压力。 1、小型低速机械可以不考虑重力、惯性力的影响; 、小型低速机械可以不考虑重力、惯性力的影响; 注意 2、一般在进行力分析时,可以不考虑摩擦力,但对 、一般在进行力分析时,可以不考虑摩擦力, 于摩擦力影响比较大, 于摩擦力影响比较大,特别是依靠摩擦力来作功时 则必须考虑; 则必须考虑; 3、高速、重载的情况下由于惯性力远大于重力,可 、高速、重载的情况下由于惯性力远大于重力, 以不考虑重力。 以不考虑重力。 总的来说作用在机械上的力可以归并为两大类: 总的来说作用在机械上的力可以归并为两大类: 驱动力和阻抗力。 驱动力和阻抗力。
质点的达郎伯原理—当非自由质点运动时, 质点的达郎伯原理 当非自由质点运动时,作用于 当非自由质点运动时 质点的所有力和惯性力在形式上形成一平衡力系。 质点的所有力和惯性力在形式上形成一平衡力系。
机构的力分析法具体包括图解法和解析法,本章采用图解法。 机构的力分析法具体包括图解法和解析法,本章采用图解法。
Northwest A&F University
第四章 平面机构的力分析
一、作用在机构上的力: 作用在机构上的力:
摩擦力和介质阻力在某些情况下也可能是有效阻力, 摩擦力和介质阻力在某些情况下也可能是有效阻力, 有效阻力 注意 甚至为驱动力 比如磨床砂轮受到工件给与的摩擦力, 驱动力。 甚至为驱动力。比如磨床砂轮受到工件给与的摩擦力, 搅拌机叶轮所受到的被搅拌物质的阻力等等均为有效 阻力。 阻力。 3.重力:地心对构件的引力。 3.重力:地心对构件的引力。 重力 其特征是机构的重心向下运动时重力为驱动力, 其特征是机构的重心向下运动时重力为驱动力,重力所作 是机构的重心向下运动时重力为驱动力 的功是正功;机构的重心向上运动时重力为阻抗 的功是正功;机构的重心向上运动时重力为阻抗 正功 力,重力所作的功是负功; 重力所作的功是负功; 负功 重力在物体的一个运动循环过程中所做的功的总和为零。 重力在物体的一个运动循环过程中所做的功的总和为零。

机构的动态静力分析

机构的动态静力分析

1
6
(三)平面连杆机构的动态静力分析方法 机构力分析的任务是确定运动副中的反力和需加于
机构上的平衡力。
在机械原理中规定:
将各运动副中的反力统一表示为 FRij 的形式.
即构件i作用于构件j上的反力,且规定 i j
构件j作用于构件i上的反力 FRji 则用 FRij 表示。
1
7
例:机构动态分析的解析法 1、构件的惯性力和惯性力矩 两种特殊情况:
一。
1
2
1.1 平面连杆机构的动态静力分析
(一)几个基本定义 1、机构 机构是机器实现其运动学功能的基本组成。
机构是由两个以上的构件,彼此间形成一定型式 的“可动联接”,实现运动和力的传递与变换,且 各构件间具有确定的相对运动。
机构的结构设计是 机构的“运动学机构设计”。
着重是从运动、自由度与约束的基本特征来研究机构
勃朗宁重机枪就用到了
反凸轮机构,它在节套
后坐时,使枪机加速后
坐,以利弹壳及时退出。 1
17
2、凸轮机构的分类 这种凸轮是一个具有变化的向径
盘形凸轮:的盘形构件绕固定轴线回转。
按凸轮的 形状分:
这种凸轮是一个在圆柱面上开 圆柱凸轮: 有曲线凹槽,或是在圆柱端面
上作出曲线轮廓的构件。
1
18
2、凸轮机构的分类 尖端推杆:这不种大推和杆速易度磨较损低的,只场适合用,于如作仪用表力等。
从动件在凸轮廓线驱动下作上升 -停歇-下降-停歇的周期性运动, 其位移为s,即
(从最低位置——基园半径 r0
处算起)为凸轮转角 的函数,
是一个已知量。
1
20
凸轮和从动件的受力图 从动件所受的工作载荷为G,是 随凸轮转角而变化的一个已知量

机械原理牛头刨床课程设计--牛头刨床导杆机构的运动分析、动态静力分析

机械原理牛头刨床课程设计--牛头刨床导杆机构的运动分析、动态静力分析

青岛理工大学琴岛学院课程设计说明书课题名称:机械原理课程设计学院:机电工程系专业班级:机械113学号:20110201083学生:张三指导老师:李燕青岛理工大学教务处2013 年 12月 27日《机械原理课程设计》评阅书摘要选取方案三,利用图解法对1点和6电状态时牛头刨床导杆机构进行运动分析、动态静力分析,并汇总本方案所得各位置点的速度、加速度、机构受力数据绘制曲线图。

进行方案比较,确定最佳方案。

将一个班级分为 3 组,每组11人左右,一组选择一个备选方案进行如下分析工作:课程设计内容:牛头刨床导杆机构的运动分析、动态静力分析;(1)绘制机构运动简图(两个位置);(2)速度分析、加速度分析;(3)机构受力分析(求平衡力矩);(4)绘制运动线图。

(上述三项作在一张A1号图纸上)精选文档目录摘要 (I)1设计任务 (1)2导杆机构的基本尺寸确定 (2)3 导杆机构的运动分析 (4)3.1 速度分析 (4)3.2 加速度分析 (5)4导杆机构的动态静力分析 (8)4.1 运动副反作用力分析 (8)4.2 曲柄平衡力矩分析 (10)总结 (11)致谢 (12)参考文献 (13)1设计任务一、课程设计的性质、目的和任务机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要教学环节。

其意义和目的在于:以机械系统运动方案设计为结合点,把机械原理课程设计的各章理论和方法融会贯通起来,进一步巩固和加深学生所学的理论知识;培养学生独立解决有关本课程实际问题的能力,使学生对于机械运动学和动力学的分析和设计有一个较完整的概念,具备计算、制图和使用技术资料的能力。

二、课程设计教学的内容和要求将一个班级进行分组,每组10人左右,一组选择一个备选方案进行如下分析工作:课程设计内容:牛头刨床导杆机构的运动分析、动态静力分析;(1)绘制机构运动简图;(2)速度分析、加速度分析;(1张1号图纸)(3)机构动态静力分析;(4)绘制运动线图。

机械原理04机构的力分析

机械原理04机构的力分析
与构件2相对于构件1的角速度w12方向相反。
三、螺旋副中的摩擦
1. 矩形螺纹螺旋副中的摩擦 1)矩形螺纹螺旋副的简化
将螺纹沿中径d2 圆柱面展开,其螺纹将展成为一个斜 面,该斜面的升角a等于螺旋在其中径d2上的螺纹升角。 tg l zp
d2 d2 l--导程, z--螺纹头数, p--螺距
螺旋副可以化为斜面机构进行力分析。
由 Fx 0
2
由 MC 0
2
得:R12 (F2x F23x ) / sin1
得:T12 ( yC ys2 )F2x ( xS 2 xC )F2 y T2
就可以将所有解求出。
关于可变杆长二杆组的副反力的求解
由 MA 0 和 M3 0 得:
1、2
3
yC yA
yB
yC
2
进行整理得到
yC yB
yD
yC
xB xC
xC xD
R23x
R23
y
( (
yB yD
yS 2 )F2 x yS 3 )F3 x
( xS 2 ( xS 3
xB )F2 y xD )F3 y
T2 T3
求出内副C的反力后,可分别取BC、CD杆作力平衡方程 式,求得B、D两点的反力。
力开始,逐副进行,最后对含平衡力得杆件进行力分析。
一般是力矩平衡方程和导路方向的力平衡方程两种交替使用。
4.2 机构的传动角
衡量一个机构传力效果的指标: (1)输出功相同时,输入功最少。 (摩擦损失最小) (2)构件受力最小。(构件截面积小,重量轻) (3)运动副摩擦少。(运动精度高,动载荷和噪声小)
0
1、2
3
移动副的反力R12D可以由构件2对E取矩和构件1 对E 取矩求得。

掌握构件惯性力的确定方法和机构动态静力分析的方法;-培训课件.ppt

掌握构件惯性力的确定方法和机构动态静力分析的方法;-培训课件.ppt

F21 = fN 21 = kfQ 令kf = fv F21 = fvQ
不论两运动副元素的几何形状如何,两元素间产生的 滑动摩擦力均可用通式:F21 = fN 21 = fvQ 来计算。
ƒv ------当量摩擦系数
..
14
一、移动副中的摩擦(续)
5)槽面接触效应 当运动副两元素为槽面或圆柱面接触时,均有ƒv>ƒ
i =1
2)代换前后构件的质心位置不变;
以原构件的质心为坐标原点时,应满足:
n

mi xi
i =1 n
=
0
mi yi
i =1
= 0
3)代换前后构件对质心的转动惯量不变。
( ) n
mi
x
2 i
+
y
2 i
= Js
i =1
..
8
二、质量代换法(续)
4. 两个代换质量的代换法
用集中在通过构件质心S 的直线上的B、K 两点的代 换质量mB 和 mK 来代换作平面运动的构件的质量的代换 法。
=
d2 2
Qtg (a
..
-v)
21
三、转动副中的摩擦
1. 轴颈摩擦
..
22
三、转动副中的摩擦(续)
1)摩擦力矩和摩擦圆
摩擦力F21对轴颈形成的摩擦
力矩 M f = F21r = f vQr

用总反力R21来表示N21及F21
由力平衡条件
R21 = -Q ②
Md = -R21×= -M f
..
10
§4–3 运动副中的摩擦力的确定
1. 移动副中摩擦力的确定
F21=f N21 当外载一定时,运动副两元素间法向反力 的大小与运动副两元素的几何形状有关:

机械原理-机构动态静力分析解析法

机械原理-机构动态静力分析解析法
f(ns1,1) fr(n3,2) k2 n2 ti(k2) fr(n2,1)
fi(ns2,2)
fi(ns2,1)
ns2 fnn2,2)
k1 fr(n1,2)
n3
fr(n3,1)
nn2
f(nn2,1)
n1
fr(n1,1)
六杆机构动态静力分析例
7
3 y 1 1
构件号 质心位置点号 质量(kg) 转动惯量(kg-m2) 1 1 50 1.3
5 2
9 6
4
5
6
k1 k2 p vp ap t e fr
虚 n1 n2 n3 ns1 ns2 nn1 nn2 nexf 实
5 10 6 9 6
0
6
6
4 5
p vp ap t e fr
虚 n1 n2 n3 ns1 ns2 nn1 nn2 nexf
k1 k2 p
vp ap t
e fr

3 2 4
7 8
0
5
0
2 3 p vp ap t e fr
7
3 2
4 3 8
5
2
主程序及结果

3
1
虚 n1 ns1 nn1 k1 p ap e fr tb

1
1
3
1
p ap
e
fr
tb
平衡力的简易求法
根据虚位移原理
(F
dsi Ti d i ) 0 i
d i i dt
i i i
Tb 1
dsi vi dt
i
(F v T )
i i i i ix ix
1
(F v T ) 0

机械动力学

机械动力学

第七章机械动力学1. 概述2. 机械中的摩擦与效率3. 机构的动态静力分析4. 机械的平衡5. 机械的运转及动力学模型6. 机械系统速度波动及其调节第七章机械动力学1. 概述2. 机械中的摩擦与效率3. 机构的动态静力分析4. 机械的平衡5. 机械的运转及动力学模型6. 机械系统速度波动及其调节第七章机械动力学第一节概述一、机械动力学的研究内容及意义机构在传递和转换运动的同时必然伴随着力的传递和转换。

机械在工作过程中受到不同性质的力的作用,这些力影响着机械的运动状态。

同时,机械的运动也影响着机械的受力。

机械系统中力和运动的相互作用决定了机械的工作状态。

机械动力学(dynamics of machinery)研究机械在运动中的力以及在各种力作用下的机械运动,分析和评价机械的动力学性能,研究提高机械动力学性能的措施。

这是机械系统分析与设计的一个十分重要的内容。

机械在运动中始终存在摩擦,其运动副中的摩擦力是一种有害阻力,它不仅造成动力的浪费,降低机械效率,而且使运动副元素受到磨损,削弱零件的强度,导致机械运动精度和工作可靠性降低,缩短机械的寿命。

研究机械中的摩擦及其对机械运行和效率的影响,通过合理设计,改善机械运转性能,提高机械效率,是机械动力学分析的重要内容。

机械系统通常由原动机、传动系统、执行系统等组成。

一般来说,原动件的运动不是匀速的,其运动规律取决于各运动构件的质量、转动惯量以及作用在机械上的各种外力。

假定原动件匀速运动进行分析的局限性分析结果与真实情况有差异。

这种假定对于低速、轻载的机械是允许的。

对于高速、重载、大质量的机械,这种分析误差可能直接影响到设计的安全性和可靠性。

实际工况机械运转时,绝大多数机械系统主轴(main shaft)的速度都是波动变化的。

过大的速度波动会影响机器的正常工作,增大运动副中的动负荷,加剧运动副的磨损,降低机器的工作精度和传动效率,缩短机器的使用寿命,激发机器振动,产生噪音等。

机械动力学-上海交通大学机械与动力工程学院

机械动力学-上海交通大学机械与动力工程学院

1《机械动力学》课程教学大纲 课程名称:机械动力学(400+)课程代码:学分/学时:3学分/51学时开课学期:秋季学期、春季学期适用专业:机械设计及理论、机械制造工艺与设备、机械电子工程、车辆工程、热能与动力工程、核工程、建筑环境与设备先修课程:理论力学、机械设计基础三(机械原理)后续课程:高等机械动力学(研究生课程500+)开课单位:机械与动力工程学院一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献,专业人才培养目标中的知识、能力和素质见附表)课程性质:随着科技的飞速发展,现代机械系统的动力学分析、设计和控制技术成为机械产品技术水平和市场竞争力的关键之一。

本科生《机械动力学》课程为我院机械工程专业的一门专业选修课。

课程将介绍现代机械系统动力学的建模、分析和计算的基本方法和软件工具,以及在机器人动力学、回转机械动力学、车辆动力学、动力机械、航天器动力学、运动生物力学等多个领域的应用与发展,使学生掌握高水平机械系统分析和设计的方法,拓宽知识面和视野。

教学目标:课程的教学目标是让学生初步掌握现代机械系统动力学,尤其是多体系统理论的建模、分析和计算的基本方法,达到初步掌握简单机械系统的动力学分析方法,了解机械动力学学科发展的前沿问题和相关领域工程应用的目的,为学习后继课程、从事相关领域的工程技术工作、科学研究,以及开拓新技术领域,打下坚实的基础。

具体包括基础知识、理论方法和工程应用三个方面的教学目标:1.基础知识教学目标:掌握机械动力学建模和分析的基本原理。

[A3]22.理论方法教学目标:掌握机械动力学学科的基本概念和理论分析方法,包括动力学正问题与逆问题、动力学分析和综合方法、多刚体动力学方法等基本理论知识,为未来从事研究生深造的学生提供基础;[A4]3.工程应用教学目标:机械动力学分析实践能力的锻炼,培养学生运用机械动力学建模和分析方法,对实际机械系统进行动力学分析的能力,了解机器人动力学、回转机械动力学、车辆动力学等领域应用,具备从事机械系统动态性能分析和设计的工程应用能力;[A5,B2]二、课程教学内容及学时分配(含实践、自学、作业、讨论等的内容及要求)1.引言(2学时)内容:机械系统动力学的发展历史;机械系统动力学的研究前沿;机械系统动力学的研究对象。

第13讲平面连杆机构动态静力分析

第13讲平面连杆机构动态静力分析

第13讲平面连杆机构动态静力分析平面连杆机构是由直线运动连杆组成的机械系统,被广泛应用于各种机械设备中。

平面连杆机构的动态静力分析是对连杆机构在运动过程中的受力和运动性能进行研究和分析的过程。

本文将从动力学和静力学两个方面来介绍平面连杆机构的动态静力分析。

一、动力学分析平面连杆机构的动力学分析主要研究机构在运动过程中的受力和运动性能。

动力学分析涉及到速度、加速度、力矩等物理量的计算和分析。

1.速度分析速度分析是指根据机构的几何形状和约束条件,计算机构各个连杆和构件的速度。

常用的方法有几何法、瞬心法和向量法等。

2.加速度分析加速度分析是指根据机构的几何形状、约束条件和速度,计算机构各个连杆和构件的加速度。

常用的方法有几何法、瞬心法和向量法等。

3.力矩分析力矩分析是指根据机构的几何形状、约束条件、速度和加速度,计算机构各个连杆和构件的力矩。

根据牛顿第二定律,力矩等于物体的质量乘以加速度,根据连杆机构的几何形状和运动状态,可以计算出各个连杆和构件的力矩。

二、静力学分析平面连杆机构的静力学分析主要研究机构在静态平衡条件下的受力和力矩分布。

静力学分析可以用于评估机构的工作性能和稳定性。

1.均衡方程静力学分析的基础是建立连杆机构的均衡方程,即根据物体的几何形状和约束条件,建立物体受力和力矩平衡的方程。

通过求解这些方程,可以得到机构的受力和力矩分布。

2.受力分析受力分析是指根据机构的几何形状、约束条件和力矩,计算机构各个连杆和构件的受力。

受力分析可以帮助我们了解机构在运动过程中的受力情况,从而确定机构的结构设计和增加机构的稳定性。

3.力矩分析力矩分析是指根据机构的几何形状、约束条件和受力分析,计算机构各个连杆和构件的力矩。

力矩分析可以帮助我们确定机构的受力情况,从而评估机构的工作性能和稳定性。

平面连杆机构的动态静力分析是机械工程中重要的研究内容之一、通过动态静力分析,可以了解机构运动过程中的受力和运动性能,并根据分析结果进行机构的设计和优化。

第一章-机构的动态静力分析.

第一章-机构的动态静力分析.

作用于凸轮上的平衡力矩:
G FP 0 ks m s M d (r0 s) tan 1 f tan
§1.3
工程实例——飞剪的动态静力分析
飞剪各构件受力图
摆式飞剪机构简图
对每个构件可写出其力和力矩的平衡方程如下: 对构件1:
F01 y F21 y F41 y m1 g m1aS1 y F01x ( LS1O ) y F21x ( LS1E ) y F41x ( LS1B ) y (1.3.1) F01 y ( LS1O ) x F21 y ( LS1E ) x F41 y ( LS1B ) x M d 1 J11 F01x F21x F41x m1aS1x
(板书讲解) 1 Md A
B
S2
2 3
θ
1
C
1.2 平面凸轮机构的动态静力分析
一、凸轮机构的应用与分类 1、凸轮机构的应用
广泛应用在各种机械、特别是自动机和自动控制装置中。
凸轮:是一个具有曲线轮廓或凹槽的构件。 凸轮通常为主动件作等速转动,也有作往复摆动或移动的; 被凸轮直接推动的构件称为推杆,又称从动杆 。 若凸轮为从动件,则称之为反凸轮机构。 勃朗宁重机枪就用到了 反凸轮机构,它在节套 后坐时,使枪机加速后 坐,以利弹壳及时退出。
磨损小,可用来传递较大的动力, 滚子推杆: 滚子常采用特制结构的球轴承 或滚子轴承。
优点是凸轮与平底的接触面间易 平底推杆: 形成油膜,润滑较好,常用于高 速传动中。
二、凸轮机构的动态静力分析 图为一对心直动从动件圆盘凸轮机构,假定凸轮作等速 回转运动,忽略凸轮轴可能存在的速度波动。求作用于 凸轮上维持其等速回转的平衡力矩 M d 从动件在凸轮廓线驱动下作上升 -停歇-下降-停歇的周期性运动, 其位移为s,即 (从最低位置——基园半径 r0 处算起)为凸轮转角 的函数, 是一个已知量。

第三讲 机构的力分析

第三讲  机构的力分析

lCD cos 3 F32 y lCD sin 3 F32 x l DS 3 cos( 3 )( m3 a S 3 y G3 ) l DS 3 sin( 3 )( m3 a S 3 x ) J S 3 3 M r
4)建立代数方程
a[i, j ] x[i ] = b[i ]
3x
( DS 3 ) y l DS 3 sin( 3 )
G3 y G3
FI 3 x m3 a S 3 x
M I 3 J S 3 3
FI 3 y m3 a S 3 y
由矢量方程可得
F32 x F43x m3 a S 3 x
F32 y F43 y G3 m3 a S 3 y
(5-4) (5-5)
arctan( 1 T 2 / T )
1)构件1
注:图中约束反力与平衡力矩均为未知量,设其 均为正方向(不要根据图中力的方向列方程)。
这里
从而得
符号表明与 F41方向相反 而不是负号
2)构件2
F32 F21 G 2 FI 2 0
(BS 2 ) (G 2 FI 2 ) (BC) F32 M I 2 0
x[i ]
机构力分析中未知量总共有:
F21x F21y F32x F32y F43x F43y F14x F14y Mb
例如以构件1为例:
(5-8) (5-9) (5-10) b(1)=0, b(2)=-G1 a(3, 1)= -lABsinφ1
b[i ]
a(3, 2)= -lABcosφ1
a[i, j ]
举例:机构运动与动态静力分析
l BC
l DS 3

机械原理第四章:作业题及答案

机械原理第四章:作业题及答案

解:(1)、画出各 低副总反力的
R32 φ R43
3
Q β
方向;
4
R23 2
α1
(2)、画力平衡图
R21NBiblioteka 4 R41 NP R21 R41 0 P
R12
R23 R43 Q 0
R21
R41
构件1
6、在图示连杆机构中,已知:驱动力P沿NN方向向上指,移动副 的摩擦角φ已知(自定),图中各转动副的摩擦圆已知(如图), 要求(1)、画出各低副总反力的方向(15);
5、图示为一曲柄滑块块机构的某个位置,P为作用在活塞上的力, 转动副A、B及C上所画的虚线小圆为摩擦圆,试决定在此位置 时作用在各构件上的作用力的真实方向(10)。
①、判断二力杆受力情况 ②、相对运动方向判断
ω23 3 ω34
③、运动副中总反力方向
4
4
R23
v R14
R34 3 R32
4
R43 R12
(2)、画出构件1、3之力平衡图
解:(1)、画出各 低副总反力的 方向;
R32
R302
3
4
(2)、画力平衡图
φ R43
Q β
R23 2
α
R21
1
R102 R12
P R21 R41 0 R23 R43 Q 0
Q R43
R23
构件2
NP 4 R41 N
填空题(每2分)
1、机构的静力分析是在 低速、轻型 条件下的力分析,而动态静力分析是 在 高速、重型 条件下的力分析。
2、两运动副的材料一定时,当量摩擦系数取决于 材料接触面接触情况
判断题(每2分)
2、当量摩擦系数fv与实际摩擦系数f 不同,是因为两物体接触面几何形状改 变,从而引起摩擦系数改变( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档