2019年山东省临沂市兰山区中考数学二模试卷(解析版)

合集下载

2019年山东省临沂市中考数学试卷 解析版

2019年山东省临沂市中考数学试卷  解析版

2019年山东省临沂市中考数学试卷一、选择题(每小题 分,共 分).( 分) ﹣ =()✌.  .﹣  . .﹣.( 分)如图,♋∥♌,若∠ = °,则∠ 的度数是()✌. ° . ° . ° . °.( 分)不等式 ﹣ ⌧≥ 的解集是()✌.⌧≥ .⌧≥ .⌧≤ .⌧.( 分)如图所示,正三棱柱的左视图()✌. .. ..( 分)将♋ ♌﹣♋♌进行因式分解,正确的是()✌.♋(♋ ♌﹣♌) .♋♌(♋﹣ ).♋♌(♋ )(♋﹣ ) .♋♌(♋ ﹣ ).( 分)如图, 是✌上一点, ☞交✌于点☜, ☜=☞☜,☞∥✌,若✌= , ☞= ,则 的长是()✌.  . .  ..( 分)下列计算错误的是()✌.(♋ ♌)•(♋♌ )=♋ ♌ .(﹣❍⏹ ) =❍ ⏹.♋ ÷♋﹣ =♋ .⌧⍓ ﹣⌧⍓ =⌧⍓.( 分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()✌. . . ..( 分)计算﹣♋﹣ 的正确结果是()✌.﹣ . .﹣ ..( 分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)最高气温(℃)    则这周最高气温的平均值是()✌. ℃ . ℃ . ℃ . ℃.( 分)如图, 中,=,∠✌= °, = ,则阴影部分的面积是()✌. ⇨ .  ⇨ . ⇨ . ⇨.( 分)下列关于一次函数⍓= ⌧ ♌( < ,♌> )的说法,错误的是()✌.图象经过第一、二、四象限.⍓随⌧的增大而减小.图象与⍓轴交于点( ,♌).当⌧>﹣时,⍓>.( 分)如图,在平行四边形✌中, 、☠是 上两点, = ☠,连接✌、 、 ☠、☠✌,添加一个条件,使四边形✌☠是矩形,这个条件是()✌. =✌ . =  . ⊥✌ .∠✌=∠ ☠.( 分)从地面竖直向上抛出一小球,小球的高度♒(单位:❍)与小球运动时间♦(单位:♦)之间的函数关系如图所示.下列结论:♊小球在空中经过的路程是 ❍;♋小球抛出 秒后,速度越来越快;♌小球抛出 秒时速度为 ;♍小球的高度♒= ❍时,♦= ♦.其中正确的是()✌.♊♍ .♊♋ .♋♌♍ .♋♌二、填空题:(每题 分,共 分).( 分)计算:×﹣♦♋⏹°= ..( 分)在平面直角坐标系中,点 ( , )关于直线⌧= 的对称点的坐标是 ..( 分)用 块✌型钢板可制成 件甲种产品和 件乙种产品;用 块 型钢板可制成 件甲种产品和 件乙种产品;要生产甲种产品 件,乙种产品 件,则恰好需用✌、 两种型号的钢板共 块. .( 分)一般地,如果⌧ =♋(♋≥ ),则称⌧为♋的四次方根,一个正数♋的四次方根有两个.它们互为相反数,记为±,若= ,则❍= ..( 分)如图,在△✌中,∠✌= °, = , 为✌的中点, ⊥ ,则△✌的面积是 .三、解答题:(共 分).( 分)解方程:=..( 分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取 名学生进行测试,成绩如下(单位:分)                             整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数≤⌧< ≤⌧< ♋≤⌧<  ≤⌧< ♌≤⌧< 回答下列问题:( )以上 个数据中,中位数是 ;频数分布表中♋= ;♌= ;( )补全频数分布直方图;( )若成绩不低于 分为优秀,估计该校七年级 名学生中,达到优秀等级的人数..( 分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿✌方向开挖隧道,为了加快施工速度,要在小山的另一侧 (✌、 、 共线)处同时施工.测得∠ ✌= °,✌= ❍,∠✌= °,求 的长..( 分)如图,✌是 的直径, 是 上一点,过点 作 ⊥✌,交 的延长线于 ,交✌于点☜,☞是 ☜的中点,连接 ☞.( )求证: ☞是 的切线.( )若∠✌= °,求证:✌= ..( 分)汛期到来,山洪暴发.下表记录了某水库 ♒内水位的变化情况,其中⌧表示时间(单位:♒),⍓表示水位高度(单位:❍),当⌧= (♒)时,达到警戒水位,开始开闸放水.⌧ ♒      ⍓ ❍         ( )在给出的平面直角坐标系中,根据表格中的数据描出相应的点.( )请分别求出开闸放水前和放水后最符合表中数据的函数解析式.( )据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 ❍..( 分)如图,在正方形✌中,☜是 边上一点,(与 、 不重合),连接✌☜,将△✌☜沿✌☜所在的直线折叠得到△✌☞☜,延长☜☞交 于☝,连接✌☝,作☝☟⊥✌☝,与✌☜的延长线交于点☟,连接 ☟.显然✌☜是∠ ✌☞的平分线,☜✌是∠ ☜☞的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于 °的角平分线),并说明理由..( 分)在平面直角坐标系中,直线⍓=⌧ 与⌧轴交于点✌,与⍓轴交于点 ,抛物线⍓=♋⌧ ♌⌧ ♍(♋< )经过点✌、 .( )求♋、♌满足的关系式及♍的值.( )当⌧< 时,若⍓=♋⌧ ♌⌧ ♍(♋< )的函数值随⌧的增大而增大,求♋的取值范围.( )如图,当♋=﹣ 时,在抛物线上是否存在点 ,使△ ✌的面积为 ?若存在,请求出符合条件的所有点 的坐标;若不存在,请说明理由.年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(每小题 分,共 分).( 分) ﹣ =()✌.  .﹣  . .﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解: ﹣ = .故选:✌.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键..( 分)如图,♋∥♌,若∠ = °,则∠ 的度数是()✌. ° . ° . ° . °【分析】根据两直线平行,同位角相等,即可求得∠ 的度数,进而得出∠ 的度数.【解答】解:∵♋∥♌,∴∠ =∠ = °.∵∠ ∠ = °,∴∠ = °﹣∠ = °,故选: .【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等..( 分)不等式 ﹣ ⌧≥ 的解集是()✌.⌧≥ .⌧≥ .⌧≤ .⌧【分析】先移项,再系数化为 即可.【解答】解:移项,得﹣ ⌧≥﹣系数化为 ,得⌧≤;所以,不等式的解集为⌧≤,故选: .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变..( 分)如图所示,正三棱柱的左视图()✌. .. .【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:✌.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键..( 分)将♋ ♌﹣♋♌进行因式分解,正确的是()✌.♋(♋ ♌﹣♌) .♋♌(♋﹣ ).♋♌(♋ )(♋﹣ ) .♋♌(♋ ﹣ )【分析】多项式♋ ♌﹣♋♌有公因式♋♌,首先考虑用提公因式法提公因式♋♌,提公因式后,得到多项式(⌧ ﹣ ),再利用平方差公式进行分解.【解答】解:♋ ♌﹣♋♌=♋♌(♋ ﹣ )=♋♌(♋ )(♋﹣ ),故选: .【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组..( 分)如图, 是✌上一点, ☞交✌于点☜, ☜=☞☜,☞∥✌,若✌= , ☞= ,则 的长是()✌.  . .  .【分析】根据平行线的性质,得出∠✌=∠☞☜,∠✌☜=∠☞,根据全等三角形的判定,得出△✌☜≌△ ☞☜,根据全等三角形的性质,得出✌= ☞,根据✌= , ☞= ,即可求线段 的长.【解答】解:∵ ☞∥✌,∴∠✌=∠☞☜,∠✌☜=∠☞,在△✌☜和△☞☜中,∴△✌☜≌△ ☞☜(✌✌),∴✌= ☞= ,∵✌= ,∴ =✌﹣✌= ﹣ = .故选: .【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△✌☜≌△☞☜是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等..( 分)下列计算错误的是()✌.(♋ ♌)•(♋♌ )=♋ ♌ .(﹣❍⏹ ) =❍ ⏹.♋ ÷♋﹣ =♋ .⌧⍓ ﹣⌧⍓ =⌧⍓【分析】选项✌为单项式×单项式;选项 为积的乘方;选项 为同底数幂的除法;选项 为合并同类项,根据相应的公式进行计算即可.【解答】解:选项✌,单项式×单项式,(♋ ♌)•(♋♌ )=♋ •♋•♌•♌ =♋ ♌ ,选项正确选项 ,积的乘方,(﹣❍⏹ ) =❍ ⏹ ,选项正确选项 ,同底数幂的除法,♋ ÷♋﹣ =♋ ﹣(﹣ )=♋ ,选项错误选项 ,合并同类项,⌧⍓ ﹣⌧⍓ =⌧⍓ ﹣⌧⍓ =⌧⍓ ,选项正确故选: .【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键..( 分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()✌. . . .【分析】可以采用列表法或树状图求解.可以得到一共有 种情况,一辆向右转,一辆向左转有 种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有 种可能的结果,其中一辆向右转,一辆向左转的情况有 种,∴一辆向右转,一辆向左转的概率为;故选: .【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解..( 分)计算﹣♋﹣ 的正确结果是()✌.﹣ . .﹣ .【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:✌.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用..( 分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)最高气温(℃)    则这周最高气温的平均值是()✌. ℃ . ℃ . ℃ . ℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为( × × × × )= (℃);故选: .【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键..( 分)如图, 中,=,∠✌= °, = ,则阴影部分的面积是()✌. ⇨ .  ⇨ . ⇨ . ⇨【分析】连接 、 ,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为 度,即可求出半径的长 ,利用三角形和扇形的面积公式即可求解;【解答】解:∵=,∴✌=✌,∵∠✌= °,∴∠✌=∠✌= °,∴∠ ✌= °,∴∠ = °,∵ = ,∴△ 是等边三角形,∴ ✌= = = = ,作✌⊥ ,∵✌=✌,∴ = ,∴✌经过圆心 ,∴ = =,∴✌= ,∴ △✌= •✌= , △ = • =,∴ 阴影= △✌ 扇形 ﹣ △ =  ﹣= ,故选:✌.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确 阴影= △✌ 扇形 ﹣ △ 是解题的关键..( 分)下列关于一次函数⍓= ⌧ ♌( < ,♌> )的说法,错误的是()✌.图象经过第一、二、四象限.⍓随⌧的增大而减小.图象与⍓轴交于点( ,♌).当⌧>﹣时,⍓>【分析】由 < ,♌> 可知图象经过第一、二、四象限;由 < ,可得⍓随⌧的增大而减小;图象与⍓轴的交点为( ,♌);当⌧>﹣时,⍓< ;【解答】解:∵⍓= ⌧ ♌( < ,♌> ),∴图象经过第一、二、四象限,✌正确;∵ < ,∴⍓随⌧的增大而减小,正确;令⌧= 时,⍓=♌,∴图象与⍓轴的交点为( ,♌),∴ 正确;令⍓= 时,⌧=﹣,当⌧>﹣时,⍓< ;不正确;故选: .【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式⍓= ⌧ ♌中, 与♌对函数图象的影响是解题的关键..( 分)如图,在平行四边形✌中, 、☠是 上两点, = ☠,连接✌、 、 ☠、☠✌,添加一个条件,使四边形✌☠是矩形,这个条件是()✌. =✌ . =  . ⊥✌ .∠✌=∠ ☠【分析】由平行四边形的性质可知: ✌= , = ,再证明 = ☠即可证明四边形✌☠是平行四边形.【解答】证明:∵四边形✌是平行四边形,∴ ✌= , = ∵对角线 上的两点 、☠满足 = ☠,∴ ﹣ = ﹣ ☠,即 = ☠,∴四边形✌☠是平行四边形,∵ =✌,∴ ☠=✌,∴四边形✌☠是矩形.故选:✌.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题..( 分)从地面竖直向上抛出一小球,小球的高度♒(单位:❍)与小球运动时间♦(单位:♦)之间的函数关系如图所示.下列结论:♊小球在空中经过的路程是 ❍;♋小球抛出 秒后,速度越来越快;♌小球抛出 秒时速度为 ;♍小球的高度♒= ❍时,♦= ♦.其中正确的是()✌.♊♍ .♊♋ .♋♌♍ .♋♌【分析】根据函数的图象中的信息判断即可.【解答】解:♊由图象知小球在空中达到的最大高度是 ❍;故♊错误;♋小球抛出 秒后,速度越来越快;故♋正确;♌小球抛出 秒时达到最高点即速度为 ;故♌正确;♍设函数解析式为:♒=♋(♦﹣ ) ,把 ( , )代入得 =♋( ﹣ ) ,解得♋=﹣,∴函数解析式为♒=﹣(♦﹣ ) ,把♒= 代入解析式得, =﹣(♦﹣ ) ,解得:♦= 或♦= ,∴小球的高度♒= ❍时,♦= ♦或 ♦,故♍错误;故选: .【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题 分,共 分).( 分)计算:×﹣♦♋⏹°=﹣ .【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣♦♋⏹°=﹣ =﹣ ,故答案为:﹣ .【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键..( 分)在平面直角坐标系中,点 ( , )关于直线⌧= 的对称点的坐标是(﹣ , ).【分析】先求出点 到直线⌧= 的距离,再根据对称性求出对称点 ′到直线⌧= 的距离,从而得到点 ′的横坐标,即可得解.【解答】解:∵点 ( , ),∴点 到直线⌧= 的距离为 ﹣ = ,∴点 关于直线⌧= 的对称点 ′到直线⌧= 的距离为 ,∴点 ′的横坐标为 ﹣ =﹣ ,∴对称点 ′的坐标为(﹣ , ).故答案为:(﹣ , ).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线⌧= 的距离,从而得到横坐标是解题的关键,作出图形更形象直观..( 分)用 块✌型钢板可制成 件甲种产品和 件乙种产品;用 块 型钢板可制成 件甲种产品和 件乙种产品;要生产甲种产品 件,乙种产品 件,则恰好需用✌、 两种型号的钢板共 块.【分析】设需用✌型钢板⌧块, 型钢板⍓块,根据“用 块✌型钢板可制成 件甲种产品和 件乙种产品;用 块 型钢板可制成 件甲种产品和 件乙种产品”,可得出关于⌧,⍓的二元一次方程组,用(♊♋)÷ 可求出⌧ ⍓的值,此题得解.【解答】解:设需用✌型钢板⌧块, 型钢板⍓块,依题意,得:,(♊♋)÷ ,得:⌧ ⍓= .故答案为: .【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键..( 分)一般地,如果⌧ =♋(♋≥ ),则称⌧为♋的四次方根,一个正数♋的四次方根有两个.它们互为相反数,记为±,若= ,则❍=± .【分析】利用题中四次方根的定义求解.【解答】解:∵= ,∴❍ =  ,∴❍=± .故答案为:± 【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有 个..( 分)如图,在△✌中,∠✌= °, = , 为✌的中点, ⊥ ,则△✌的面积是 .【分析】根据垂直的定义得到∠ = °,得到长 到☟使 ☟= ,由线段中点的定义得到✌= ,根据全等三角形的性质得到✌☟= = ,∠☟=∠ = °,求得 = ,于是得到结论.【解答】解:∵ ⊥ ,∴∠ = °,∵∠✌= °,∴∠✌= °,延长 到☟使 ☟= ,∵ 为✌的中点,∴✌= ,在△✌☟与△ 中,,∴△✌☟≌△ ( ✌),∴✌☟= = ,∠☟=∠ = °,∵∠✌☟= °,∴ ☟=✌☟= ,∴ = ,∴△✌的面积= △ = ×× × = ,故答案为: .【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共 分).( 分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到⌧的值,经检验即可得到分式方程的解.【解答】解:去分母得: ⌧= ⌧﹣ ,解得:⌧=﹣ ,经检验⌧=﹣ 是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根..( 分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取 名学生进行测试,成绩如下(单位:分)                             整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数≤⌧< ≤⌧< ♋≤⌧<  ≤⌧< ♌≤⌧< 回答下列问题:( )以上 个数据中,中位数是 ;频数分布表中♋= ;♌= ;( )补全频数分布直方图;( )若成绩不低于 分为优秀,估计该校七年级 名学生中,达到优秀等级的人数.【分析】( )将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出♋与♌的值即可;( )补全直方图即可;( )求出样本中游戏学生的百分比,乘以 即可得到结果.【解答】解:( )根据题意排列得: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,可得中位数为 ,频数分布表中♋= ,♌= ;故答案为: ; ; ;( )补全频数直方图,如图所示:( )根据题意得: ×= ,则该校七年级 名学生中,达到优秀等级的人数为 人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键..( 分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿✌方向开挖隧道,为了加快施工速度,要在小山的另一侧 (✌、 、 共线)处同时施工.测得∠ ✌= °,✌= ❍,∠✌= °,求 的长.【分析】根据∠ ✌= °,✌= ❍,可以求得 ☜的长和∠✌☜的度数,进而求得∠☜的度数,然后利用勾股定理即可求得 的长.【解答】解:作 ☜⊥✌于点☜,∵∠ ✌= °,✌= ❍,∴∠✌☜= °, ☜= ❍,∵∠✌= °,∴∠☜= °,∴∠☜= °,∴ ☜= ☜= ❍,∴ == ❍,即 的长是 ❍.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答..( 分)如图,✌是 的直径, 是 上一点,过点 作 ⊥✌,交 的延长线于 ,交✌于点☜,☞是 ☜的中点,连接 ☞.( )求证: ☞是 的切线.( )若∠✌= °,求证:✌= .【分析】( )根据圆周角定理得到∠✌=∠✌= °,根据直角三角形的性质得到 ☞=☜☞= ☞,求得∠✌☜=∠☞☜=∠☞☜,根据等腰三角形的性质得到∠ ✌=∠ ✌,于是得到结论;( )根据三角形的内角和得到∠ ✌☜=∠ ☜= °,根据等腰三角形的性质得到∠ ✌=∠✌= °,于是得到结论.【解答】( )证明:∵✌是 的直径,∴∠✌=∠✌= °,∵点☞是☜的中点,∴ ☞=☜☞= ☞,∴∠✌☜=∠☞☜=∠☞☜,∵ ✌= ,∴∠ ✌=∠ ✌,∵ ⊥✌,∴∠ ✌ ∠✌☜= °,∴∠ ✌ ∠☞☜= °,即 ⊥☞,∴ ☞与 相切;( )解:∵ ⊥✌,✌⊥ ,∴∠✌☜=∠✌= °,∵∠✌☜=∠ ☜,∴∠ ✌☜=∠ ☜= °,∵✌= ,∴✌= ,∴∠✌=∠ = °,∴∠✌= °,∴∠ ✌=∠✌= °,∴✌= .【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键..( 分)汛期到来,山洪暴发.下表记录了某水库 ♒内水位的变化情况,其中⌧表示时间(单位:♒),⍓表示水位高度(单位:❍),当⌧= (♒)时,达到警戒水位,开始开闸放水.⌧ ♒      ⍓ ❍         ( )在给出的平面直角坐标系中,根据表格中的数据描出相应的点.( )请分别求出开闸放水前和放水后最符合表中数据的函数解析式.( )据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 ❍.【分析】根据描点的趋势,猜测函数类型,发现当 <⌧< 时,⍓与⌧可能是一次函数关系:当⌧> 时,⍓与⌧就不是一次函数关系:通过观察数据发现⍓与⌧的关系最符合反比例函数.【解答】解:( )在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.( )观察图象当 <⌧< 时,⍓与⌧可能是一次函数关系:设⍓= ⌧ ♌,把( , ),( , )代入得解得: =,♌= ,⍓与⌧的关系式为:⍓=⌧ ,经验证( , ),( , ),( , )都满足⍓=⌧ 因此放水前⍓与⌧的关系式为:⍓=⌧  ( <⌧< )观察图象当⌧> 时,⍓与⌧就不是一次函数关系:通过观察数据发现: × = × = × = × = × = .因此放水后⍓与⌧的关系最符合反比例函数,关系式为:.(⌧> )所以开闸放水前和放水后最符合表中数据的函数解析式为:⍓=⌧  ( <⌧< )和 .(⌧> )( )当⍓= 时, =,解得:⌧= ,因此预计 ♒水位达到 ❍.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值..( 分)如图,在正方形✌中,☜是 边上一点,(与 、 不重合),连接✌☜,将△✌☜沿✌☜所在的直线折叠得到△✌☞☜,延长☜☞交 于☝,连接✌☝,作☝☟⊥✌☝,与✌☜的延长线交于点☟,连接 ☟.显然✌☜是∠ ✌☞的平分线,☜✌是∠ ☜☞的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于 °的角平分线),并说明理由.【分析】过点☟作☟☠⊥ 于☠,利用正方形的性质及轴对称的性质,证明△✌☝≌△✌☞☝,可推出✌☝是∠ ✌☞的平分线,☝✌是∠ ☝☞的平分线;证明△✌☝≌△☝☠☟,推出☟☠= ☠,得到∠ ☟=∠☠☟,推出 ☟是∠ ☠的平分线;再证∠☟☝☠=∠☜☝☟,可知☝☟是∠☜☝的平分线.【解答】解:过点☟作☟☠⊥ 于☠,则∠☟☠= °,∵四边形✌为正方形,∴✌=✌= ,∠ =∠ ✌=∠ =∠ =∠ = °,♊∵将△✌☜沿✌☜所在的直线折叠得到△✌☞☜,∴△✌☜≌△✌☞☜,∴∠ =∠✌☞☜=∠✌☞☝= °,✌=✌☞,∠ ✌☜=∠☞✌☜,∴✌☞=✌,又∵✌☝=✌☝,∴ ♦△✌☝≌ ♦△✌☞☝(☟☹),∴∠ ✌☝=∠☞✌☝,∠✌☝=∠✌☝☞,∴✌☝是∠ ✌☞的平分线,☝✌是∠ ☝☞的平分线;♋由♊知,∠ ✌☜=∠☞✌☜,∠ ✌☝=∠☞✌☝,又∵∠ ✌= °,∴∠☝✌☞ ∠☜✌☞=× °= °,即∠☝✌☟= °,∵☝☟⊥✌☝,∴∠☝☟✌= °﹣∠☝✌☟= °,∴△✌☝☟为等腰直角三角形,∴✌☝=☝☟,∵∠✌☝ ∠ ✌☝= °,∠✌☝ ∠☟☝☠= °,∴∠ ✌☝=∠☠☝☟,又∵∠ =∠☟☠☝= °,✌☝=☝☟,∴△✌☝≌△☝☠☟(✌✌),∴ ☝=☠☟,✌=☝☠,∴ =☝☠,∵ ﹣ ☝=☝☠﹣ ☝,∴ ☝= ☠,∴ ☠=☟☠,∵∠ = °,∴∠☠☟=∠☠☟=× °= °,∴∠ ☟=∠ ﹣∠☠☟= °,∴∠ ☟=∠☠☟,∴ ☟是∠ ☠的平分线;♌∵∠✌☝ ∠☟☝☠= °,∠✌☝☞ ∠☜☝☟= °,由♊知,∠✌☝=∠✌☝☞,∴∠☟☝☠=∠☜☝☟,∴☝☟是∠☜☝的平分线;综上所述,✌☝是∠ ✌☞的平分线,☝✌是∠ ☝☞的平分线, ☟是∠ ☠的平分线,☝☟是∠☜☝的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法..( 分)在平面直角坐标系中,直线⍓=⌧ 与⌧轴交于点✌,与⍓轴交于点 ,抛物线⍓=♋⌧ ♌⌧ ♍(♋< )经过点✌、 .( )求♋、♌满足的关系式及♍的值.( )当⌧< 时,若⍓=♋⌧ ♌⌧ ♍(♋< )的函数值随⌧的增大而增大,求♋的取值范围.( )如图,当♋=﹣ 时,在抛物线上是否存在点 ,使△ ✌的面积为 ?若存在,请求出符合条件的所有点 的坐标;若不存在,请说明理由.【分析】( )求出点✌、 的坐标,即可求解;( )当⌧< 时,若⍓=♋⌧ ♌⌧ ♍(♋< )的函数值随⌧的增大而增大,则函数对称轴⌧=﹣≥ ,而♌= ♋ ,即:﹣≥ ,即可求解;( )过点 作直线●∥✌,作 ✈∥⍓轴交 ✌于点✈,作 ☟⊥✌于点☟, △ ✌=×✌× ☟= × ✈×= ,则 ⍓ ﹣⍓✈ = ,即可求解.【解答】解:( )⍓=⌧ ,令⌧= ,则⍓= ,令⍓= ,则⌧=﹣ ,故点✌、 的坐标分别为(﹣ , )、( , ),则♍= ,则函数表达式为:⍓=♋⌧ ♌⌧ ,将点✌坐标代入上式并整理得:♌= ♋ ;( )当⌧< 时,若⍓=♋⌧ ♌⌧ ♍(♋< )的函数值随⌧的增大而增大,则函数对称轴⌧=﹣≥ ,而♌= ♋ ,即:﹣≥ ,解得:♋,故:♋的取值范围为:﹣≤♋< ;( )当♋=﹣ 时,二次函数表达式为:⍓=﹣⌧ ﹣⌧ ,过点 作直线●∥✌,作 ✈∥⍓轴交 ✌于点✈,作 ☟⊥✌于点☟,∵ ✌= ,∴∠ ✌=∠ ✈☟= °,△ ✌=×✌× ☟= × ✈×= ,则⍓ ﹣⍓✈= ,在直线✌下方作直线❍,使直线❍和●与直线✌等距离,则直线❍与抛物线两个交点坐标,分别与点✌组成的三角形的面积也为 ,故: ⍓ ﹣⍓✈ = ,设点 (⌧,﹣⌧ ﹣⌧ ),则点✈(⌧,⌧ ),即:﹣⌧ ﹣⌧ ﹣⌧﹣ =± ,解得:⌧=﹣ 或﹣ ,故点 (﹣ , )或(﹣ , )或(﹣ ﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题(含答案)

山东省临沂市2019年中考数学模拟试题一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号涂在答题卡上.) 1.3-的倒数是 A .3B .3-C .13D .13-2.为积极转化奥运会、残奥会志愿者工作成果,完善和健全志愿者服务体系及长效机制,北京市将力争实现每年提供志愿服务时间11000万小时. 11000万小时用科学记数法表示为A .61011.0⨯万小时B .5101.1⨯万小时 C .4101.1⨯万小时 D .31011⨯万小时3. 下列运算正确的是A .42263·2x x x =B .13222-=-x xC .2223232x x x =÷ D . 422532x x x =+ 4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是 A. 13和11 B. 12和13 C. 11和12 C. 13和12 5.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有 A .4个 B .5个 C .6个 D .7个6.不等式组240,321x x -<⎧⎨-<⎩的解集为A .1<xB .21><x x 或C .2>xD .21<<x7.估计40值A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间俯视图 主视图 (第5题)8.将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点B ,则点的B 坐标是 A .(32,2) B .(32,-2) C .(4,-2)D .(2,-32)9.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是 A .60° B .50° C .40°D .30°10.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果一辆22型自行车的链条(没有安装前)共有50节链条组成,那么链条的总长度是( )A .75 cmB .85.8 cmC .85 cmD .84.2 cm11.将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是12.某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是A .16B.15 C.14D .13 13.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于A .αsin ⋅aB .cos a α⋅C .αtan ⋅aD .cot a α⋅11题图 A . B . C . D . 1节链条 2节链条 50节链条A BC a 第4题图(第13题)14.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.) 15.分解因式:24(3)x --= .16.如果方程042=+-c x x 的—个根是32+.那么此方程的另一个根是 .17.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b)进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .18. 如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。

山东省临沂市2019-2020学年中考数学二模试卷含解析

山东省临沂市2019-2020学年中考数学二模试卷含解析

山东省临沂市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算:()()223311aa a ---的结果是( )A .()21ax -B .31a -. C .11a - D .31a + 2.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .3.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩4.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x 件,乙种奖品y 件.依题意,可列方程组为( )A .204030650x y x y +=⎧⎨+=⎩B .204020650x y x y +=⎧⎨+=⎩C .203040650x y x y +=⎧⎨+=⎩D .704030650x y x y +=⎧⎨+=⎩5.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,BC=2,∠B=60°,⊙A 的半径为3,那么下列说法正确的是( )A .点B 、点C 都在⊙A 内 B .点C 在⊙A 内,点B 在⊙A 外 C .点B 在⊙A 内,点C 在⊙A 外D .点B 、点C 都在⊙A 外7.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

2019年山东省 中考数学二模试卷解析版

2019年山东省  中考数学二模试卷解析版

2019年山东省中考数学二模试卷含解析一、选择题(每小题3分,共30分)1.(3分)2019相反数的绝对值是()A.9102B.﹣2019C.D.20192.(3分)下列计算正确的是()A.a+2b=2ab B.+=C.x6÷x2=x4D.(a+b)2=a2+b23.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.(3分)直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°5.(3分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道6.(3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.7.(3分)有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.9.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.10.(3分)如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF =2AD2;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.12.(3分)分解因式:9﹣12t+4t2=.13.(3分)已知一组数据是3,4,7,a,中位数为4,则a=.14.(3分)“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O 的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.15.(4分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为米.16.(4分)若关于x的方程﹣=﹣1无解,则m的值是.17.(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.18.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=﹣x(x﹣3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A3旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,…则∁n的顶点坐标为(n为正整数,用含n的代数式表示).三、解答题(共7小题,62分)19.(7分)(1)计算4cos30°﹣||+()0+(﹣)﹣2(2)化简求值:÷(x+2﹣),其中x=﹣3.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.21.(8分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且P A⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.22.(8分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC 的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.23.(9分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?24.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.25.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山东省东营市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)2019相反数的绝对值是()A.9102B.﹣2019C.D.2019【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数;负数的绝对值是它的相反数可得答案.【解答】解:2019相反数是﹣2019,﹣2019的绝对值是2019,故选:D.【点评】此题主要考查了绝对值和相反数,关键是掌握相反数定义,绝对值性质.2.(3分)下列计算正确的是()A.a+2b=2ab B.+=C.x6÷x2=x4D.(a+b)2=a2+b2【分析】直接利用二次根式加减运算法则以及同底数幂的除法运算法则以及完全平方公式分别化简得出答案.【解答】解:A、a+2b无法计算,故此选项错误;B、+无法计算,故此选项错误;C、x6÷x2=x4,正确;D、(a+b)2=a2++2ab+b2,故此选项错误;故选:C.【点评】此题主要考查了二次根式加减运算以及同底数幂的除法运算以及完全平方公式,正确掌握相关运算法则是解题关键.3.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°【分析】先根据三角形外角性质,求得∠BDE,进而根据平行线的性质,得到∠DBF=∠BDE=65°,最后根据平角求得∠2.【解答】解:如图所示,∵∠BDE是△ADE的外角,∴∠BDE=∠3+∠A=∠1+∠A=65°,∵a∥b,∴∠DBF=∠BDE=65°,又∵∠ABC=90°,∴∠2=180°﹣90°﹣65°=25°.故选:C.【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道【分析】设小明至少答对的题数是x道,答错的为(20﹣2﹣x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】解:设小明至少答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥13,故应为14.故选:D.【点评】本题考查理解题意的能力,关键是设出相应的题目数,以得分做为不等量关系列不等式求解.6.(3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.7.(3分)有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个【分析】分别写出四个命题的逆命题,然后分别通过解一元二次方程、平方根的定义、根据线段垂直平分线的性质、圆周角定理进行判断.【解答】解:若x2=x,则x=1或x=0,所以原命题错误;若x=1,则x2=x,所以原命题的逆命题正确;若a2=b2,则a=±b,所以原命题错误;若a=b,则a2=b2,所以原命题的逆命题正确;线段垂直平分线上的点到线段两端的距离相等,所以原命题正确;到线段两端的距离相等的点在线段的垂直平分线上,所以原命题的逆命题正确;相等的弧所对的圆周角相等,所以原命题正确;相等的圆周角所对弧不一定相等,所以原命题的逆命题错误.故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论;命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接P A、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.9.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.10.(3分)如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF =2AD2;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④【分析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【解答】解:设AD=x,AB=2x,∵四边形ABCD是矩形,∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB,∴BC=x,CD=2x,∵CP:BP=1:2,∴CP=x,BP=x.∵E为DC的中点,∴CE=CD=x,∴tan∠CEP===,tan∠EBC==,∴∠CEP=30°,∠EBC=30°,∴∠CEB=60°,∴∠PEB=30°,∴∠CEP=∠PEB,∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴,∴BE.BF=BP.EF.∵∠F=BEF,∴BE=BF,∴②BF2=PB•EF.故②正确;∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x,∴PF•EF=x•2x=8x2,2AD2=2×(x)2=6x2,∵6x2≠8x2,∴PF•EF≠2AD2,故本答案错误;在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x.∵tan∠P AB==,∴∠P AB=30°,∴∠APB=60°,∴∠AOB=90°,在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x,∴EF•EP=2x•x=4x24AO•PO=4×x x=4x2.∴EF•EP=4AO•PO.故④正确.故选:B.【点评】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为5.4×106万元.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.(3分)分解因式:9﹣12t+4t2=(3﹣2t)2.【分析】原式利用完全平方公式分解即可得到结果.【解答】解:原式=(3﹣2t)2.故答案为:(3﹣2t)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.13.(3分)已知一组数据是3,4,7,a,中位数为4,则a=4.【分析】根据中位数的定义,当数据有偶数个时,中位数即是正中间两个数的平均数,继而得出a的值.【解答】解:∵有数据个数是偶数,且中位数是4,∴a=4,故答案为:4.【点评】本题考查了中位数,熟练掌握中位数的定义是解题的关键;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.14.(3分)“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O 的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(4分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为180米.【分析】过A作BC的垂线,设垂足为D.在Rt△ACD中,利用∠CAD的正切函数求出邻边AD的长,进而可在Rt△ABD中,利用已知角的三角函数求出BD的长;由BC=CD﹣BD即可求出楼的高度.【解答】解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=270米.在Rt△ACD中,tan∠CAD=,∴AD==90.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=90×=90.∴BC=CD﹣BD=270﹣90=180.答:这栋大楼的高为180米.故答案为180.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.16.(4分)若关于x的方程﹣=﹣1无解,则m的值是1或.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:3﹣2x+mx﹣2=﹣x+3,整理得:(m﹣1)x=2,当m﹣1=0,即m=1时,方程无解;当m﹣1≠0时,x﹣3=0,即x=3时,方程无解,此时=3,即m=,故答案为:1或.【点评】此题考查了分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.17.(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10cm.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.【点评】考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.18.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=﹣x(x﹣3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A3旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,…则∁n的顶点坐标为(3n﹣,(﹣1)n+1•)(n为正整数,用含n的代数式表示).【分析】根据图形连续旋转,旋转奇数次时,图象在x轴下方,每两个图象全等且相隔三个单位;旋转偶数次时,图象在x轴上方,每两个图象全等且相隔三个单位.【解答】解:这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,….则Cn的顶点坐标为(3n﹣,(﹣1)n+1•),故答案为:(3n﹣,(﹣1)n+1•).【点评】本题考查了二次函数图象与几何变换,交点间的距离是3,顶点间的横向距离距离是3,纵向距离是.三、解答题(共7小题,62分)19.(7分)(1)计算4cos30°﹣||+()0+(﹣)﹣2(2)化简求值:÷(x+2﹣),其中x=﹣3.【分析】(1)根据特殊角的三角函数值、绝对值、零指数幂和负整数指数幂可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)4cos30°﹣||+()0+(﹣)﹣2=4×﹣(2﹣)+1﹣3+9=2﹣2++1﹣3+9=8;(2)÷(x+2﹣)====,当x=﹣3时,原式=.【点评】本题考查分式化简求值、特殊角的三角函数值、绝对值、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有50人;(2)表中a=10,b=0.16;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.【分析】(1)由B观点的人数和所占的频率即可求出总人数;(2)由总人数即可求出a、b的值,(3)由(2)中的数据即可将条形统计图补充完整;(4)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)总人数=12÷0.24=50(人),故答案为:50;(2)a=50×0.2=10,b==0.16,故答案为:(3)条形统计图补充完整如图所示:(4)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率==.【点评】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且P A⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【分析】(1)由一次函数表达式可得出点C的坐标,结合A点坐标以及三角形的面积公式可得出AP的长度,从而得出点P的坐标,由点P的坐标结合待定系数法即可求出一次函数及反比例函数的表达式;(2)设点Q的坐标为(m,﹣m+3).由一次函数的表达式可找出点B的坐标,结合等底三角形面积的性质可得出关于m的一元一次方程,解方程即可得出m的值,将其代入点Q的坐标中即可.【解答】解:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC•AP=18,∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点P的坐标;(2)由三角形的面积关系找出关于m的方程.本题属于基础题,难度不大,解决该题型题目时,根据给定的数量关系找出点的坐标,再结合待定系数法求出函数解析式即可.22.(8分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC 的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.【分析】(1)根据当点P是的中点时,得出=,得出P A是○O的直径,再利用DP∥BC,得出DP⊥P A,问题得证;(2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可得出DP的长.【解答】解:(1)当点P是的中点时,DP是⊙O的切线.理由如下:∵AB=AC,∴=,又∵=,∴=,∴P A是⊙O的直径,∵=,∴∠1=∠2,又AB=AC,∴P A⊥BC,又∵DP∥BC,∴DP⊥P A,∴DP是⊙O的切线.(2)连接OB,设P A交BC于点E.由垂径定理,得BE=BC=6,在Rt△ABE中,由勾股定理,得:AE===8,设⊙O的半径为r,则OE=8﹣r,在Rt△OBE中,由勾股定理,得:r2=62+(8﹣r)2,解得r=,∵DP∥BC,∴∠ABE=∠D,又∵∠1=∠1,∴△ABE∽△ADP,∴=,即=,解得:DP=.【点评】此题主要考查了切线的判定与性质以及勾股定理和相似三角形的判定与性质,根据已知得出△ABE∽△ADP是解题关键.23.(9分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜a个,根据题意可得:20a+12×(75﹣a)≤1180,解得:a≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.24.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是菱形.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.【分析】(1)先判断出∠ACD=∠BAC,进而判断出∠BAC=∠AC'D,进而判断出∠CAC'=∠AC'D,即可的结论;(2)先判断出∠CAC'=90°,再判断出AG⊥CC',CF=C'F,进而判断出四边形ACGC'是平行四边形,即可得出结论;(3)先判断出∠ACB=30°,进而求出BH,AH,即可求出CH,C'H,即可得出结论.【解答】解:(1)在如图1中,∵AC是矩形ABCD的对角线,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,在如图2中,由旋转知,AC'=AC,∠AC'D=∠ACD,∴∠BAC=∠AC'D,∵∠CAC'=∠BAC,∴∠CAC'=∠AC'D,∴AC∥C'E,∵AC'∥CE,∴四边形ACEC'是平行四边形,∴▱ACEC'是菱形,故答案为:菱形;(2)在图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠CAD=∠ACB,∠B=90°,∴∠BAC+∠ACB=90°在图3中,由旋转知,∠DAC'=∠DAC,∴∠ACB=∠DAC',∴∠BAC+∠DAC'=90°,∵点D,A,B在同一条直线上,∴∠CAC'=90°,由旋转知,AC=AC',∵点F是CC'的中点,∴AG⊥CC',CF=C'F,∵AF=FG,∴四边形ACGC'是平行四边形,∵AG⊥CC',∴▱ACGC'是菱形,∵∠CAC'=90°,∴菱形ACGC'是正方形;(3)在Rt△ABC中,AB=2,AC=4,∴BC'=AC=4,BD=BC=2,sin∠ACB==,∴∠ACB=30°,由(2)结合平移知,∠CHC'=90°,在Rt△BCH中,∠ACB=30°,∴BH=BC•sin30°=,∴C'H=BC'﹣BH=4﹣,在Rt△ABH中,AH=AB=1,∴CH=AC﹣AH=4﹣1=3,在Rt△CHC'中,tan∠C′CH==.【点评】此题是四边形综合题,主要考查了矩形是性质,平行四边形,菱形,矩形,正方形的判定和性质,勾股定理,锐角三角函数,旋转的性质,判断出∠CAC'=90°是解本题的关键.25.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△P AC=S△P AN+S△PCN就可以表示出△P AC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.【解答】解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a (x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,。

2019年山东省临沂市中考数学试卷 解析版

2019年山东省临沂市中考数学试卷  解析版

2019年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:|﹣2019|=2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x【分析】先移项,再系数化为1即可.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:A.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)1213最高气温(℃)22262829则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+,故选:A.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S﹣S△BOC是解题的关键.扇形BOC12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y=kx+b中,k与b 对函数图象的影响是解题的关键.13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=﹣1.【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10.【分析】利用题中四次方根的定义求解.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8.【分析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共63分)20.(7分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【分析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的内角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x =﹣≥0,而b=2a+1,即:﹣≥0,即可求解;(3)过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△P AB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年山东临沂中考数学试题(解析版)

2019年山东临沂中考数学试题(解析版)

{来源}2019年山东临沂中考数学试卷 {适用范围:3. 九年级}{标题}山东省临沂市二〇一九年初中学业水平考试考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 14小题,每小题3分,共42分. {题目}1.(2019年山东临沂T1)|-2019|=( )A .2019B .-2019C .12019D .-12019{答案}A{解析}本题考查了绝对值的概念,一个负数的绝对值是它的相反数,因此|-2019|=2019. {分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的意义} {类别:常考题} {类别:易错题} {难度:1-最简单}{题目}2.(2019年山东临沂T2)如图,a ∥b ,若∠1=110°,则∠2的度数是( )A .110°B .80°C .70°D .60°{答案}C{解析}本题考查了平行线的性质与对顶角的性质.两直线平行,同旁内角互补,又因为对顶角相等,所以∠2=∠3=180°-∠1=180°-110°=70°.{分值}3{章节:[1-5-3]平行线的性质}{考点:两直线平行同旁内角互补} {考点:两直线平行同位角相等} {考点:对顶角、邻补角} {类别:常考题} {难度:1-最简单}{题目}3.(2019年山东临沂T3)不等式1-2x ≥0的解集是( )A .x ≥2B .x ≥12C .x ≤2D .x ≤12{答案}D{解析}本题考查了一元一次不等式的解法.移项,得-2x ≥-1,两边都除以-2,得x ≤12,注意,不等式的两边都乘或除以一个负数时,不等号的方向要改变. {分值}3{章节:[1-9-2]一元一次不等式}abc 1 2 1 abc23{考点:解一元一次不等式}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}4.(2019年山东临沂T4)如图所示,正三棱柱的左视图是()A BC D{答案}A{解析}本题考查了识别几何体的三视图.左视图是从左面看几何体得到的平面图形,该正三棱柱的左面是一个正三角形,故它的左视图是正三角形.{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{难度:1-最简单}{题目}5.(2019年山东临沂T5)将a3b-ab进行因式分解,正确的是()A.a(a2b-b) B.ab(a-1)2C.ab(a+1)(a-1) D.ab(a2-1){答案}C{解析}本题考查了因式分解.把一个多项式分解因式时一般先提公因式,然后再考虑套用公式,分解因式一定要彻底.a3b-ab=ab(a2-1)=ab(a+1)(a-1).{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-平方差}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}6.(2019年山东临沂T6)如图,D是AB上的一点,DF交AC于点E,DE=EF,FC∥AB.若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2AFD EB C{答案}B{解析}本题考查了平行线的性质与全等三角形的判定与性质.∵FC∥AB,∴∠A=∠ECF,∠ADE =∠F.又∵DE=EF,∴△ADE≌△CFE,∴AD=CF=3,∴BD=AB-AD=4-3=1.{分值}3{章节:[1-12-2]三角形全等的判定}{考点:两直线平行内错角相等}{考点:全等三角形的判定ASA,AAS}{类别:常考题}{难度:2-简单}{题目}7.(2019年山东临沂T7)下列计算错误的是()A.(a3b)·( ab2) =a4b3B.(-mn3)2=m2n6 C.a5÷a2-=a3 D.xy2-15xy2=45xy2{答案}C{解析}本题考查了幂的运算性质与整式的运算.a5÷a2-=a)2(5--=a7,所以C错误.{分值}3{章节:[1-14-1]整式的乘法}{考点:合并同类项}{考点:积的乘方}{考点:单项式乘以单项式}{考点:同底数幂的除法}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}8.(2019年山东临沂T8)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.23B.29C.13D.19{答案}B{解析}本题考查了概率的求法.求随机事件发生的概率,常用的方法有直接列举法、列表法与画树右转,一辆向左转的概率是29.{分值}3{章节:[1-25-2]用列举法求概率} {考点:两步事件放回}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年山东临沂T9)计算211aaa---的结果正确的是()A.11a--B.11a-C.211aa---D.211aa--{答案}B{解析}本题考查了分式的运算.211a a a ---=12-a a -(a +1)=12-a a -112--a a =11a -.{分值}4{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减} {类别:常考题} {难度:3-中等难度}{题目}10.(2019年山东临沂T10)小明记录了临沂市五月份某周每天的最高气温(单位:℃),列成下表:天数(天)1 2 1 3 最高气温(℃) 2226 28 29 A .26.25℃ B .27℃ C .28℃ D .29℃ {答案}B{解析}本题考查了加权平均数计算公式.这周最高气温的平均值是=73292822622⨯++⨯+=7189=27(℃). {分值}4{章节:[1-20-1-1]平均数}{考点:加权平均数(权重为整数比)} {类别:常考题} {难度:2-简单}{题目}11.(2019年山东临沂T11)如图,⊙O 中,»»AB AC =,∠ABC =75°,BC =2,则阴影部分的面积是( )A .22+3π B .22+3+3π C .24+3π D .42+3π{答案}A{解析}本题考查了圆心角与圆周角的性质、扇形的面积、等边三角形的判定与性质.连接OA ,OB ,OC ,∵»»AB AC =,∴AB =AC ,∠ACB =∠ABC =75°,∴∠BAC =30°,∴∠BOC =60°,又∵OB=OC ,∴△OBC 是等边三角形,∴OA =OB =BC =2.延长AO 交BC 于点D ,由对称性可知AD⊥BC ,则BD =21BC =1.于是S阴影= S 扇形OBC + S △OAB +S △OAC =3602602⋅π+21×2×1+21×2×1=2+32π.{分值}4{章节:[1-24-4]弧长和扇形面积}{考点:等边三角形的性质}{考点:等边三角形的判定}{考点:扇形的面积}{类别:常考题}{难度:3-中等难度}{题目}12.(2019年山东临沂T12)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b) D.当x>-bk时,y>0{答案}D{解析}本题考查了一次函数的图象与性质.直线y=kx+b(k<0,b>0)经过第一、二、四象限,与x轴的交点坐标是(-bk,0),因此,当x>-bk时,y<0,故选项D错误.{分值}4{章节:[1-19-2-2]一次函数}{考点:一次函数的图象}{考点:一次函数的性质}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年山东临沂T13)如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND{答案}A{解析}本题考查了平行四边形的判定与性质、等腰三角形性质、矩形的判定.在□ABCD中,OA=OC,OB=OD,又∵BM=DN,∴OM=ON,∴四边形AMCN是平行四边形.当OM=12AC时,则OA=OM=OC,∴∠OAM=∠OMA,∠OCM=∠OMC,∴∠AMC=180°÷2=90°,∴□AMCN 是矩形.{分值}4{章节:[1-18-2-1]矩形}{考点:平行四边形对角线的性质}{考点:对角线互相平分的四边形是平行四边形}{考点:等边对等角}{考点:矩形的性质}{考点:矩形的性质}{类别:常考题}{难度:4-较高难度}{题目}14.(2019年山东临沂T14)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0;④小球的高度h =30m 时,t =1.5s. 其中正确的是( )A .①④B .①②C .②③④D .②③{答案}D{解析}本题考查了.由图象可知小球竖直向上达到最大高度40m 后再下落回来,因此小球在空中经过的路程是80m ,故①错误;小球抛出3秒时,速度为0,然后回落地面,速度越来越快,故②与③均正确;当小球的高度h =30m 时,即y =30,此时函数图象对称轴两侧各有一点纵坐标为30,也就是说存在两个时间点使小球的高度为30m(小球上升与回落),故④错误,事实上设抛物线的解析式为y =a(x -3)2+40,把(6,0)代入,得0=9a+40,解得a =940-,∴y =940-(x -3)2+40,当y =30时,940-(x -3)2+40=30,解得x 1=1.5,x 2=3.5,即当t =1.5s 或t =3.5s 时,小球的高度h =30m . {分值}4{章节:[1-22-3]实际问题与二次函数} {考点:足球运动轨迹问题} {考点:代数选择压轴} {类别:高度原创} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共5个小题,每小题3分,共15分. {题目}15.(2019年山东临沂T15)计算:21×6-tan45°= . {答案31{解析}本题考查了二次根式的乘法运算与特殊角的三角形函数值.两个二次根式相乘,把被开方数相乘,再化简.21×6-tan45°=621⨯-131. {分值}3{章节:[1-16-2]二次根式的乘除} {考点:二次根式的乘法法则} {考点:特殊角的三角函数值} {类别:常考题} {难度:1-最简单}{题目}16.(2019年山东临沂T16)在平面直角坐标系中,点P(4,2)关于直线x =1的对称点的坐标是 . {答案}(-2,2){解析}本题考查了平面直角坐标系中点的坐标的对称性.点P(4,2)与关于直线x =1的对称点的坐标,它们到直线的x =1的距离相等,且纵坐标不变,故点P(4,2)关于直线x =1的对称点的坐标是(-2,2).对于该类问题,通过画图得解更直观.{分值}3{章节:[1-7-2]平面直角坐标系} {考点:平面直角坐标系} {考点:点的坐标} {类别:常考题} {难度:2-简单}{题目}17.(2019年山东临沂T17)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 块. {答案}11{解析}本题考查了二元一次方程组的实际应用.设恰好需用A 、B 两种型号的钢板分别为x 块、y块,根据题意,得⎩⎨⎧=+=+.182,3734y x y x 两式相加,得5x+5y =55,∴x+y =11.即恰好需用A 、B 两种型号的钢板共11块.{分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:二元一次方程组的应用} {类别:常考题} {类别:思想方法} {难度:3-中等难度}{题目}18.(2019年山东临沂T18)一般地,如果x 4=a (a ≥0),则称x 为a 的四次方根.一个正数a的四次方根有两个,它们互为相反数,记为=10,则m = . {答案}±10{解析}本题考查了方根的知识.根据题意,得)4=104,即m 4=104,∴m =±10. {分值}3{章节:[1-6-1]平方根}{考点:算术平方根的平方} {类别:常考题} {难度:3-中等难度}{题目}19.(2019年山东临沂T19)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .{答案}83{解析}本题考查了平行线分线段成比例定理,解直角三角形的知识.过点A 作AE ⊥BC 交其延长线于点E ,又∵DC ⊥BC ,∴AE ∥DC ,∴EC :CB =AD :DB ,又∵AD =BD ,∴EC =CB =4.∵∠ACB =120°,∴∠ACE =60°,∴AE =EC ·tan60°=43,∴S △ABC =21BC ·AE =21×4×43=83.CA DB{分值}3{章节:[1-28-1-2]解直角三角形}{考点:平行线分线段成比例}{考点:正切}{考点:几何填空压轴}{类别:常考题}{难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共7个小题,共63分.{题目}20.(2019年山东临沂T20)解方程:2 5x=x3.{解析}本题考查了解分式方程,一般思路是通过去分母转化为整式方程求解,注意解分式方程一定要验根.{答案}解:方程两边都乘以x(x-2),得5x=3(x-2).去括号,得5x=3x-6.移项、合并同类项,得2x=6.系数化为1,得x=3.经检验,x=3是原方程的解.所以,原方程的解为x=3.{分值}7{章节:[1-15-3]分式方程}{考点:解含两个分式的分式方程}{类别:常考题}{难度:1-最简单}{题目}21.(2019年山东临沂T21)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程.为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 8688 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:CA D BE回答下列问题:(1)以上30个数据中,中位数是 ;频数分布表中a = ,b = ; (2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数. {解析}本题考查了频数分布表和频数分布直方图、中位数、用样本估计总体等知识.(1)把30个数据按大小顺序排列,位于中间两个数的平均数即为中位数;根据频数分布表和频数分布直方图易于得到a 与b 的值,也可通过直接数30个数据得到a 与b 的值;(2)根据(1)中得到的a 与b 的值补全频数分布直方图即可;(3)先通过所抽取的30个数据计算优秀率,然后再估计该校七年级的优秀人数. {答案}解:(1)中位数是86,a =6,b =6. 解析:30个数据按大小顺序排列后位于第15、16位置处两个数据均为86,所以该组数据的中位数为86;由频数分布表和频数分布直方图可知b =6,∴a =30-5-11-6-2=6.(2)补全频数分布直方图如图所示;(3)所抽取的30名学生中,成绩不低于86分的有11+6+2=19人,优秀率为3019,可估计该校七年级300名学生中,达到优秀等级的人数为300×3019=190人. {分值}7{章节:[1-10-2]直方图} {考点:频数(率)分布表} {考点:频数(率)分布直方图} {考点:中位数}{考点:用样本估计总体} {类别:常考题} {难度:2-简单}{题目}22.(2019年山东临沂T22)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D (A ,C ,D 共线)处同时施工.测得∠CAB =30°,AB =4km ,∠ABD =105°,求BD 的长.{解析}本题考查了解直角三角形的实际应用.过点B 作BE ⊥AD 于点E ,则构造了具有特殊角的两个直角三角形,在Rt △ABE 中先求得BE 的长,再在Rt △BDE 中求得BD 的长. {答案}解:如图,过点B 作BE ⊥AD 于点E ,则∠ABE =90°-30°=60°,∠DBE =105°-60°=45°. 在Rt △ABE 中,∠A =30°,AB =4km ,∴BE =21AB =2(km ); 在Rt △BDE 中,BD =2222 =22(km ).答:BD 的长为22km .{分值}7{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用—测高测距离} {考点:特殊角的三角函数值} {类别:常考题} {难度:3-中等难度}{题目}23.(2019年山东临沂T23)如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF . (1)求证:CF 是⊙O 的切线. (2)若∠A =22.5°,求证:AC =DC .{解析}本题综合考查了圆的切线的判定,圆周角定理的推论,直角三角形斜边中线的性质,等腰三角形的性质,全等三角形的判定和性质等知识.(1)欲证CF 是⊙O 的切线,只需证明OC ⊥CF ,即证∠ACO+∠FCE =90°,再证∠FCE =∠AEO 易于获得结论;或者通过证明∠FCE =∠OCB 获得结论.(2)欲证AC =DC ,可通过证明△ACB 与△DCE 全等得到.显然两个三角形的对应角易证相等,ABOC FD EE还需证明一组边相等.而当∠A=22.5°,则∠COF=∠COB=2∠A =45°,得FC=OC.这样可知DE=2FC=2OC=AB,思路得以沟通,问题获解.{答案}解:(1)证明:方法1:∵AB是⊙O的直径,∴∠ACB=90°.在Rt△DCE中,CF是斜边的中线,∴FC=FE,∴∠FCE=∠FEC.∵∠FEC=∠AEO,∴∠FCE=∠AEO.∵OD⊥AB,∴∠A+∠AEO=90°,∵OA=OC,∴∠A=∠ACO,∴∠ACO+∠AEO=90°,∴∠ACO+∠FCE=90°,即∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.方法2:∵AB是⊙O的直径,∴∠ACB=90°,∴∠D+∠DEC=90°.∵OD⊥AB,∴∠B+∠D=90°,∴∠B=∠DEC.在Rt△DCE中,CF是斜边的中线,∴FC=FE,∴∠FCE=∠FEC.∴∠FCE=∠B.∵OB=OC,∴∠B=∠OCB,∴∠FCE=∠OCB.∵∠ACB=∠ACO+∠OCB=90°,∴∠ACO+∠FCE=90°,即∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)∵∠A=22.5°,∴∠COB=2∠A =45°,∴∠COF=45°,由(1)得∠FCO=90°,∴∠CFO=∠COF=45°,∴FC=OC.在Rt△DCE中,CF是斜边的中线,∴DE=2CF,∵AB=2OC,∴AB=DE.∵∠A+∠B=90°,∠B+∠D=90°,∴∠A=∠D.又∵∠ACB=∠DCE=90°,∴△ACB≌△DCE(AAS),∴AC=DC.{分值}9{章节:[1-24-2-2]直线和圆的位置关系}{考点:等边对等角}{考点:直角三角形两锐角互余}{考点:等腰直角三角形}{考点:直角三角形斜边上的中线}{考点:全等三角形的判定ASA,AAS}{考点:直径所对的圆周角}{考点:切线的判定}{考点:圆的其它综合题}{类别:常考题}{难度:3-中等难度}{题目}24.(2019年山东临沂T24)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m).当x=8(h)时达到警戒水位,开始开闸(1(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式;(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m?{解析}本题考查了一次函数与反比例函数的实际应用.(1)把表中数对分别描在坐标系中即可;(2)观察平面直角坐标系中所描的点,猜想开闸放水前和放水后最符合表中数据的函数解析式分别为一次函数与反比例函数,利用待定系数法分别求得函数解析式,然后把其余点代入解析式中进行验证,以确定猜想正确与否;(3)把y =6代入开闸放水后的函数解析式,即可求得相应的时间. {答案}解:(1)描点如图所示;(2)根据描点,可以猜想开闸放水前和放水后最符合表中数据的函数解析式分别为一次函数与反比例函数.设开闸放水前函数的解析式为y =kx +b (k ≠0),把x =0时y =14,x =2时y =15代入,得⎩⎨⎧=+=,152,14b k b 解得⎪⎩⎪⎨⎧==,21,14k b ∴一次函数的解析式为y =21x +14(0≤x ≤8). 当x =4时,y =21×4+14=16;当x =6时,y =21×6+14=17;当x =8时,y =21×8+14=18.均符合题意.所以开闸放水前的函数解析式为y =21x +14. 设开闸放水后的函数解析式为y =x k (k ≠0),把x =12时y =12,代入得k =12×12=144,∴y =x144. 把x =10,14,16,18,20分别代入,得y =14.4,10.3,8,7.2,均符合题意.∴开闸放水后的函yy数解析式为y =x144(x >8). (3)当y =6时,x 144=6.解得x =24. 答:预测24时水位达到6m .{分值}9{章节:[1-26-2]实际问题与反比例函数}{考点:待定系数法求一次函数的解析式}{考点:分段函数的应用}{考点:生活中的反比例函数的应用}{类别:高度原创}{类别:常考题}{难度:3-中等难度}{题目}25.(2019年山东临沂T25)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于点G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH .显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角的平分线),并说明理由.{解析}本题综合考查了正方形的性质,互为余角的性质,直角三角形的性质,全等三角形的判定与性质等腰三角形的判定与性质等知识.由折叠及正方形的性质,极易得到Rt △ABG 与Rt △AFG 全等,进而可得AG 与GA 为角平分线,再通过图形直观观察,可发现GH 与CH 也是角平分线,进一步思考,利用等角的余角相等,易得∠HGE =∠HGC ;过点H 作HN ⊥BC 于点N ,再通过证△ABG ≌△GNH ,得△HCN 是等腰直角三角形,得到CH 是∠DCM 的平分线.{答案}解:AG 是∠BAF 的平分线,GA 是∠BGF 的平分线,GH 是∠EGC 的平分线,CH 是∠DCM 的平分线.证明如下:∵四边形ABCD 为正方形,∴∠D =∠B =90°,AB =AD .∵△ADE 沿AE 翻折至△AFE ,∴AD =AF ,∠D =∠AFE =90°,∴AB =AF .又∵AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ).∴∠BAG =∠FAG ,∠BGA =∠FGA ,即GA 是∠BGF 的平分线,GH 是∠EGC 的平分线.∵GH ⊥AG ,∴∠AGH =90°,∴∠AGE+∠HGE =90°,∠AGB+∠HGC =90°,又∵∠AGB =∠AGE ,∴∠HGE =∠HGC ,即GH 是∠EGC 的平分线.如图,过点H 作HN ⊥BC 于点N ,则∠GNH =∠ABG =90°.∵∠AGB+∠HGC =90°,∠AGB+∠BAG =90°,∴∠HGC =∠BAG .∵∠GAE =21∠BAD =45°,∠AGH =90°,∴∠AHG =45°,∴AG =GH , ∴△ABG ≌△GNH (AAS ),∴BG =HN , GN =AB =BC ,∴BG =CN ,∴CN =HN ,∴∠HCN =45°,∴∠ECH =45°,即CH 是∠DCM 的平分线.A B M FHDE{分值}11{章节:[1-18-2-3] 正方形}{考点:角平分线的定义}{考点:直角三角形两锐角互余}{考点:互余}{考点:全等三角形的判定ASA,AAS}{考点:全等三角形的判定HL}{考点:等角对等边}{考点:等边对等角}{考点:正方形的性质}{考点:正方形有关的综合题}{考点:几何综合}{类别:常考题}{难度:4-较高难度}{题目}26.(2019年山东临沂T26)在平面直角坐标系中,直线y =x+2与x 轴交于点A ,与y 轴交于点B ,抛物线y =ax 2+bx+c(a <0)经过点A ,B .(1)求a ,b 满足的关系式及c 的值;(2)当x <0时,若y =ax 2+bx+c(a <0)的函数值随x 的增大而增大,求a 的取值范围;(3)如图,当a =-1时,在抛物线上是否存在点P ,使△PAB 的面积为1,若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.{解析}本题综合考查了二次函数y抛物线上几何图形的存在性问题.(1)根据直线y =x+2的解析式,先求得点A ,B 的坐标,进而可求c 的值与a ,b 满足的关系式;(2)根据对称轴方程x =ab 2 及二次函数的增减性易于得到a 的取值范围;(3)利用抛物线上三角形面积的常见求法,即设P (x ,-x 2-x +2),过点P 作与x 轴的垂线,交直线y =x +2于点C ,根据S △P AB =21OA ·PC 判断点P 是否存在,以及存在时求解点P 的坐标.{答案}解:(1)当x =0时,y =x +2=2,∴B (0,2);A B F HDEM当y =0时,x +2=0,x =-2,∴A (-2,0).因为抛物线y =ax 2+bx+c(a <0)经过点A ,B ,故把B (0,2)代入,得c =2;把A (-2,0)代入,得4a -2b+2=0,∴a ,b 满足的关系式为2a -b +1=0.(2)由题意,得a b 2-≥0,即a a 212+-≥0, 又∵a <0,∴a ≥21-且a <0,即21-≤a <0. (3)当a =-1时,2×(-1)-b +1=0,解得b =-1.∴y =-x 2-x +2.设P (x ,-x 2-x +2),过点P 作与x 轴的垂线,交直线y =x +2于点C ,则C (x ,x +2).于是S △P AB =21OA ·PC =21×2·|(-x 2-x +2)-(x +2)|=1. ∴|-x 2-2x |=1,∴x 2+2x =1,或x 2+2x =-1.解得,x 1=-1-2,x 2=-1+2,x 3=x 4=-1.当x =-1-2时,y =-2;当x =-1+2时,y =2;当x =-1时,y =2.综上可知,在抛物线上存在点P ,使△PAB 的面积为1,此时点P 的坐标为(-1-2,-2)或(-1+2,2)或(-1,2).{分值}13{章节:[1-22-1-4]二次函数y =ax2+bx+c 的图象和性质}{考点:待定系数法求一次函数的解析式}{考点:其他一次函数的综合题}{考点:二次函数y =ax2+bx+c 的性质}{考点:其他二次函数综合题}{考点:代数综合}{类别:常考题}{难度:5-高难度}。

[部编】2019山东省临沂市中考数学试卷 解析版

[部编】2019山东省临沂市中考数学试卷  解析版

2019年山东省临沂市中考数学试卷一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.27.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)1213最高气温(℃)22262829则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.(7分)解方程:=.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:|﹣2019|=2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x【分析】先移项,再系数化为1即可.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:A.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)1213最高气温(℃)22262829则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+,故选:A.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S﹣S△BOC是解题的关键.扇形BOC12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y=kx+b中,k与b 对函数图象的影响是解题的关键.13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=﹣1.【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10.【分析】利用题中四次方根的定义求解.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8.【分析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共63分)20.(7分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【分析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的内角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x =﹣≥0,而b=2a+1,即:﹣≥0,即可求解;(3)过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△P AB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

山东省临沂市2019-2020学年中考数学第二次调研试卷含解析

山东省临沂市2019-2020学年中考数学第二次调研试卷含解析

山东省临沂市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的不等式组221x mx m->⎧⎨-<-⎩无解,则m的取值范围()A.m>3 B.m<3 C.m≤3D.m≥32.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.3.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–64.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++5.在以下四个图案中,是轴对称图形的是()A.B.C.D.6.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.7.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm9.若31x -与4x互为相反数,则x 的值是( ) A .1B .2C .3D .410.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D11.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米 12.将直线y=﹣x+a 的图象向右平移2个单位后经过点A (3,3),则a 的值为( ) A .4 B .﹣4 C .2 D .﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______.14.已知a1=32,a2=55,a3=710,a4=917,a5=1126,…,则a n=_____.(n为正整数).15.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.16.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=1.在边AB上取一点O,使BO=BC,以点O为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A、B、C的对应点分别是点A′、B′、C′、),那么△ABC 与△A′B′C′的重叠部分的面积是_________.18.算术平方根等于本身的实数是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:(x﹣3)(x﹣2)﹣4=1.20.(6分)在平面直角坐标系xOy 中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B 两(点A 在点 B 左侧).(1)当抛物线过原点时,求实数 a 的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含 a 的代数式表示);(3)当AB≤4 时,求实数 a 的取值范围.21.(6分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.22.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.23.(8分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P 的横坐标.24.(10分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.25.(10分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少? 26.(12分)计算22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭27.(12分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下: 收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 38 35 45 51 48 57 49 47 53 58 49 (1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整: 范围 25≤x≤29 30≤x≤34 35≤x≤39 40≤x≤44 45≤x≤49 50≤x≤54 55≤x≤59 人数(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分) (2)分析数据:样本数据的平均数、中位数、满分率如下表所示: 平均数 中位数 满分率 46.847.545%得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下: 平均数 中位数 满分率 45.34951.2%请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围. 【详解】221x m x m ->⎧⎨-<-⎩①②, 由①得:x >2+m , 由②得:x <2m ﹣1, ∵不等式组无解, ∴2+m≥2m ﹣1, ∴m≤3, 故选C . 【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键. 2.B 【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B . 3.A 【解析】 【分析】根据有理数的减法,即可解答. 【详解】()393912,--=+=故选A . 【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相 反数. 4.C 【解析】 【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案. 【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1qq +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键. 5.A 【解析】 【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解. 【详解】A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误. 故选:A . 【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.7.A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.8.D【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.D【解析】由题意得31x+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.10.C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.11.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO 的关系是解题关键.12.A【解析】【分析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n 个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1. 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1. 【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a+=-,12c x x a =. 14.2211n n ++.【解析】 【分析】观察分母的变化为n 的1次幂加1、2次幂加1、3次幂加1…,n 次幂加1;分子的变化为:3、5、7、9…2n+1. 【详解】 解:∵a 1=32,a 2=55,a 3=710,a 4=917,a 5=1126,…, ∴a n =2211n n ++,故答案为:2211n n ++.【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案. 15.13. 【解析】 【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小. 【详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:21 243=+,故答案为13.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.16.1【解析】【分析】根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.【详解】△=(﹣8)2﹣4m=0,解得m=1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.144 25【解析】【分析】先求得OD,AE,DE的值,再利用S四边形ODEF=S△AOF-S△ADE即可. 【详解】如图,OA’=OA=4,则OD=34OA’=3,OD=3∴AD=1,可得DE=35,AE =45∴S四边形ODEF=S△AOF-S△ADE=12×3×4-12×35×45=14425.故答案为144 25.【点睛】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.18.0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x 1=5+17,x 2=517- 【解析】试题分析:方程整理为一般形式,找出a ,b ,c 的值,代入求根公式即可求出解.试题解析:解:方程化为2520x x -+=,1a =,5b =-,2c =.224(5)41217b ac ∆=-=--⨯⨯=>1.24(5)175172212b b ac x a -±---±±===⨯. 即1517x +=,2517x -=. 20.(1)a=23;(2)①x=2;②抛物线的顶点的纵坐标为﹣a ﹣2;(3)a 的范围为 a <﹣2 或 a≥23. 【解析】【分析】(1)把原点坐标代入 y=ax 2﹣4ax+3a ﹣2即可求得a 的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设 A (m ,1),B (n ,1),利用抛物线与 x 轴的交点问题,则 m 、n 为方程 ax 2﹣4ax+3a ﹣2=1 的两根,利用判别式的意义解得 a >1 或 a <﹣2,再利用根与系数的关系得到 m+n=4,mn=32a a - ,然后根据完全平方公式利用 n ﹣m≤4 得到(m+n )2﹣4mn≤16,所以 42﹣4•32a a-≤16,接着解关于a 的不等式,最后确定a 的范围. 【详解】(1)把(1,1)代入 y=ax 2﹣4ax+3a ﹣2 得 3a ﹣2=1,解得 a=;(2)①y=a (x ﹣2)2﹣a ﹣2, 抛物线的对称轴为直线 x=2;②抛物线的顶点的纵坐标为﹣a ﹣2;(3)设 A (m ,1),B (n ,1),∵m、n 为方程ax2﹣4ax+3a﹣2=1 的两根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1 或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4• ≤16,即≥1,解得a≥或a<1.∴a 的范围为a<﹣2 或a≥.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠1)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.21.(1)详见解析;(2)∠BDE=20°.【解析】【分析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD ,∵AC 是⊙O 的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC ,∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,3tan ∠ACB=3AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°,∴∠DOC=∠DOH ﹣∠NOH=40°,∵OA=OD ,∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°,∵BC ∥DE ,∴∠BDE=∠CBD=20°.【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.22.见解析【解析】【分析】根据CE ∥DF ,可得∠ECA=∠FDB ,再利用SAS 证明△ACE ≌△FDB ,得出对应边相等即可.【详解】解:∵CE ∥DF∴∠ECA=∠FDB ,在△ECA 和△FDB 中EC BD ECA FAC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB ,∴AE=FB .【点睛】 本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.23. (1)y =x 2-x -4(2)点M 的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C 点坐标代入求出a 即可得到抛物线解析式;(2) 连接OM ,设点M 的坐标为.由题意知,当四边形OAMC 面积最大时,阴影部分的面积最小.S 四边形OAMC =S △OAM +S △OCM -(m -2)2+12. 当m =2时,四边形OAMC 面积最大,此时阴影部分面积最小;(3) 抛物线的对称轴为直线x =1,点C 与点C 1关于抛物线的对称轴对称,所以C 1(2,-4).连接CC 1,过C 1作C 1D ⊥AC 于D ,则CC 1=2.先求AC =4,CD =C 1D =,AD =4-=3;设点P ,过P 作PQ 垂直于x 轴,垂足为Q. 证△PAQ ∽△C 1AD ,得,即,解得解得n =-,或n =-,或n =4(舍去).【详解】(1)抛物线的解析式为y=(x-4)(x+2)=x2-x-4.(2)连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C 1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.24.(1)证明见解析;(2)417;(3)证明见解析.【解析】【分析】(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到GF FHBE BM=,由于BM=BE,得到GF=FH,由GF∥AD,得到EF GFED AD=,FH FOAD OD=等量代换得到EF FHED AD=,即EF GFED AD=,于是得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴GF EF AD ED=,∵AB∥CD,BF EFCD ED=,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴DF BCFE EB==4,AE=2217EB AB+=,∴AG DFGE FE==4,∴AG=417;(3)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴GF AF BE AB=,∴GF FH BE BM=,∵BM=BE,∴GF=FH,∵GF∥AD,∴EF GFED AD=,FH FOAD OD=,∴EF FH ED AD=,∴EF GF ED AD=,∴FO•ED=OD•EF.【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.25.(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】【分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率. 【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P (一男一女)=1220=35. 26.21(2)x - 【解析】【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】原式=()()221[]?242x x x x x x x +-----, =()()()()2221•42x x x x x x x x +-----, =()24•42x x x x x ---, =()212x -.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.27.(1)补充表格见解析;(2)①61;②见解析.【解析】【分析】(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.【详解】(1)补充表格如下: 范围 25≤x≤29 30≤x≤34 35≤x≤39 40≤x≤44 45≤x≤49 50≤x≤54 55≤x≤59≈61,(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×20故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.【点睛】本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.。

2019年山东省临沂市中考数学试卷 解析版

2019年山东省临沂市中考数学试卷  解析版

2019年省市中考数学试卷一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019 B.﹣2019 C.D.﹣2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)不等式1﹣2x≥0的解集是()A.x≥2 B.x≥C.x≤2 D.x4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.27.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.(3分)小明记录了市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.(7分)解方程:=.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 8993 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.(7分)鲁南高铁段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE 的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h0 2 4 6 8 10 12 14 16 18 20y/m14 15 16 17 18 14.4 12 10.3 9 8 7.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019年省市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019 B.﹣2019 C.D.﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:|﹣2019|=2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.3.(3分)不等式1﹣2x≥0的解集是()A.x≥2 B.x≥C.x≤2 D.x【分析】先移项,再系数化为1即可.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:A.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.10.(3分)小明记录了市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+,故选:A.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S扇形BOC﹣S△BOC是解题的关键.12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y=kx+b中,k与b对函数图象的影响是解题的关键.13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=﹣1 .【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11 块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10 .【分析】利用题中四次方根的定义求解.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8 .【分析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共63分)20.(7分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 8993 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是86 ;频数分布表中a= 6 ;b= 6 ;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.22.(7分)鲁南高铁段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【分析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE 的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h0 2 4 6 8 10 12 14 16 18 20y/m14 15 16 17 18 14.4 12 10.3 9 8 7.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠FAE,∠BAG=∠FAG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,即可求解;(3)过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△PAB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年山东省临沂市兰山区中考数学二模试卷

2019年山东省临沂市兰山区中考数学二模试卷

2019年山东省临沂市兰山区中考数学二模试卷一、单选题(★) 1 . ﹣3相反数是()A.B.﹣3C.﹣D.3(★) 2 . 下列运算正确的是()A.B.(m2)3=m5C.a2•a3=a5D.(x+y)2=x2+y2(★) 3 . 据2019年1月24日《临沂日报》报道,兰山区2018年财政收入突破86亿元,将86亿用科学记数法表示为()A.8.6×10B.8.6×108C.8.6×109D.8.6×1010(★) 4 . 已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为()A.40°B.50°C.60°D.70°(★) 5 . 不等式组的解集是()A.x<1B.x>﹣4C.﹣4<x<1D.x>1(★) 6 . 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π(★★) 7 . 甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树 x棵,则根据题意列出的方程是()A.=B.C.D.(★) 8 . 暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为()A.B.C.D.(★★) 9 . 立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:成绩(m)2.32.42.52.42.4则下列关于这组数据的说法,正确的是()A.众数是2.3B.平均数是2.4C.中位数是2.5D.方差是0.01(★★) 10 . 如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为16. 则△DOE面积是()A.1B.C.2D.(★★) 11 . 如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点 A与点 O恰好重合,折痕为 CD,图中阴影为重合部分,则阴影部分的面积为()A.B.C.D.(★) 12 . 若关于 x的方程的解为整数解,则满足条件的所有整数 a的和是()A.6B.0C.1D.9(★★) 13 . 已知点A,B分别在反比例函数(x>0),(x>0)的图象上且OA⊥OB,则tanB为()A.B.C.D.(★★) 14 . 如图,二次函数 y= ax 2+ bx+c( a≠0)的图象经过点 A, B, C.现有下面四个推断:①抛物线开口向下;②当 x=-2时, y取最大值;③当 m<4时,关于 x的一元二次方程 ax 2+ bx+ c= m必有两个不相等的实数根;④直线y=kx+c( k≠0)经过点 A, C,当 kx+c> ax 2+ bx+c时, x的取值范围是-4< x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④二、填空题(★) 15 . 分解因式:8 a 3﹣2 a=_____.(★) 16 . 计算的结果是_____.(★★) 17 . 如图,直线l 1:y=x+n–2与直线l 2:y=mx+n相交于点P(1,2).则不等式mx+n (★★) 18 . 菱形 OBCD在平面直角坐标系中的位置如图所示,顶点 B(2,0),∠ D=120°,点 P是对角线 OC上一个动点,,则 EP+ BP的最小值为_____.(★) 19 . 分解因式 x 2+3 x+2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到 x 2+3 x+2=( x+1)( x+2).请利用这种方法,分解因式2 x 2﹣3 x﹣2=_____.三、解答题(★★) 20 . 先化简,再求值:,其中 a为sin30°的值.(★) 21 . 为参加11月23日举行的丹东市“我爱诗词”中小学生诗词大赛决赛,某校每班选25名同学参加预选赛,成绩分别为 A、 B、 C、 D四个等级,其中相应等级的得分依次记为10分、9分、8分、7分,学校将八年级的一班和二班的成绩整理并绘制成如下统计图:根据以上提供的信息解答下列问题(1)请补全一班竞赛成绩统计图;(2)请直接写出 a、 b、 c、 d的值;班级平均数(分)中位数(分)众数(分)一班a=b=9二班8.76c=d=(3)请从平均数和中位数两个方面对这两个班级的成绩进行分析.(★★) 22 . 如图,男生楼在女生楼的左侧,两楼高度均为90 m,楼间距为 AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为 CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为 DA,已知.求楼间距 AB;若男生楼共30层,层高均为3 m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,(★★) 23 . 如图, AB是⊙ O的直径,弦 CD⊥ AB于 H, G为⊙ O上一点,连接 AG交 CD于 K,在 CD的延长线上取一点 E,使 EG= EK, EG的延长线交 AB的延长线于 F.(1)求证: EF是⊙ O的切线;(2)连接 DG,若 AC∥ EF时.①求证:△ KGD∽△ KEG;②若cos C= , AK= ,求 BF的长.(★★) 24 . 小强打算找印刷公司设计一款新年贺卡并印刷.如图1是甲印刷公司设计与印刷卡片计价方式的说明(包含设计费与印刷费),乙公司的收费与印刷卡片数量的关系如图2所示. (1)分别写出甲乙两公司的收费 y(元)与印刷数量 x之间的关系式.(2)如果你是小强,你会选择哪家公司?并说明理由.(★★★★) 25 . 如图1,Rt△ ABC中,∠ A=90°, AB= AC,点 D是 BC边的中点连接 AD,则易证 AD= BD= CD,即 AD= BC;如图2,若将题中 AB= AC这个条件删去,此时 AD仍然等于 BA.理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.(★★★★) 26 . 如图,直线 y=﹣ x+2交坐标轴于 A、 B两点,直线 AC⊥ AB交 x轴于点 C,抛物线恰好过点 A、 B、 C.(1)求抛物线的表达式;(2)当点 M在线段 AB上方的曲线上移动时,求四边形 AOBM的面积的最大值;(3)点 E在抛物线的对称轴上,点 F在抛物线上,是否存在点 F使得以 A、 C、 E、 F为顶点的四边形是平行四边形?若存在求出点 F坐标;若不存在,说明理由.。

临沂市2019年中考数学模拟试卷及答案

临沂市2019年中考数学模拟试卷及答案

临沂市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

山东省临沂市2019-2020学年中考第二次大联考数学试卷含解析

山东省临沂市2019-2020学年中考第二次大联考数学试卷含解析

山东省临沂市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如果一元二次方程2x 2+3x+m=0有两个相等的实数根,那么实数m 的取值为( ) A .m >98B .m 89fC .m=98D .m=892.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( ) A .平均数B .众数C .中位数D .方差3.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A .73B .81C .91D .1094.已知抛物线2(2)2(0)y ax a x a =+-->的图像与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①当0a >的条件下,无论a 取何值,点A 是一个定点;②当0a >的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于2-;④若AB AC =,则152a +=.其中正确的结论有( )个. A .1个B .2个C .3个D .4个5.关于x 的一元二次方程x 2﹣2x+k+2=0有实数根,则k 的取值范围在数轴上表示正确的是( ) A . B . C .D .6.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°7.一次函数()()y m 1x m 2=-+-的图象上有点()11M x ,y 和点()22N x ,y ,且12x x >,下列叙述正确的是( )A .若该函数图象交y 轴于正半轴,则12y y <B .该函数图象必经过点()1,1--C .无论m 为何值,该函数图象一定过第四象限D .该函数图象向上平移一个单位后,会与x 轴正半轴有交点 8.下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2 C .a (a+b )=a 2+b D .6ab 2÷2ab=3b9.如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠CDE 的大小是( )A .40°B .43°C .46°D .54°10.下列所给函数中,y 随x 的增大而减小的是( ) A .y=﹣x ﹣1 B .y=2x 2(x≥0) C .2y x=D .y=x+111.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .12.已知a 35a 等于( ) A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.14.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.15.函数y=21x+的自变量x的取值范围是_____.16.计算:2a×(﹣2b)=_____.17.分解因式:4x2﹣36=___________.18.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 20.(6分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.21.(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x ﹣1 0 1ax2 (1)ax2+bx+c 7 2 …(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.22.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=35时,求AF的长.23.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.(10分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC .(2)若∠BEC=∠ABE ,试证明四边形ABCD 是菱形.25.(10分)如图,Rt ABP V 的直角顶点P 在第四象限,顶点A 、B 分别落在反比例函数ky x=图象的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点F 和.E 已知点B 的坐标为()1,3.()1填空:k =______; ()2证明://CD AB ;()3当四边形ABCD 的面积和PCD V 的面积相等时,求点P 的坐标.26.(12分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1). ①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,求k 的取值范围.27.(12分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。

2019年山东省临沂市中考数学试卷以及解析版

2019年山东省临沂市中考数学试卷以及解析版

FCE
第 9 页(共 27 页)
7.( 3 分) 【分析】 选项 A 为单项式 单项式; 选项 B 为积的乘方; 选项 C 为同底数幂的除法; 选项 D 为合并同类项,根据相应的公式进行计算即可. 【解答】 解:
选项 A ,单项式 单项式, ( a3b) (ab2 ) a3 a b b2 a 4b3 ,选项正确
2019 年山东省临沂市中考数学试卷
一、选择题(每| 等于 (
)
A .2019
B . 2019
1 C.
2019
2.( 3 分)如图, a / /b ,若 1 100 ,则 2 的度数是 (
)
1 D.
2019
A . 110
B . 80
C. 70
78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83
81 81 85 86 89 93 93 89 85 93 整理上面的数据得到频数分布表和频数分布直方图:
成绩(分 )
频数
78, x 82
5
82, x 86
a
86, x 90
11
90, x 94
19.( 3 分)如图,在 ABC 中, ACB 120 ,BC 4 ,D 为 AB 的中点, DC BC ,则 ABC
的面积是

三、解答题: (共 63 分)
20.( 7 分)解分式方程:
5
3.
x2 x
21.( 7 分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为
了解学生的学习情况,学校随机抽取 30 名学生进行测试,成绩如下(单位:分)
24.( 9 分)汛期到来,山洪暴发.下表记录了某水库 20h 内水位的变化情况,其中 x 表示时 间(单位: h) , y 表示水位高度(单位: m) ,当 x 8(h) 时,达到警戒水位,开始开闸放 水.

兰山中考二模数学试卷答案

兰山中考二模数学试卷答案

一、选择题(每题3分,共30分)1. 若实数a、b满足a+b=2,则a²+b²的最小值为()A. 2B. 4C. 6D. 8答案:B2. 在△ABC中,∠A=60°,∠B=45°,则sinC的值为()A. √3/2B. √2/2C. 1/2D. √6/4答案:B3. 已知函数f(x)=2x+1,则f(-1)的值为()A. -1B. 0C. 1D. 3答案:A4. 若a、b是方程x²-4x+3=0的两个根,则a+b的值为()A. 1B. 2C. 3D. 4答案:C5. 在等差数列{an}中,a1=2,公差d=3,则第10项an的值为()A. 25B. 28C. 31D. 34答案:B6. 已知函数y=x²-2x+1,则函数的图像是()A. 双曲线B. 抛物线C. 直线D. 椭圆答案:B7. 若|a|=3,|b|=4,则|a+b|的最大值为()A. 7B. 8C. 9D. 12答案:D8. 在△ABC中,∠A=90°,a=3,b=4,则△ABC的周长为()A. 7B. 8C. 9D. 10答案:D9. 若等比数列{an}中,a1=2,公比q=3,则第5项an的值为()A. 18B. 24C. 27D. 30答案:C10. 已知函数y=(x-1)²,则函数的图像是()A. 双曲线B. 抛物线C. 直线D. 椭圆答案:B二、填空题(每题5分,共25分)11. 若实数x满足x²+2x+1=0,则x的值为______。

答案:-112. 在△ABC中,∠A=60°,∠B=45°,则sinC的值为______。

答案:√2/213. 已知函数f(x)=2x+1,则f(-1)的值为______。

答案:-114. 若a、b是方程x²-4x+3=0的两个根,则a+b的值为______。

答案:415. 在等差数列{an}中,a1=2,公差d=3,则第10项an的值为______。

[试卷合集3套]临沂市2019届中考二模数学试题

[试卷合集3套]临沂市2019届中考二模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.2.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->,解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 3.如图,A,B 两点分别位于一个池塘的两端,小聪想用绳子测量A,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B 的点C,找到AC,BC 的中点D,E,并且测出DE 的长为10m,则A,B 间的距离为( )A .15mB .25mC .30mD .20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°【答案】D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.5.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD 的周长为()A.13 B.15 C.17 D.19【答案】B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.6.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)【答案】A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.8.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A.16cm B.13cm C.12cm D.1cm【答案】D【解析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE 、OF 分别是△OAB 和△OCD 的高, ∴OF CD OE AB =,即2126CD=, 解得:CD=1.故选D. 【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.9.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >3【答案】B【解析】试题分析:观察图象可知,抛物线y=x 2+bx +c 与x 轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y <0时,x 的取值范围正好在两交点之间,即﹣1<x <1. 故选B .考点:二次函数的图象.10614410.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°【答案】B【解析】分析:根据平行线的性质和三角形的外角性质解答即可. 详解:如图,∵AB ∥CD ,∠1=45°, ∴∠4=∠1=45°, ∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°, 故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答. 二、填空题(本题包括8个小题)11.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km . 【答案】1.【解析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解. 【详解】解:设A 港与B 港相距xkm , 根据题意得:3262262x x+=+- , 解得:x=1,则A 港与B 港相距1km . 故答案为:1. 【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程. 12.把多项式x 3﹣25x 分解因式的结果是_____ 【答案】x (x+5)(x ﹣5).【解析】分析:首先提取公因式x ,再利用平方差公式分解因式即可. 详解:x 3-25x =x (x 2-25) =x (x+5)(x-5). 故答案为x (x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 13.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________【答案】1【解析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值.【详解】解:由题意可得, a 1=52+1=26, a 2=(2+6)2+1=65, a 3=(6+5)2+1=1, a 4=(1+2+2)2+1=26, …∴2019÷3=673, ∴a 2019= a 3=1, 故答案为:1. 【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a 2019的值.14.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.【答案】0.1【解析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率. 【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右, 则P 白球=0.1. 故答案为0.1. 【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.15.已知⊙O 半径为1,A 、B 在⊙O 上,且2AB =,则AB 所对的圆周角为__o .【答案】45º或135º【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即1222AC BC AB === 在Rt △AOC 中,OA=1, 22AC =根据勾股定理得:222OC OA AC =-=即OC=AC , ∴△AOC 为等腰直角三角形, 45AOC ∴∠=, 同理45BOC ∠=,90AOB AOC BOC ∴∠=∠+∠=, ∵∠AOB 与∠ADB 都对AB ,1452ADB AOB ,∴∠=∠= ∵大角270AOB ∠=,135.AEB ∴∠=则弦AB 所对的圆周角为45或135. 故答案为45或135.16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 【答案】20【解析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.17.方程3x(x-1)=2(x-1)的根是【答案】x1=1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程---因式分解法.18.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.【答案】1【解析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据“SAS”可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD ≌△ACE (SAS ) ∴∠ACE =30°=∠ABD当OE ⊥EC 时,OE 的长度最小, ∵∠OEC =90°,∠ACE =30° ∴OE 最小值=12OC =14AB =1, 故答案为1 【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键. 三、解答题(本题包括8个小题)19.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.【答案】(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值. 试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩,解得412b k =⎧⎪⎨=⎪⎩,所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.20.如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF .求证:(1)△ABE ≌△CDF ;四边形BFDE 是平行四边形.【答案】(1)见解析;(2)见解析;【解析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD ,又由AE=CF ,利用SAS ,即可判定△ABE ≌△CDF .(2)由四边形ABCD 是平行四边形,根据平行四边形对边平行且相等,即可得AD ∥BC ,AD=BC ,又由AE=CF ,即可证得DE=BF .根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE 是平行四边形. 【详解】证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD , 在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF , ∴△ABE ≌△CDF (SAS ).(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC . ∵AE=CF ,∴AD ﹣AE=BC ﹣CF ,即DE=BF . ∴四边形BFDE 是平行四边形.21.先化简,后求值:(1﹣11a +)÷(2221a a a a -++),其中a =1.【答案】11a a +-,2. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a aa a a +=+- 11a a +=-, 当a =1时,原式=3131+-=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.【答案】(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt △ACE 中,CE=AE=2; ∵∠D=30°,∴AD=22. 【点睛】 本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且DE=23BC .如果AC=6,求AE 的长;设AB a =,AC b =,求向量DE (用向量a 、b 表示).【答案】(1)1;(2)2()3DE b a =-.【解析】(1)由平行线截线段成比例求得AE 的长度;(2)利用平面向量的三角形法则解答.【详解】(1)如图,∵DE ∥BC ,且DE=23BC ,∴23AE DE AC BC ==.又AC=6,∴AE=1.(2)∵AB a =,AC b =,∴BC AC AB b a =-=-.又DE ∥BC ,DE=23BC ,∴22()33DE BC b a ==-【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.24.数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值. 【答案】(1)3;(2)1312n +-;(3)1218,95N N == 【解析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<,④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.25.如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.【答案】(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论. 解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+ 353222⨯⨯=+ 10.5=. 26.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】(1)补图见解析;(2)27°;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B 类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解.【详解】(1)抽取的总人数是:10÷25%=40(人),在B类的人数是:40×30%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360×340=27°;(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人). 考点:条形统计图、扇形统计图.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=330【答案】D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.3.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.4.若x =-2 是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4 【答案】B【解析】试题分析:把x=﹣2代入关于x 的一元二次方程x 2﹣52ax+a 2=0 即:4+5a+a 2=0解得:a=-1或-4,故答案选B .考点:一元二次方程的解;一元二次方程的解法.5.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等【答案】C【解析】解:A . 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A 选项正确;B . 等边三角形有3条对称轴,故B 选项正确;C .当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS 来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D .利用SSS .可以判定三角形全等.故D 选项正确;故选C .6.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 【答案】B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.7.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°【答案】A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.8.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A 3B 5C 23D 25【答案】D【解析】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=, cosA=AD AB =2210=255,故选D .9.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1x ≥【答案】D【解析】根据二次根式的意义,被开方数是非负数. 【详解】根据题意得10x -≥, 解得1x ≥. 故选D . 【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负数.10.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3C .3D .100(31)米【答案】D【解析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD=22200100=1003米,∴AB=AD+BD=100+1003=100(1+3)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.二、填空题(本题包括8个小题)11.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.【答案】(32,2).【解析】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2). 【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.12.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好. 详解:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴将解12x y =⎧⎨=⎩代入方程组3526x my x ny -=⎧⎨+=⎩可得m=﹣1,n=2∴关于a 、b 的二元一次方程组()()()()3=526a b m a b a b n a b ⎧+--⎪⎨++-=⎪⎩整理为:42546a b a +=⎧⎨=⎩ 解得:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显. 13.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______. 【答案】7【解析】根据多边形内角和公式得:(n-2)180⨯︒ .得:(3603180)18027︒⨯-︒÷︒+=14.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)【答案】12n1+【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=11n+,∵1111AB BM nD E ME n+==,∴1121BM nBE n+=+,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:11n+=(n+1):(2n+1),∴S n=121n+.故答案为121n+.15.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.【答案】132013201502x x-=-【解析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据题意得132013201502x x-=-.故答案为132013201502x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.16.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是【答案】k≥,且k≠1【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k≠1.考点:根的判别式.17.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.【答案】x45x3 57 --=【解析】设羊价为x钱,根据题意可得合伙的人数为455x-或37x-,由合伙人数不变可得方程.【详解】设羊价为x钱,根据题意可得方程:453 57x x--=,故答案为:453 57x x--=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.18.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.【答案】1【解析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.三、解答题(本题包括8个小题)19212sin60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩,并写出它的所有整数解.【答案】(1)7-(1)0,1,1.【解析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣,=7(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键20.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年山东省临沂市兰山区中考数学二模试卷一、选择题(本大题共14小题,共42.0分) 1. -3相反数是( )A.B. C.D. 32. 下列运算正确的是( )A. B. C. D. 3. 据2019年1月24日《临沂日报》报道,兰山区2018年财政收入突破86亿元,将86亿用科学记数法表示为( ) A. B. C. D. 4. 已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( ) A. B. C. D. 5. 不等式组的解集是( )A. B. C. D.6. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A. B. C. D.7. 甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x 棵,根据题意列出的方程是( )A.B.C.D.8. 暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为( )A.B.C.D.9.则下列关于这组数据的说法,正确的是( ) A. 众数是 B. 平均数是 C. 中位数是D. 方差是10. 如图,O 是平行四边形ABCD 的对角线交点,E 为AB 中点,DE 交AC 于点F ,若平行四边形ABCD 的面积为16.则△DOE 面积是( )A. 1B.C. 2D.11. 如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A.B.C.D.12. 若关于x 的方程的解为整数解,则满足条件的所有整数a 的和是( )A. 6B. 0C. 1D. 913. 已知点A ,B 分别在反比例函数y =(x >0),y =(x >0)的图象上且OA ⊥OB ,则tan B 为( )B.D.14. 如图,二次函数y =ax 2+bx +c (a ≠0)的图象经过点A ,B ,C .现有下面四个推断:①抛物线开口向下;②当x =-2时,y 取最大值;③当m <4时,关于x 的一元二次方程ax 2+bx +c =m 必有两个不相等的实数根;④直线y =kx +c (k ≠0)经过点A ,C ,当kx +c >ax 2+bx +c 时,x 的取值范围是-4<x <0;其中推断正确的是( ) A. ①② B. ①③ C. ①③④ D. ②③④二、填空题(本大题共5小题,共15.0分)15. 分解因式:8a 3-2a =______.16. 计算的结果是______.17. 如图,直线l 1:y =x +n -2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n -2的解集为______.18. 菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠D =120°,点P 是对角线OC 上一个动点,E , ,则EP +BP 的最小值为______.19. 分解因式x 2+3x +2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).这样,我们可以得到x 2+3x +2=(x +1)(x +2).请利用这种方法,分解因式2x 2-3x -2=______. 三、计算题(本大题共1小题,共9.0分)20. 小强打算找印刷公司设计一款新年贺卡并印刷.如图1是甲印刷公司设计与印刷卡片计价方式的说明(包含设计费与印刷费),乙公司的收费与印刷卡片数量的关系如图2所示. (1)分别写出甲乙两公司的收费y (元)与印刷数量x 之间的关系式; (2)如果你是小强,你会选择哪家公司?并说明理由.四、解答题(本大题共6小题,共54.0分) 21. 先化简,再求值:-÷,其中a 为sin30°的值.22. 为参加11月23日举行的丹东市“我爱诗词”中小学生诗词大赛决赛,某校每班选25名同学参加预选赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为10分、9分、8分、7分,学校将八年级的一班和二班的成绩整理并绘制成如下统计图:根据以上提供的信息解答下列问题 (1)请补全一班竞赛成绩统计图;2a b c d ()请从平均数和中位数两个方面对这两个班级的成绩进行分析.23. 如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3°,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,女生楼在男生楼墙面上的影高为DA ,已知CD =42m . (1)求楼间距AB ;(2)若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7≈0.56,tan55.7°≈1.47)24. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,G 为⊙O 上一点,连接AG 交CD 于K ,在CD 的延长线上取一点E ,使EG =EK ,EG 的延长线交AB 的延长线于F .(1)求证:EF 是⊙O 的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.25.如图1,Rt△ABC中,∠A=90°,AB=AC,点D是BC边的中点连接AD,则易证AD=BD=CD,即AD=BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于.理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF 都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC 于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.26.如图,直线y=-x+2交坐标轴于A、B两点,直线AC⊥AB交x轴于点C,抛物线恰好过点A、B、C.(1)求抛物线的表达式;(2)当点M在线段AB上方的曲线上移动时,求四边形AOBM的面积的最大值;(3)点E在抛物线的对称轴上,点F在抛物线上,是否存在点F使得以A、C、E、F为顶点的四边形是平行四边形?若存在求出点F坐标;若不存在,说明理由.答案和解析1.【答案】D【解析】解:-3相反数是3.故选:D.根据只有符号不同的两个数互为相反数解答.本题主要考查了互为相反数的定义,熟记定义是解题的关键.2.【答案】C【解析】解:A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选:C.A、利用平方根定义化简得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式及法则是解本题的关键.3.【答案】C【解析】解:86亿=8.6×109.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【答案】C【解析】解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,∵∠D=40°,∴∠BOD=∠C+∠D=60°.故选:C.由AB∥CD,∠B=20°,根据两直线平行,内错角相等,即可求得∠C的度数,又由三角形外角的性质,即可求得∠BOD的度数.此题考查了平行线的性质、三角形外角的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等定理的应用.5.【答案】C【解析】解:,由①得-x>-1,即x<1;由②得x>-4;∴可得-4<x<1.故选:C.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).6.【答案】B【解析】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选:B.根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.7.【答案】D【解析】解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选:D.关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.8.【答案】B【解析】解:画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小亮选到同一社区参加实践活动的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.【答案】B【解析】解:这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;∵(2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4∴这组数据的平均数是2.4,∴选项B符合题意.2.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.×[(2.3-2.4)2+(2.4-2.4)2+(2.5-2.4)2+(2.4-2.4)2+(2.4-2.4)2]=×(0.01+0+0.01+0+0)=×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选:B.一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.10.【答案】C【解析】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∴EM=AN,∵平行四边形ABCD的面积为16,∴2××AN×BD=16,∴S OED=×OD×EM=××BD×AN=S四边形ABCD=2.故选:C.由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.本题考查平行四边形的性质,综合了平行线的性质以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.11.【答案】C【解析】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD==2,∴∠COD=60°,∴阴影部分的面积=-×2×2=π-2,故选:C.连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12.【答案】D【解析】解:分式方程去分母得:ax-1-x=3,解得:x=,由分式方程为整数解,得到a-1=±1,a-1=±2,a-1=±4,解得:a=2,0,3,-1,5,-3(舍去),则满足条件的所有整数a的和是9,故选:D.分式方程去分母转化为整式方程,表示出整式的解,由分式方程的解为整数解确定出所求即可.此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.13.【答案】B【解析】解:法一:设点A的坐标为(x1,),点B的坐标为(x2,-),设线段OA所在的直线的解析式为:y=k1x,线段OB所在的直线的解析式为:y=k2x,则k1=,k2=-,∵OA⊥OB,∴k1k2=•(-)=-1整理得:(x1x2)2=16,∴tanB=======.法二:过点A作AM⊥y轴于点M,过点B作BN⊥y轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠PAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠AOM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x>0)的图象上,∴S△AOM:S△BON=1:4,∴AO:BO=1:2,∴tanB=.故选:B.首先设出点A和点B的坐标分别为:(x1,)、(x2,-),设线段OA所在的直线的解析式为:y=k1x,线段OB所在的直线的解析式为:y=k2x,然后根据OA⊥OB,得到k1k2=•(-)=-1,然后利用正切的定义进行化简求值即可.本题考查的是反比例函数综合题,解题的关键是设出A、B两点的坐标,然后利用互相垂直的两条直线的比例系数互为负倒数求解.14.【答案】B【解析】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.15.【答案】2a(2a+1)(2a-1)【解析】解:8a3-2a=2a(4a2-1)=2a(2a+1)(2a-1).故答案为:2a(2a+1)(2a-1).直接提取公因式2a,再利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.16.【答案】0【解析】解:原式=3--=2-2=0.故答案为0.先进行二次根式的乘法运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【答案】x>1【解析】解:如图所述:不等式mx+n>x+n-2的解集为x>1.故答案是:x>1.利用函数图象,写出直线l1在直线l2上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.【答案】【解析】解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∵点E的坐标为(0,-),直线ED==,故答案为:.点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.此题考查菱形的性质,轴对称,两点之间线段最短等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.19.【答案】(2x+1)(x-2)【解析】解:原式=(2x+1)(x-2),故答案为:(2x+1)(x-2)根据题中的方法将原式分解即可.此题考查了因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】解:(1)由题意得,当x≤200时,y甲=5x+1000;当x>200时,y甲=200×5+(x-200)×3+1000=3x+1400;∴甲公司的收费y甲(元)与印刷数量x之间的关系式为:y甲=,设乙公司的收费y乙(元)与印刷数量x之间的关系式y乙=kx,∵图象经过点(200,1600),∴200k=1600,解得:k=8,∴y乙=8x,∴乙公司的收费y乙(元)与印刷数量x之间的关系式为:y乙=8x.(2)当0≤x≤280时,选择乙公司;当x=280时,都可以;当x>280时,选择甲公司.【解析】(1)先对甲印刷公司的收费分段表示出与印刷数量x之间的关系式,对于乙公司的收费与印刷卡片数量的关系则设出解析式利用待定系数法代入解答即可;(2)先求出两家印刷公司的收费相同时的份数,再分情况讨论.列出不等式解答即可.本题考查的是一次函数的应用问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数式,再求解.21.【答案】解析原式=-×=-=.∵sin 30°=,∴当a=时,原式=.【解析】直接利用分式的混合运算法则分别化简得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.22.【答案】8.76 9 8 10【解析】解:(1)一班C等级的人数为25-6-12-5=2(人),统计图为:(2)a=8.76;b=9;c=8;d=10,故答案为:8.76,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.(1)用总人数减去其他等级的人数求出C等级的人数,再补全统计图即可;(2)根据平均数、中位数、众数的概念分别计算即可;(3)先比较一班和二班的平均分,再比较一班和二班的中位数,即可得出答案.此题考查了中位数、平均数、众数,关键是掌握中位数、平均数、众数的概念和有关公式,会用来解决实际问题.23.【答案】解:(1)如图,作CM⊥PB于M,DN⊥PB于N.则AB=CM=DN,设AB=CM=DN=xm.在Rt△PCM中,PM=x•tan32.3°=0.63x(m),在Rt△PDN中,PN=x•tan55.7°=1.47x(m),∵CD=MN=42m,∴1.47x-0.63x=42,∴x=50,∴AB的长为50m.(2)由(1)可知:PM=31.5m,∴AD=90-42-31.5=16.5(m),AC=90-31.5=58.5,∵16.5÷3=5.5,58.5÷3=19.5,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【解析】(1)如图,作CM⊥PB于M,DN⊥PB于N.则AB=CM=DN,设AB=CM=DN=xm.想办法构建方程即可解决问题.(2)求出AC,AD,分两种情形解决问题即可.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.【答案】解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK-CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R-3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R-3)2+42=R2,∴ ,在Rt△OGF中,,∴ ,∴ .【解析】(1)连接OG,由EG=EK知∠KGE=∠GKE=∠AKH,结合OA=OG知∠OGA=∠OAG,根据CD⊥AB 得∠AKH+∠OAG=90°,从而得出∠KGE+∠OGA=90°,据此即可得证;(2)①由AC∥EF知∠E=∠C=∠AGD,结合∠DKG=∠CKE即可证得△KGD∽△KGE;②连接OG,由设CH=4k,AC=5k,可得AH=3k,CK=AC=5k,HK=CK-CH=k.利用AH2+HK2=AK2得k=1,即可知CH=4,AC=5,AH=3,再设⊙O半径为R,由OH2+CH2=OC2可求得,根据知,从而得出答案.本题是圆的综合问题,解题的关键是掌握等腰三角形的性质、平行线的性质,圆周角定理、相似三角形的判定与性质及切线的判定等知识点.25.【答案】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【解析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HDC(SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.【答案】解:(1)∵直线y=-x+2交x轴于A、B两点∴A(0,2)、B(4,0)由AC⊥AB得,△AOC∽△BOA.∴===.∴OC=1.又∵C在x轴负半轴上∴C(-1,0).设抛物线解析式y=ax2+bx+c.把A(0,2),B(4,0),C(-1,0)代入上式得,,解得,∴抛物线解析式为,y=-x2+x+2.(2)如图1,过点M作MN⊥x轴,交直线AB与点D.设M点横坐标为a,则M(a,--a2+a+2),D(a,-a+2)∴MD=-a2+a+2-(-a+2)=-a2+4a∴S△ABM=MD•BO=(-a2+2a)•4=-a2+4a∴S四边形AOBM=-a2+4a+×2×4=-(a-2)2+8故当a=2时,S四边形AOBM的面积最大,为8.(3)存在.如图2-1,当AC∥EF,F在对称轴左侧时,可以看作把△AOC沿水平向右平移至OA与对称轴重合时,再将其向上平移,恰好使点A与点E重合,点C与点F重合.此时四边形ACFE为平行四边形.∴FD=OC=1.∴点F的横坐标为,x=.当x=时,y=-×()2+×+2=.即此时F(,).如图2-2,当AC∥EF,F在对称轴右侧时,把△EFG绕点G旋转180°恰好与抛物线相交于F,则四边形ACEF为平行四边形.此时易得F点纵坐标为,y=.当y=时,-x2+x+2=0.解得,x=(舍去)或x=.此时F(,).如图2-3,以线段AC为对角线作▱AECF,过A作AG垂直于对称轴直线于点G.过点F作FD⊥x轴交于点D.∴AG=1.5又∵△AGE≌△CDF∴CD=1.5∴D点坐标为(-2.5,0)∴当x=-2.5时,y=-×(-)2+×(-)+2=-∴此时F(-,-).综上所述,满足题意的F点坐标有,(,),(,),(-,-).【解析】(1)由直线y=-x+2易确定A、B两点坐标,又由AC⊥AB则易证明△ACO∽△BOC,利用相似比可确定C点坐标,再利用待定系数法直接求解即可.(2)用待定系数法设出M点坐标和D点坐标,已表示出MD的长度为-a2+4a,再利用割补法表示△AMB的面积,将得到的表达式转化为二次函数顶点式求解即可.(3)利用平行四边形的性质分别作AC∥EF,AE∥CF两种情况的图形使E在抛物线对称轴上,F在抛物线上,利用待定系数法及图形的性质求解即可.本题一方面考查了利用待定系数法求解函数解析式的基本思路,第二考查了通过解析式设点的坐标,利用数形结合的思想求解满足题意图形时点的坐标的能力.。

相关文档
最新文档