数学建模培训讲义-建模概论与初等模型

合集下载

数学建模培训精品课件ppt

数学建模培训精品课件ppt
R具有丰富的统计函数库和图形库,可以进行各种统计分析 、数据挖掘和预测建模。R还具有开源的特性,用户可以自由 地使用和修改代码,同时也有大量的社区资源和教程可供参 考。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。

数学建模第一章初等方法建模--数学模型讲义课件绪论

数学建模第一章初等方法建模--数学模型讲义课件绪论

模型 准备 模型 检验 模型 应用
模型 假设 模型 分析
模型 构成 模型 求解数学模型 Nhomakorabea王宏健 编
(内部使用 版权所有 翻印必究)
什么是数学建模?
数学建模就是对于现实世界的一个特定对象, 为了一个特定目的,根据特有的内在规律,做 出一些必要的简化假设,把一个现实问题转变 成一个数学问题,再通过求解该数学问题,从 而达到解决现实问题的目的。
数学模型的重要性
• 数学工具的应用范围近几十年来不断扩大,
已从传统的工程技术领域渗透到其他各领 域(如经济、管理、体育、医学、人文、 社会、生态、环境等)。 • 电子计算机的迅速发展使得数学的真正应 用成为可能。美国科学院院士A.Fridman 在一份报告中指出:“数学建模以及相关 的计算正在成为工程设计中的关键工具。”
建立数学模型的方法和步骤
• 在实验、观察和分析的基础上,对实际问题 的主要方面作出合理简化和假设; • 明确变量和参数,应用数学的语言和方法形 成一个明确的数学问题; • 用数学或计算的方法精确或近似地求解该问 题; • 分析、检验结果是否能说明实际问题的主要 现象。 • 这样的过程多次反复进行,直到能较好地解 决问题,这就是数学建模的全过程。

数学建模专题复习讲义

数学建模专题复习讲义

数学建模专题复习讲义导言数学建模是应用数学的一种重要方法,通过数学模型对实际问题进行描述、分析和求解,旨在解决现实生活中的一系列问题。

为了帮助学生顺利复数学建模专题,本讲义提供了相关知识点的概述和复要点,帮助学生快速回顾和掌握数学建模的核心内容。

一、数学建模基础1. 模型的定义和特点:- 模型是对实际问题的简化和抽象,描述问题的关键要素和规律。

- 模型应具备准确性、简洁性、实用性和可验证性等特点。

2. 建模的步骤:- 问题的分析与理解- 模型的假设和建立- 模型的求解和分析- 模型的验证和评价二、数学建模方法1. 数理统计方法:- 样本的收集和统计分析- 参数的估计和假设检验- 相关性分析和回归分析2. 最优化方法:- 线性规划和整数规划- 非线性规划和动态规划- 多目标规划和随机规划3. 随机模型和概率模型:- 随机过程和马尔可夫链- 概率分布和随机变量- 随机模拟和蒙特卡罗方法三、数学建模实例1. 交通流量预测:- 数据的收集和处理- 建立交通流量模型- 预测未来的交通流量2. 股票价格预测:- 历史数据的分析和挖掘- 建立股票价格模型- 预测未来的股票价格3. 自然灾害预警:- 监测数据的采集和分析- 构建自然灾害模型- 预警和防灾措施的制定四、数学建模技巧1. 问题分析的深入:- 充分理解问题的背景和限制条件- 归纳和提炼问题的核心要素2. 模型建立的简化:- 简化模型中的复杂因素- 利用适当的假设和近似方法3. 模型求解的有效性:- 使用合适的数学方法和工具- 分析模型的解的意义和合理性结语数学建模是一门综合性强、应用广泛的学科,通过对数学建模的复习和学习,能够增强学生的问题分析和解决能力,培养科学思维和创新意识。

希望本讲义对学生复习数学建模专题有所帮助,祝愿大家学有所成!。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

数学建模培训-初等模型

数学建模培训-初等模型

整理ppt
8
表3 车辆数量模拟(二)
n
0
1
2
3
4
5
6
7
甲地 5000 3600 3180 3054 3016.2 3004.86 3001.458 3000.437
乙地 2000 3400 3820 3946 3983.8 3995.14 3998.542 3999.563
表4 车辆数量模拟(三)
n 1 2 3 4 5 6 7 8 9 10 11 Bri 27.0 23.7 20.7 17.9 15.3 12.9 10.6 8.5 6.5 4.5 2.7 Fra 33.0 30.3 27.9 25.9 24.1 22.5 21.3 20.2 19.3 18.7 18.2
整理ppt
2
B n 1 Fn 1
Bn Fn
0.1Fn 0.1Bn
B1 27, F1 33
但是,尼尔森将军成功的运用了逐个击破的策略,扭转劣 势转败为胜,还差一点全歼法军。经此一战,英国大大巩固了 它在海上的霸权。
当时法军舰队分在三处,分别为A处(3艘)、B处(17艘)、 C处(13艘),彼此相距很远。尼尔森将军收集了丰富的情报 以后,当机立断,制定以下作战方案:先派13艘战舰进攻法军 A队,胜利后尽快与留守港口的14艘战舰汇合,一起进攻法军B 队,最后,乘胜追击,集中所有剩余兵力,围攻法军C队。
数学建模培训
——初等模型
曹可
二○○九年四月
整理ppt
1
一、数列建模
数列是最基本的概念之一。
模型1:谁将是胜利者
1805年,英国和法国进行了一场惨烈的海战。其中,尼尔 森担任英国统帅,他的对手则是大名鼎鼎的拿破仑。尼尔森的 舰队有27艘战舰,而拿破仑的舰队却有33艘战舰。根据以往的 战争经验,若两军相遇,一方损失兵力大约是对方兵力的10%。 如果按照这一公式计算,显然人多势众的法军将获胜,而且在 第11次遭遇战中全歼英军,如表所示。

数学建模章节义-PPT精品文档

数学建模章节义-PPT精品文档
日常问题:常见的录音机的转轴转动是匀速的吗?
思考
本题中计数器读数是均匀增长的吗?
观察或分析: 计数器读数增长越来越慢!
问题分析 录象机计数器的工作原理
右轮盘 主动轮 录象带 磁头 压轮 录象带运动方向 录象带运动 右轮盘半径增大 计数器读数增长变慢 0000 计数器
左轮盘
录象带运动速度是常数
右轮转速不是常数
数学建模的方法和步骤
基本方法
根据对客观事物特性的认识,找出反 •机理分析 映内部机理的数量规律。 将研究对象看作“黑箱”,通过对量测数据的 •测试分析 统计分析,找出与数据拟合最好的模型 •二者结合 机理分析建立模型结构,测试分析确定模型参数
t n 0 0000 20 40 60 80 1153 2045 2800 3420 140 160 183.5 4068 4621 5135 5619 6152
a 2.51106 , b 1.44102.
模型检验
应该另外测试一批数据检验模型:
2
——包括模型建立、求解、分析、检验。 观点:“所谓高科技就是一种数学技术”
数学建模三大功能——解释, 判断, 预见
R r
1. 解释——孟德尔遗传定律的“3:1”
2.判断——放射性废物处理
美国原子能委 员会提出如下处理 浓缩放射性废物: 封装入密封性很好 的坚固的圆桶中, 沉 入 300ft 的 海 里 , 而一些工程师提出 质疑?需要判断方 案的合理性。
Rr(Rr)
RR Rr rR rr

f阻 0 .08 v
F浮
3.预见——谷神星的发现
n 行星的轨 R 4 3 2 10 道半径 n 10 , 0 , 1 , 2 , 4 , 5 ?,

《数学建模培训》课件

《数学建模培训》课件

统计建模方法
利用统计学原理,如回归分析 、时间序列分析等建立模型。
优化建模方法
利用优化理论,如线性规划、 非线性规划等建立模型。
微分方程建模方法
利用微分方程理论,如常微分 方程、偏微分方程等建立模型

常见建模方法介绍
代数建模方法
通过代数方程或不等式表示变 量之间的关系,解决实际问题

概率建模方法
利用概率论和随机过程理论, 建立随机模型,解决实际问题 。
生物学
种群动态、生态平衡、基因遗传等 生物学问题可以通过数学建模进行 深入研究。
工程与技术领域
电子工程
电路设计、信号处理、电 磁场等问题的解决需要数 学建模的帮助。
机械工程
机构分析、优化设计、机 器人控制等需要数学建模 进行精确计算和模拟。
土木工程
建筑设计、结构分析、地 震工程等需要数学建模进 行结构优化和抗震设计。
《数学建模培训》课件
汇报人:可编辑 2023-12-22
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模案例分析 • 数学建模实践与挑战
01
数学建模概述
定义与特点
定义
数学建模是指通过建立数学模型 来描述、分析和解决实际问题的 过程。
特点
数学建模具有抽象性、概括性和 精确性,能够将复杂问题转化为 数学语言,为解决实际问题提供 有效工具。
对建立的模型进行训练和评估,包括模型 的参数调整、模型的性能评估等。
对模型的结果进行解释和应用,包括结果 的可视化、结果的解释和应用等。
实践项目成果展示与评价
成果展示
将实践项目的成果进行展示,包括模型的性能指 标、结果的可视化等。

数学建模培训精品课件ppt

数学建模培训精品课件ppt

Python在数学建模中的应用
开源、跨平台
VS
Python是一种开源的、跨平台的编 程语言,被广泛应用于数学建模领域 。Python具有简洁的语法和丰富的 库,可以方便地进行数值计算和数据 可视化。
Python在数学建模中的应用
科学计算、数据分析
Python拥有许多科学计算和数据分析的库,如 NumPy、Pandas和SciPy等,可以方便地进行矩阵运 算、统计分析等。
MATLAB在数学建模中的应用
功能强大、广泛使用
MATLAB是一款由MathWorks公司开发的商业数学软件,主要用于算法开发、 数据可视化、数据分析以及数值计算。在数学建模领域,MATLAB因其强大的矩 阵运算和绘图功能被广泛使用。
MATLAB在数学建模中的应用
数值计算、算法开发
MATLAB提供了大量的内置函数,可以方便地进行数值计算,包括线性代数、微积分、常微分方程求解等。同时,它也支持 用户自定义函数,可以方便地进行算法开发。
2023 WORK SUMMARY
数学建模培训精品课 件
汇报人:可编辑
2023-12-26
REPORTING
目录
• 数学建模基础 • 数学建模应用实例 • 数学建模软件介绍 • 数学建模竞赛经验分享 • 数学建模前沿动态 • 数学建模课程建议与展望
PART 01
数学建模基础
数学建模的定义与重要性
方案优化等。
未来数学建模的发展趋势
跨学科融合
大数据与机器学习
随着各学科的交叉融合,数学建模将与其 他领域更加紧密地结合,形成新的研究领 域和应用方向。
随着大数据和机器学习技术的发展,数学 建模将更多地应用于数据分析和预测等领 域。

数学建模-初等模型讲义

数学建模-初等模型讲义

123
2083.3
1341.8
3425.2 256250.0 250365.4
237
2083.3
45.5
2128.8 493750.0 328794.3
238
2083.3
34.1
2117.4 495833.3 328828.5
239
2083.3
240
2083.3
22.7
2106.1 497916.7 328851.2
9
7
9
11.3
4
8.5
21
21 21
ai比惯例 分配的要小
第21席应该分配乙系, 标准1的分配方案:10, 7, 4.
可用列表方法解决标准1(类似可解决标准2与3) 计算 ni 成表, k 1,2, k
1 2 3 4 5 6 7 8 9 10 11 甲 103 51.5 34.3 25.8 20.6 17.2 14.7 12.9 11.4 10.3 9.4 乙 63 31.5 21.0 15.8 12.6 10.5 9.0 7.9 7.0 6.3 5.7 丙 34 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4 3.1
2. 按揭还款
用房产在银行办理的贷款, 该贷款要按照银行规
定的利率支付利息。 贷款形式
商业贷款和公积金贷款. 还款形式
等额本息和等额本金.
如贷款50万, 分20年还清, 年利率r , 问月供是多少?
调整日期
2015.08.26 2015.06.28 2015.05.11 2015.03.01 2014.11.22 2012.07.07 2012.06.09 2011.07.07 2011.04.06 2011.02.09 2010.12.26 2010.10.20 2008.12.23

数学建模课件讲课资料

数学建模课件讲课资料
• 数学建模将各种知识综合应用于解决实际问 题中,是培养和提高同学们应用所学知识分析问 题、解决问题的能力的必备手段之一。
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2005年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2005年竞赛的选手达到25000多名。 2006年竞 赛的选手达到25000多名。
• (2)模型假设:根据实际对象的特征和建 模的目的,对问题进行必要的简化,并用 精确的语言提出一些恰当的假设。
• (3)模型建立:在假设的基础上,利用适 当的数学工具来刻划各变量之间的数学关 系,建立相应的数学结构。(尽量用简单的 数学工具)
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。
y
y0 y=f(x)
0
x0
P(xm ,ym )
P(xm,ym) x=g(y)
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架
乙安全线y=f(x)不变 y 甲方残存率变大
威慑值x 0和交换比不变
x减小,甲安全线
y0
x=g(y)向y轴靠近
0
P(xm,ym)
x=2y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。
甲方以 x攻击乙方 y个基地中的 x个,
sx个基地未摧毁,y–x个基地未攻击。
y0=sx+y–x
y= y0+(1-s)x
y0=sy
y=y0/s
乙的x–y个被攻击2次,s2(x–y)个未摧毁;
y –(x–y)=2y– x个被攻击1次,s(2y– x )个未摧毁

数学建模培训初等模型

数学建模培训初等模型

人口增长模型
总结词
人口增长模型是用来描述人口随时间变化的 规律和趋势的数学模型。
详细描述
该模型通常由一组微分方程组成,表示人口 在不同年龄和性别的增长率。通过求解这组 微分方程,可以预测未来人口数量和结构的 变化,为政策制定提供依据。
经济增长模型
总结词
经济增长模型是用来描述一个国家或地区经 济随时间变化的规律和趋势的数学模型。
幂函数模型
总结词
幂函数模型描述一个变量与另一 个变量的幂之间的关系。
详细描述
幂函数模型的一般形式为 y = x^r, 其中 r 是常数。这种模型适用于描 述一些自然现象,如地球上的人口 分布、城市规模等。
幂函数模型
总结词
幂函数模型描述一个变量与另一 个变量的幂之间的关系。
详细描述
幂函数模型的一般形式为 y = x^r, 其中 r 是常数。这种模型适用于描 述一些自然现象,如地球上的人口 分布、城市规模等。
求解模型
运用数学方法和计算工具对建 立的模型进行求解。
明确问题
首先需要明确建模的目标和问 题,理解实际问题的背景和需 求。
建立模型
根据问题的特点和收集的数据, 选择合适的数学模型进行建模。
验证与优化
对求解结果进行验证,并根据 实际情况对模型进行优化和改 进。
建立数学模型的步骤
收集数据
根据问题收集相关数据,包括 实验数据、观测数据、统计数 据等。
02
它能将现实世界中的问题转化为 数学问题,并运用数学方法进行 求解,进而对现实世界的问题作 出预测和决策。
什么是数学建模
01
数学建模是运用数学语言和方法 ,通过抽象、简化建立能近似刻 画并解决实际问题的一种强有力 的数学手段。

数学建模培训精品课件ppt

数学建模培训精品课件ppt

03
数学建模基础知识
代数基础
代数基本概念:定义、性质、 分类等
代数运算:加法、减法、乘法、 除法等
代数方程:一元一次方程、一 元二次方程等
代数不等式:一元一次不等式、 一元二次不等式等
几何基础
空间点、线、 面
方向导数与梯 度
欧几里得距离 公式
曲线和曲面的 切线与法平面
概率统计基础
概率论基本概念:事件、概率、 独立性等
添加标题
添加标题
添加标题
添加标题
数学建模是一种将数学语言应用 于实际问题的过程
数学建模是一种将数学模型应用 于实际问题的过程
数学建模的应用领域
工程科学:机械工程、电子 工程、土木工程、化学工程 等
自然科学:物理学、化学、 生物学、地球科学等
社会科学:经济学、社会学、 政治学、历史学等
医学与健康:生物医学、临 床医学、预防医学等
数学建模培训精品 课件ppt
单击此处添加副标题
汇报人:XXX
目录
添加目录项标题 数学建模基础知识 数学建模案例分析 数学建模培训总结与展望
数学建模概述 数学建模方法与技巧 数学建模实践项目
01
添加章节标题
02
数学建模概述
数学建模的定义
数学建模是一种用数学方法解决 实际问题的手段
数学建模是一种将实际问题抽象 为数学模型的过程
统计推断方法:参数估计和假设 检验
添加标题
添加标题
添加标题
添加标题
随机变量及其分布:离散型和连 续型随机变量
回归分析:线性回归和非线性回 归模型
微积分基础
导数与微分
积分
微积分的应用
微积分与数学 建模的联系

《数学建模培训》课件

《数学建模培训》课件

模型建立流程
确定问题
明确实际问题,确定建模目标和 范围。
建立模型
根据问题特点和目标,建立数学 模型并制定求解策略。
求解模型
根据求解策略,运用数学方法求 解模型并得出结论。
常见数学建模问题案例分析
物流配送问题
分析如何减少配送时间、节约物流成本。
金融投资决策问题
分析股票、债券等各种资本市场的特点及投资方 案。
4. 数学建模实 例精讲
为什么要学习数学建模
1
解决实际问题
数学建模可以将实际问题转化为数学问题,通过求解数学模型来解决实际问题。
2
提高数学素养
数学建模过程需要运用数学知识和数学思维,提高数学素养和解决问题的能力。
3
增强创新精神
数学建模过程中需要创新思维,提高创新精神和实际应用能力,培养科学研究和 技术创新人才。
医疗资源配置问题
如何在依据疫情数据和实际病情情况下,合理分 配医疗资源。
人口增长问题
通过数学建模,分析人口增长趋势和长期发展方 向。
数学建模软件介绍
MATLAB
COM SOL
MATLAB是一种高级的数学软件, 被广泛运用于科研、工程、教育、 金融等领域的数据计算、分析和 可视化。
COMSOL Multiphysics是一款强 大的多物理场仿真软件,可以用 于模拟、分析、优化各种实际问 题。
示例应用
通过实例,让大家更加深入理解 数学建模软件的使用和应用场景, 以及如何将数学建模工具应用到 实际研究中。
数学建模培训
欢迎大家参加这次数学建模培训!在这里,我们会为大家介绍数学建模的基 本概念和方法,探讨常见的实际问题并提供解决方案。
课程大纲
数学建模概述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619
80 3466 183.5 6152
用最小二乘法可得
a 2.51106 , b 1.44102.
可取过河方式:4种——(1100) (1010) (1001) (1000) 运算方式:——按位异或运算(xor)
例:一次运算过程
(1100) (0011) X
(1111)xor
(1010) (1001)
(0101) (0110)
O X
(1000) (0111) X
图论解法:
(1111) (1110) (1101) (1011) (1010)
A
彩票问题
B
车灯优化设计
A
SARS预测
B
露天矿车辆安排
A
奥运会临时超市网点设计
B
电力市场的输电阻塞管理
A 2005
B
A 2006
B
A 2007
B A 2008 B A 2009 B A 2010 B
长江水质的评价和预测
DVD在线租赁 出版社的资源配置
艾滋病疗法的评价及疗效的预测 中国人口增长预测 乘公交,看奥运 数码相机定位
日常问题:常见的录音机的转轴转动是匀速的吗?
思考 本题中计数器读数是均匀增长的吗?
观察或分析: 计数器读数增长越来越慢! 问 题 分 析 录象机计数器的工作原理
左轮盘 录象带
右轮盘 主动轮
0000 计数器
ห้องสมุดไป่ตู้
磁头
压轮
录象带运动
录象带运动方向 右轮盘半径增大 计数器读数增长变慢
录象带运动速度是常数
右轮转速不是常数
数学建模的方法和步骤 基本方法
根据对客观事物特性的认识,找出反 •机理分析 映内部机理的数量规律。 •测试分析 将研究对象看作“黑箱”,通过对量测数据的
统计分析,找出与数据拟合最好的模型
•二者结合 机理分析建立模型结构,测试分析确定模型参数
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习.以下建模主要指机理分析.
最后,因为f(t) •g(t)=0,所以f(t0)= g(t0)=0。
y
A
A
方法 总结
模型 推广
1) 一个变量t表示位置;
2) 引入距离函数(只设两个); 3) 证明技巧——转动90度。 D
1) 若对象是4条腿同长的长方
形桌子,结果怎样?
D
B
t
x
O
B
C C
2) 某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路 径下山,下午5时回到旅店。某乙说,甲必在
uk~第k次渡船上的商人数
uk, vk=0,1,2;
vk~第k次渡船上的随从数
数学建模指建立数学模型的全过程。
——包括模型建立、求解、分析、检验。 观点:“所谓高科技就是一种数学技术”
数学建模三大功能——解释, 判断, 预见 1. 解释——孟德尔遗传定律的“3:1”
2.判断——放射性废物处理
美国原子能委 员会提出如下处理 浓缩放射性废物: 封装入密封性很好 的坚固的圆桶中, 沉 入 300ft 的 海 里 , 而一些工程师提出 质疑?需要判断方 案的合理性。
模型假设
• 录象带的运动速度是常数 v ; • 计数器读数 n与右轮转数 m成正比,记 m=kn; • 录象带厚度(含夹在两圈间的空隙)为常数 w; • 空右轮盘半径记作 r ; • 时间 t=0 时读数 n=0 . 建 模 目 的 建立时间t与读数n之间的关系
(设v,k ,w ,r 为已知参数)
决策—— 每一步(A到B或B到A)船上的人员 要求——在安全的前提下(两岸的随从数不比商人多), 经有限步使全体人员过河!
模型构成
xk~第k次渡河前A岸的商人数 xk, yk=0,1,2,3; yk~第k次渡河前A岸的随从数 k=1,2,
sk=(xk , yk)~过程的状态 S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
为了便于学习掌握,可对数学模型做适当 的分类:
数学模型的分类: ◆ 按研究方法和对象的数学特征分:初等模
型、几何模型、优化模型、微分方程模型、图 论模型、逻辑模型、稳定性模型等。
◆ 按研究对象的实际领域(或所属学科) 分:人口模型、交通模型、环境模型、生态模 型、生理模型、城镇规划模型、水资源模型、 污染模型、经济模型、社会模型等。
数学模型——对于一个现实对象,为了一个特定目的,
根据其内规律,作出必要的简化假设,运用适当的数
学工具,得到的一个数学结构。
数量关系
数学建模——是利用数学方法解决实际问题的一种 实践过程. 即通过抽象、简化、假设、引进变量等处 理过程后, 将实际问题用数学方式表达,以建立起数 学模型, 然后运用先进的数学方法及计算机技术进行 求解.
数学建模的重要意义
• 电子计算机的出现及飞速发展 • 数学以空前的广度和深度向一切领域渗透 数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。
数学建模
如虎添翼
计算机技术
知识经济
四、近几年全国大学生数学建模竞赛题
A 1994
B A 1995 B A 1996 B A 1997 B A 1998 B
高等教育学费标准探讨 制动器试验台的控制方法分析
眼科病床的合理安排 储油罐的变位识别与罐容表标定 2010年上海世博会影响力的定量评估
怎样学习数学建模
数学建模与其说是一门技术,不如说是一门艺术!
技术大致有章可循 艺术无法归纳成普遍适用的准则
想象力 洞察力
判断力
创新意识
• 学习、分析、评价、改进别人作过的模型
v300 40 ft / s
3.预见——谷神星的发现
f阻 0.08v
F浮
行星的轨 R 1 4 3 2n
道半径
10
n 10,0,1,2, ,4,5
水、金、地、火、木、土
1781年, 利用这个结果发现了天王
F重
星, 1802年,发现了谷神星与3对 应(有故事),之后还发现了海王星、
冥王星。
C
模型 将椅子旋转90º,对角线AC与BD互换. 由g(0)=0,f(0)>0可
求解
知g(
2
)>0,f(
2
)=0
令续即h函f((tt0数))== 。gf((tt)0根)-。g据(t)连,则续h(函0)>数0和的h基(2本) 性<0质,,由必f存和在g的t0 (连0续<t性0<知2 ),h使也h是(t0连)=0,
• 作出简化假设(船速、水速为常数, 方向一致); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5); • 回答原问题(船速每小时20公里)。
录象机计数器的用途
经试验,一盘录像带从头走到尾, 时间用了183分30秒,计数器读数从 问 0000变到6152。在一次使用中录像带已 题 经转过大半,计数器读数为4580,问剩 下的一段还能否录下1小时的节目? 要 不仅仅回答问题, 而且建立计数器读数与 求 录像带转过时间的关系——一个数学模型!
数,则该图可一笔画.
例2 人狗鸡米过河问题
是一个简单的游戏,但可以建立经典计算机 编程求解。
模型表示:建立(人,狗,鸡,米)的4维0/1向量;
如:(1,0,1,0)——表示狗、米已过河, 人、鸡没有等;
可取状态:24-6=10种
(1111) (1110) (1101) (1011) (1010) (0000) (0001) (0010) (0100) (0101)
由假设3,椅子在任何位置至少有三 只脚同时着地:对任意t ,f(t)和g(t)中至少 D 有一个为0。当t=0时,不妨设g(t)=0, f(t)>0, 原题归结为证明如下的数学命题:
相关文档
最新文档