线段的垂直平分线与角的平分线训练专题培优(新)

合集下载

线段的垂直平分线和角平分线(8类热点题型讲练)(解析版) 八年级数学下册

线段的垂直平分线和角平分线(8类热点题型讲练)(解析版) 八年级数学下册

第04讲线段的垂直平分线和角平分线(8类热点题型讲练)1.理解线段垂直平分线,角平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;3.能运用线段的垂直平分线的有关知识进行证明或计算;4.能够利用尺规作出三角形的垂直平分线和角平分线;5.会证明和运用“三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等”.角平分线的性质定理和判定定理的灵活运用.知识点01线段的垂直平分线⎧⎨⎩线段垂直平分线的:线段垂直平分线上的任意一点到这条线段两端点的距离相等;线段垂直平分线的:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上性质定理判.定定理知识点02角的平分线⎧⎪⎨⎪⎩角的平分线的:在角的平分线上的点到这个角两边的距离相等;角的平分线的:在一个角的内部(包括顶点)且到角两边距离相等的点, 在这个角的平分线上.性质定理性质定理题型01线段的垂直平分线的性质【例题】(2023上·江苏常州·八年级校考阶段练习)如图,在ABC 中,EF 是AB 的垂直平分线,AD BC ⊥,D 为CE 的中点.(1)求证:BE AC=(2)若35B ∠=︒,则BAC ∠=【答案】(1)见解析(2)75︒【分析】本题主要考查线段的垂直平分线,等腰三角形的性质与判定,直角三角形的性质,灵活运用垂直平分线的性质是解题的关键.(1)连接AE ,由题意可判定AD 垂直平分CE ,由线段垂直平分线的性质可得AC AE BE ==,即可证明结论;(2)由等腰三角形的性质可求35∠=︒BAE ,由直角三角形的性质可得BAD ∠的度数,即可求得EAD ∠,CAD ∠的度数,进而可求解.【详解】(1)证明:连接AE ,如图所示:∵AD BC ⊥于点D ,且D 为线段CE 的中点,∴AD 垂直平分CE ,∴AC AE =,∵EF 垂直平分AB ,∴AE BE =,∴BE AC =;(2)解:∵AE BE =,35B ∠=︒,∴35BAE B ∠=∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,∴903555BAD ∠=︒-︒=︒,∴553520EAD ∠=︒-︒=︒,∵AC AE =,AD BC ⊥,∴20EAD CAD ∠=∠=︒,∴75BAC BAE EAD CAD ∠=∠+∠+∠=︒.故答案为:75︒.【变式训练】1.(2023下·全国·八年级专题练习)如图,在ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.【答案】(1)15cmAB =(2)40MCN ∠=︒【分析】此题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,解题的关键是熟练掌握以上知识的应用及整体思想的应用.(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM CM =,BN CN =,然后求出CMN 的周长AB =;(2)根据三角形的内角和定理列式求出MNF NMF ∠+∠,再求出A B ∠∠+,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,然后利用三角形的内角和定理列式计算即可得解;【详解】(1)解:∵DM 、EN 分别垂直平分AC 和BC ,∴AM CM =,BN CN =,∴CMN 的周长CM MN CN AM MN BN AB =++=++=,∵CMN 的周长为15cm ,∴15cm AB =;(2)解:∵70MFN ∠=︒,∴18070110MNF NMF ∠+∠=︒-︒=︒,∵AMD NMF ∠=∠,BNE MNF ∠=∠,∴110AMD BNE MNF NMF ∠+∠=∠+∠=︒,∴909018011070A B AMD BNE ∠+∠=︒-∠+︒-∠=︒-︒=︒,∵AM CM =,BN CN =,∴A ACM ∠=∠,B BCN ∠=∠,∴()180218027040MCN A B ∠=︒-∠+∠=︒-⨯︒=︒.2.(2023上·全国·八年级专题练习)如图,在ABC 中,EF 垂直平分AC ,交AC 于点F ,AD BC ⊥于点D ,BD DE =,连接AE .(1)若AE 平分BAC ∠,求C ∠的度数;(2)若ABC 的周长为13cm ,5cm AC =,求CD 的长.【答案】(1)36°(2)4cm【分析】本题主要考查了等腰三角形的性质、角平分线、线段垂直平分线、三角形内角和定理等,解答本题的关键在于熟练掌握垂直平分线上的点到线段两端的距离相等及等腰三角形的性质本题即可求解.【详解】(1)解:AD BC BD DE ⊥ ,=,EF 垂直平分AC ,∴AB AE EC ==,C CAE ∴∠∠=,∵AE 平分BAC ∠,∴BAE EAC ∠∠=,∵AD BC ⊥于点D ,BD=DE ,∴AB AE =,∴2B AEB C EAC C ∠∠∠+∠∠===,根据三角形内角和等于180︒可得,180B AEB BAE ∠+∠+∠︒=,22180C C C ∴∠+∠+∠︒=,36C ∴∠︒=.(2)ABC 周长13cm ,5cm AC =,∴8cm AB BC +=,∴8cm AB BE EC ++=,即,228cm DE EC +=,∴4cm DE EC +=,∴4cm DC DE EC +==.题型02线段的垂直平分线的判定(1)求证:AD (2)已知ABC ∠【详解】(1)证明:∴点A 在BC AD ∴垂直平分(2)解: 【变式训练】1.如图,ABC 为等边三角形,AD AB ⊥,4AD DC ==,AC BD ,相交于点E .(1)求证:BD 垂直平分AC ;(2)求BE 的长;(3)若点F 为BC 的中点,点P 在BD 上,则PC PF +的最小值为______.(直接写出结果).【详解】(1)证明:∵ABC 是等边三角形,∴AB BC =;∵,,AB BC AD CD BD BD ===,∴()ABD CBD SSS ≌,∴ADB CDB ∠=∠,∵,,AD DC ADB CDB DE DE =∠=∠=,∴()ADE CDE SAS ≌,∴,90AE EC AED DEC =∠=∠=︒,∴BD 垂直平分AC ;(2)解:∵DB AC ⊥,∴BE 平分ABC ∠,∵60ABC BAC ∠=∠=︒,∴30ABD ∠=︒,∵90BAD ∠=︒,∴30DAE ∠=︒,∵4=AD ,∴8,2BD DE ==,∴6BE BD DE =-=;(3)解:连接AF 交BD 于点P ,连接PC ,∵BD 是AC 的垂直平分线,∴A 、C 关于BD 对称,(1)求证:DB DE=;(2)过点A作AF BC∥,交ED延长线于点F,交①若12EM=,则BD=.题型03线段的垂直平分线的实际应用【例题】如图,地面上有三个洞口A 、B 、C ,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A 、B 、C 三个点的距离相等),尽快抓到老鼠,应该蹲守在()A .ABC 三边垂直平分线的交点B .ABC 三条角平分线的交点C .ABC 三条高所在直线的交点D .ABC 三条中线的交点【答案】A 【详解】解:∵猫所在的位置到A 、B 、C 三个点的距离相等,∴猫应该蹲守在ABC 三边垂直平分线的交点处;故选A .【变式训练】1.如图,某一个城市在一块空地新建了三个居民小区,它们分别为、、A B C ,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.这所中学应建在()A .ABC 的三条中线的交点B .ABC 三边的垂直平分线的交点C .ABC 三条角平分线的交点D .ABC 三条高所在直线的交点【答案】B 【详解】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则学校应建在ABC 三条边的垂直平分线的交点处.故选:B .题型04线段的垂直平分线的尺规作图【例题】如图,已知在ABC 中,7AC =.(1)用尺规作BC 边的垂直平分线;(保留作图痕迹,不写作法)(2)BC 边的垂直平分线分别交AC BC 、于点D 、E ,连接BD ,若ABD △的周长是10,求AB .【详解】(1)解:如图,DE 即为所求;;(2)解:∵DE 是BC 边的垂直平分线,∴BD DC =,∵7AC =,∴7AD DC AD BD +=+=,∵ABD △的周长是10,∴10AB BD AD ++=.∴3AB =.【变式训练】1.某公司招收职工的试卷中有道题:如图,有三条两两相交的公路,为便于及时进行监控,防止违章,这个监控仪器应安装在什么位置可以使离三个路口的交叉点的距离相等你能找到这个监控安装的位置吗?(尺规作图,不写过程,保留作图痕迹)【详解】解:如图,点P 这个监控安装的位置..2.如图,已知点A 、点B 以及直线L .(1)用尺规作图的方法在直线L 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,连接AP BP ,,若90APB ∠=︒,过点A 作AM L ⊥于点M ,过点B 作BN L ⊥于点N .求证:MN AM BN=+【详解】(1)解:点P 如图所示,;(2)解:∵AM L ⊥,BN L ⊥,90APB ∠=︒,∴90MAP APM NPB ∠=︒-∠=∠,∵PA PB =,∴()AAS MAP NPB ≌△△,∴AM PN =,PM BN =,∴MN PN PM AM BN =+=+.题型05角平分线的性质定理【例题】(2023上·江苏连云港·八年级校考阶段练习)已知:如图AC 平分BAD ∠,CE AB CF AD ⊥⊥,,垂足分别为E 、F ,且BC CD =.(1)求证:BCE DCF △≌△;(2)若106AD BE ==,,求AB 的长.【答案】(1)见解析(2)22【分析】本题考查了角平分线的性质,全等三角形的判定与性质,本题中求证BCE DCF △≌△和Rt Rt ACF ACE ≅△△是解题的关键.(1)先证明CE CF =,再根据HL 即可证明BCE DCF △≌△;(2)先求出6DF BE ==,再根据HL 即可证明Rt Rt ACF ACE ≌△△,进而可求出AB 的长.【详解】(1)AC 平分BAD ∠,CE AB ⊥于E ,CF AD ⊥于F ,90CFD ∴∠=︒,90CEB ∠=︒,CE CF =,在Rt BCE 和Rt DCF 中,CE CF BC CD =⎧⎨=⎩,Rt Rt (HL)BCE DCF ∴△≌△;(2)∵BCE DCF △≌△,6BE =,∴6DF BE ==.∵10AD =,∴10616AF =+=.在Rt ACF 和Rt ACE 中,CF CE AC AC=⎧⎨=⎩,Rt Rt (HL)ACF ACE ∴△≌△,∴16AE AF ==,∴16622AB =+=.【变式训练】1)求证:AE 是DAB ∠2)已知4AE =,DE 【答案】(1)见解析2)12【分析】本题主要考查了三角形全等的判定和性质,角平分线的性质定理;(1)根据角平分线的性质得出∵90C ∠=︒,∴EF AD ⊥,∵AE 是DAB ∠的平分线,∴EF EC =,(1)求证:BE CF =;(2)若67AF BC ==,,则ABC 【答案】(1)证明见解析(2)19【详解】(1)证明:连接CD BD ,,∵D 在BC 的中垂线上,∴BD CD =,∵DE AB ⊥,DF AC ⊥,AD 平分BAC ∠,∴DE DF =,90BED CFD ∠=∠=︒,∴()Rt Rt HL BDE CDF ≌,∴BE CF =;(2)解:∵AD 平分BAC ∠,∴∠∠EAD FAD =,∵DE AB ⊥,DF AC ⊥,∴90AED AFD ∠=∠=︒,又∵AD AD =,∴()AAS AED AFD ≌,∴AE AF 6==,由(1)可知BE CF =,∴ABC 的周长为:66719AC AB BC AF CF AE BE BC AF AE BC ++=-+++=++=++=,故答案为:19.题型06角平分线的判定定理【例题】如图,A ,B 两点分别在射线OM ,ON 上,点C 在MON ∠的内部且CA CB =,CD OM ⊥,CE ON ⊥,垂足分别为D ,E ,且AD BE =.(1)求证:OC 平分MON ∠;(2)如果12AO =,4BO =,求OD 的长.【详解】(1)证明:由题意得:CD OM ⊥,CE ON ⊥,∴90CDA CEB ∠=∠=︒,在Rt ACD △和Rt BCE 中,AC BC AD BE =⎧⎨=⎩,∴()Rt Rt HL ACD BCE ≌,∴CD CE =,CD OM ⊥,CE ON ⊥,∴OC 平分MON ∠.(2)在Rt ODC △和Rt OEC △中,CD CE OC OC =⎧⎨=⎩,∴()L Rt Rt H ODC OEC ≌ ,∴OD OE =,设BE x =,4BO =,∴4OE OD x ==+,AD BE x ==,∴4212AO OD AD x =+=+=,∴4x =,∴448OD =+=.【变式训练】1.如图,DE AB ⊥于E ,DF AC ⊥于F ,若,BD CD BE CF ==.(1)求证:AD 平分BAC ∠;(2)写出+AB AC 与AE 之间的等量关系,并说明理由.【详解】(1)证明:∵DE AB ⊥∴90E DFC ∠=∠=︒,(1)求证:OC 是AOB ∠的平分线;(2)若30AOB ∠=︒,23PF =,PF 【详解】(1)证明:在Rt PDF 和题型07角平分线性质的实际应用【例题】三条公路将、、A B C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A .三条高的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点【答案】C 【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在A B C ∠∠∠、、的角平分线的交点处,故选:C .【变式训练】1.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A .3个B .4个C .5个D .1个【答案】B 【详解】解:如图所示,分别作直线交点处的角平分线,根据角平分线的性质,可得点1234,,,P P P P 共4个点,故选:B .题型08作角平分线(尺规作图)【例题】已知:如图,在ABC 中,AB AC =,2B A ∠=∠.(1)求作ABC ∠的平分线,交AC 于点P .(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求ABP ∠的角度?【详解】(1)解:以点B 为圆心,适当长为半径画弧交BA ,BC 于两点,再分别以两点为圆心,适当长为半径画弧交于一点,连接点B 与该点所在直线交AC 于点P ,如图所示:BP 即为所求;(2)解:∵AB AC =,1.如图所示,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定点P的位置.【详解】解:如图所示,点P即为所要求作的点.一、单选题1.(2023上·全国·八年级专题练习)如图,在ABC 中,90C ∠=︒,15B ∠=︒,AB 的垂直平分线交BC 于点D ,交AB 于点E .若12DB cm =,则AC =()A .4cmB .5cmC .6cmD .7cm【答案】C 【分析】本题考查的知识点是垂直平分线的性质、等腰三角形的性质、含30︒角的直角三角形的性质,解题关键是利用垂直平分线的性质添加辅助线构造等腰三角形.连接AD ,根据垂直平分线性质可得AD DB =,则等腰三角形ADB 中15DAB B ∠=∠=︒,可推得直角三角形ACD 中60CAD ∠=︒,30ADC ∠=︒,又因为含30︒角的直角三角形中,较短直角边是斜边的一半,故12AC AD =.【详解】连接AD ,DE 是AB 的垂直平分线,12AD DB cm ∴==,15DAE B ∴∠=∠=︒,又90C ∠=︒ ,18060CAD C B DAE ∴∠=︒-∠-∠-∠=︒,30ADC ∴∠=︒,则在直角三角形ACD 中,162AC AD cm ==.故选:C .2.(2023上·河南信阳·八年级统考期中)如图,射线OC 是AOB ∠的平分线,DP OA ⊥,4DP =,若点Q 是射线OB 上一动点,则线段DQ 的长度不可能是()A .3B .4C .5D .6【答案】A 【分析】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.过点D 作DE OB ⊥于E ,根据角平分线上的点到角的两边距离相等可得DP DE =,再根据垂线段最短解答.【详解】解:如图,过点D 作DE OB ⊥于E ,OC 是AOB ∠的角平分线,DP OA ⊥,DP DE \=,由垂线段最短可得DQ DE ≥,4DP = ,4DQ ∴≥.故选:A .3.(2023上·江苏无锡·八年级校考阶段练习)在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC 的()A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点【答案】C【分析】本题考查线段垂直平分线的性质定理的逆定理,熟练掌握垂直平分线的性质是解题的关键,利用要使游戏公平,凳子就需要放在到A 、B 、C 三名选手距离相等的位置即可得到答案.【详解】解:由题可得:要使游戏公平,凳子就需要放在到A 、B 、C 三名选手距离相等的位置,则凳子所在的位置是ABC 的外接圆圆心,∵三角形外接圆的圆心是三边垂直平分线的交点,A .16︒B .26【答案】B 【分析】本题考查了线段垂直平分线的性质,直角三角形斜边上的中线等于斜边的一半,三角形内角和定理,根据90ACB ∠=︒,直线116BDC ∠=︒,结合CDE ∠【详解】解:∵90ACB ∠=︒∴CD BD =,90BDE ∠=︒,∵32B =︒∠,∴32B DCB ∠=∠=︒,∵180B DCB BDC ∠+∠+∠=∴116BDC ∠=︒,∴CDE BDC BDE ∠=∠-∠=故选B .5.(2023上·浙江金华·八年级统考阶段练习)垂直平分线MD 相交于D ,②DE DF AD +=;③DM A .①②【答案】D 【分析】由角平分线的性质可知∵DM 是BC 的垂直平分线,∴DB DC =,在Rt BED △和Rt CFD DE DF BD DC =⎧⎨=⎩,【答案】80︒/80度【分析】本题主要考查了线段垂直平分线的性质,等腰三角形的性质.根据线段垂直平分线的性质可得CD BD =,从而得到BCD B ∠=∠的性质可得50A ADC ∠=∠=︒,即可求解.【答案】3【分析】此题考查了角平分线的性质定理,作DH AB ⊥于点H ,先求出∵8BC =,5BD =,∴3CD BC BD =-=,∵90C ∠=︒,∴DC AC ⊥,【答案】20【分析】本题考查垂直平分线画图及性质,三角形周长公式.根据题意可知利用垂直平分线可知AD 【详解】解:∵分别以点【答案】50【分析】本题考查了角的等分线计算,正确理解定义是解题的关键.设分线的性质,角的平分线的判定,三角形内角和定理计算即可.【详解】设3ABC x ∠=,∠∵点M N 、是ABC ∠与∠∵点M N 、是ABC ∠与ACB ∠∴BN 平分MBC ∠,CN 平分∴,NE NG NF NG ==,∴NE NF =,∴MN 平分BMC ∠,【答案】15︒6【分析】本题考查了角平分线的判定与性质、三角形全等的判定与性质、三角形内角和定理,熟练掌握以上知识点,证明三角形全等是解此题的关键.(1)先证明Rt Rt BDE △≌△1028AF AC CF ∴=-=-=,在Rt ADE △和Rt ADF 中,DE DF AD AD=⎧⎨=⎩,()Rt Rt HL D DE F A A ∴△△≌,8AE AF ∴==,826AB AE BE ∴=-=-=,故答案为:6.三、解答题11.(2023上·河南南阳·八年级校考阶段练习)如图,在ABC 中,AC 边的垂直平分线分别交BC AC 、于点E 、F ,连接AE ,作AD BC ⊥于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C ∠=︒,求BAC ∠的度数.【答案】(1)见解析(2)84︒【分析】本题主要考查的是三角形内角和定理,三角形外角的性质,线段垂直平分线的性质.(1)根据等腰三角形的判定得出AB AE =,根据垂直平分线的性质得出AE CE =,等量代换即可得出结论;(2)根据等边对等角得出32C EAC ∠=∠=︒,再根据三角形的外角的性质得出64AEB C EAC ∠=∠+∠=︒,再根据等边对等角得出64B AEB ∠=∠=︒,根据三角形内角和定理得出52BAE ∠=︒,进而得出答案.【详解】(1)∵D 为BE 的中点,∴BD DE =,∵AD BC ⊥,∴AB AE =,∵EF 是AC 的垂直平分线,∴AE CE =,∴AB CE =;(2)∵32C AE CE ∠=︒=,,∴32C EAC ∠=∠=︒,∴64AEB C EAC ∠=∠+∠=︒,∵AB AE =,∴64B AEB ∠=∠=︒,∴180180646452BAE B AEB ∠=︒-∠-∠=︒-︒-︒=︒,∴523284BAC BAE EAC ∠=∠+∠=︒+︒=︒.12.(2023上·河南周口·八年级校联考阶段练习)如图,已知ABC 中,90C ∠=︒,按下列要求作图(尺规作图,保留作图痕迹,不必写作法).(1)作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;(2)连接CF ;(3)作BFC ∠的平分线,交BC 于点G .【答案】(1)见解析(2)见解析(3)见解析【分析】本题考查了作线段的垂直平分线,作角平分线,掌握基本作图是解题的关键.根据题意作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ,连结CF ,作BFC ∠的平分线,交BC 于G .【详解】(1)解:如图,(2)解:如图,(3)解:如图,13.(2023上·河南信阳AD 垂直平分EF .(1)求证:AD 是BAC ∠的平分线;(2)若ABC 的周长为18,ABC 【答案】(1)见解析(2)4【分析】本题主要考查了垂直平分线的性质,角平分线的判定定理,熟知垂直平分线的性质是解题的关键.(1)根据垂直平分线的性质得到(1)试问:BF 与CG 的大小如何?证明你的结论.(2)若104AB AC ==,,试求【答案】(1)BF CG =,证明见解析(2)7【分析】本题考查角平分线的性质,垂直平分线的性质,全等三角形的判定和性质:AE 平分BAC ∠,EF AB ⊥∴EF EG =,D 为BC 的中点,DE BC ⊥∴DE 垂直平分BC ,∴EB EC =,在Rt BFE △和Rt CGE △中,(1)求M∠的度数;∠的度数改为80°,其余条件不变,再求(2)若将A(3)你发现了怎样的规律?试证明;∠改为钝角,(4)将(1)中的A【答案】(1)20°(2)40°∵AB AC =,∴()111809022B A A ∠=︒-∠=︒-∠∵MN 为AB 的垂直平分线,∴90BNM ∠=︒,1(1)若120ACB ∠=︒,则MCN ∠的度数为(2)若MCN α∠=,则MFN ∠的度数为;(用含(3)连接FA FB FC 、、,CMN 的周长为6cm 【答案】(1)60︒(2)1902α︒-,分别垂直平分AC和BC, DM EN=,∴=,NB NCMA MC的周长为6cm,CMN∴++=,6cmMC NC MNAB=,∴++=,即6cm MA NB MN6cm的周长为14cm,FAB(1)求证:BCM GCM ∠=∠;(2)若2CG =,求BC AG -的长;(3)若点D 在BC 的垂直平分线上,试判断ABM 的形状,并说明理由.【答案】(1)见解析;(2)2;(3)ABM 是等边三角形,理由见解析.【分析】(1)由角平分线的性质可得ACD BCD ∠=∠,由余角的性质可得结论;(2)由“AAS ”可证FCM GCM ≌ ,可得MF MG =,2CF CG ==,由“HL ”可证Rt Rt BFM AGM ≌ ,可得BF AG =,即可求解;(3)由线段垂直平分线的性质可求30DBC DCB ACD ∠=∠=∠=︒,由等腰三角形的性质可求30MAG ∠=︒,由三角形内角和定理可求解.【详解】(1)证明:∵CD 平分ACB ∠,∴ACD BCD ∠=∠,∵CM CD ⊥,∴90DCM ∠=︒,∴90ACD MCG ∠+∠=︒,90DCB BCM ∠+∠=︒,∴BCM GCM ∠=∠;(2)∵BCM GCM ∠=∠,90MFC MGC ∠=∠=︒,CM CM =,∴()AAS FCM GCM ≌ ,∴MF MG =,2CF CG ==,∵点M 在AB 的垂直平分线上,∴AM BM =,且FM MG =,∴()Rt Rt HL BFM AGM ≌ ,∴BF AG =,CBM MAG ∠=∠,∴2BC AG BC BF CF -=-==;(3)∵点D 在BC 的垂直平分线上,∴BD CD =,∴DBC DCB ∠=∠,且ACD DCB ∠=∠,90DBC DCB ACD ∠+∠+∠=︒,∴30DBC DCB ACD ∠=∠=∠=︒,∵AM BM =,∴30MAB MBA ABC CBM CBM ∠=∠=∠+∠=︒+∠,∵CBM MAG ∠=∠,∴30MAB MAG ∠=︒+∠,∵90MAB MAG BAC ∠+∠=∠=︒,∴30MAG ∠=︒,∴60MAB MBA ∠=∠=︒,∴60AMB ∠=°,∴ABM 是等边三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,线段垂直平分线的性质等知识,证明全等三角形是本题的关键.18.(2023上·新疆和田·八年级统考期末)数学活动:如图1,角的平分线的性质的几何模型,已知OP 平分AOB ∠,PA OA ⊥于点A ,PB OB ⊥于点B .(1)探究:如图2,点M 是OP 上任意一点(不与O 、P 重合),连接MA 、MB ,问题:请判断MA 与MB 的数量关系,并证明你的结论.(2)如图3,连接AB .问题:①OP 垂直平分AB 吗?请说明理由.②若30AOP ∠=︒,6AB =,求AOB 的周长.【答案】(1)MA MB =,证明见解析(2)①OP 垂直平分AB ,理由见解析;②18【分析】(1)证明()AAS OAP OBP ≌,则OA OB =,证明()SAS AOM BOM ≌,进而可得MA MB =.(2)①如图3,记AB 与OP 的交点为C ,由(1)可知()AAS OAP OBP ≌,则OA OB =,证明()AAS OAP OBP ≌,则AC BC =,90ACO BCO ∠=∠=︒,进而可得OP 垂直平分AB ;②由题意知60AOB ∠=︒,可证AOB 是等边三角形,则6OA OB AB ===,然后求AOB 的周长即可.【详解】(1)解:MA MB =,证明如下:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,∴AOP BOP ∠=∠,90OAP OBP ∠=∠=︒,又∵OP OP =,∴()AAS OAP OBP ≌,∴OA OB =,∵OM OM =,AOM BOM ∠=∠,OA OB =,∴()SAS AOM BOM ≌,∴MA MB =.(2)①解:OP 垂直平分AB ,理由如下:如图3,记AB 与OP 的交点为C ,由(1)可知()AAS OAP OBP ≌,∴OA OB =,∵OA OB =,AOP BOP ∠=∠,OC OC =,∴()AAS OAP OBP ≌,∴AC BC =,90ACO BCO ∠=∠=︒,∴OP 垂直平分AB .②解:∵OP 平分AOB ∠,30AOP ∠=︒,∴60AOB ∠=︒,又∵OA OB =,∴AOB 是等边三角形,∴6OA OB AB ===,∴AOB 的周长为18OA OB AB ++=,∴求AOB 的周长为18.【点睛】本题考查了角平分线,全等三角形的判定与性质,等边三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.。

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。

八年级竞赛培优训练 线段的垂直平分线与角平分线的性质 含解析

八年级竞赛培优训练  线段的垂直平分线与角平分线的性质  含解析

线段的垂直平分线与角平分线的性质【思维入门】1.如图1-3-1,在△ABC 中,∠ABC =50°, ∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连结AD .下列结论不正确的是( )A .∠BAC =70°B .∠DOC =90° C .∠BDC =35°D .∠DAC =55°2.如图1-3-2,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE =4 cm ,则点P 到边BC 的距离为____cm.图1-3-23.如图1-3-3,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =5,BC =12,则△BDC 的面积是____.图1-3-34.如图1-3-4,在△ABC 中,DE ,FG 分别是△ABC 的边AB ,AC 的垂直平分线,若BC =10,则△ADF 的周长是多少?图1-3-45.已知,如图1-3-5所示,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F,求证:DE=DF.【思维拓展】6.如图1-3-6,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是()5A.3 B.4C.6D.7.已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D到AB的距离为()A.18 B.16 C.14 D.128.如图1-3-7,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处Array 9.如图1-3-8,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为____.。

第九讲培优竞赛垂直平分线与角平分线辅导题

第九讲培优竞赛垂直平分线与角平分线辅导题

第九讲全等三角形培优竞赛---- 线段的垂直平分线与角平分线一、线段垂直平分线1、线段垂直平分线的性质(1)线段的对称轴是(2)垂直平分线性质定理:定理的几何符号表示:如图12、线段垂直平分线判定定理:定理的几何符号表示:如图1,定理的作用:证明一个点在某线段的垂直平分线上•3、关于三角形三边垂直平分线的性质(1)三角形三边的垂直平分线 ________ ,并且这一点到________ 的距离相等(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形_________ ;[ 若三角形是直角三角形,则它三边垂直平分线的交点是 _________ ;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形__ /"/.-.:■■■■■...;经典例题:「「," 例1 如图1,在△ ABC中,BC = 8cm, AB的垂直平分线交AB于点D,交边AC于点E ,△ BCE的周长等于18cm,贝U AC的长等于()A. 6cmB. 8cmC. 10cmD. 12cm针对性练习:已知:1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D, 交AC于点E,如果△ EBC的周长是24cm,那么BC=C 2)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△ EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果/ A=28度,那么/ EBC是例2.已知:在厶ABC中,ON是AB的垂直平分线,OA=OC 求证:A 点O在BC的垂直平分线求证:BD= AO CD.针对性练习:已知如图,在△ ABC 中,AB=AC O 是厶ABC 内一点,且OE=OC 求证:AC 垂直平分BC.例3.在厶ABC 中,AB=AC ,AB 的垂直平分线与边 AC 所在的直线相交所成锐角为 50°,△ ABC 的顶角/ B 的大小为 __________________ 。

八年级数学上册第10讲线段的垂直平分线培优(无答案)(新版)湘教版

八年级数学上册第10讲线段的垂直平分线培优(无答案)(新版)湘教版

——————————教育资源共享步入知识大海————————第10 讲线段的垂直均分线【例2】如图,在△ABC中,AB=AC, BC=12, ∠BAC =120°,AB 的垂直均分线交BC边于点E, AC 的垂直均分线交BC边于点N.A姓名:________ (1) 求∠EAN的度数.一、知识点(2) 求△AEN的周长.(3) 判断△AEN的形状. DM1. 垂直均分线的定义:把垂直且均分一条线段的直线叫做这条线段的垂直均分线B CE N如下图:直线 C D既垂直于线段AB,又均分线段AB,所以直线CD是线段AB的垂直均分线C注意:(1)直线 C D是线段AB的垂直均分线,则 C D⊥AB,OA=OB;(2)若CD⊥AB,OA=O,B那么直线CD是线段AB的垂直均分线.2. 线段的垂直均分线的性质与判断:O BA 变式练习: 1. 在△ABC中,AB=AC,∠BAC=120°,AB的垂直均分线交BC于M,交AB 于E,AC的垂直均分线交BC于N,交A C于F,求证:BM=MN=N C.(1)性质:垂直均分线上的点到线段两头点的距离相等.CDP(2)判断:到线段两头点的距离相等的点在线段的垂直均分线上.如下图:若点P 在线段AB的垂直均分线上,则PA=PB;O BA反过来,若PA=PB,则点P 在线段AB的垂直均分线上.3. 线段的垂直均分线的作法 2. 如图,△ABC中, ∠BAC =70°, BC=12,AB 的垂直均分线交BC边于点E, AC 的垂直均分线交BC边于点N.D求: ∠EAN的度数.A如图,已知线段AB,作线段AB的垂直均分线.作法:MD(1)分别以 A 点和B 点为圆心,以大于12AB 的长为半径画弧,CA B N E CB两弧订交于点C和点D; .【例3】如图,在△ABC中,AB=AC,∠A=40°,AB的垂直均分线MN交AC于D,求∠DBC度数.D (2)作直线CD,直线CD就是线段AB的垂直均分线.二、典型例题A【例1】如图,在△ABC中,已知AC=27,AB的垂直均分线交AB于点D,交AC于点E,△BCE的周长等于50,求BC的长.DE变式练习:如图,等腰△ABC中,AB=AC,AB 的垂直均分线MN交AC于点D,∠DBC=1°5,则∠ AB C的度数是度.变式练习:如图,DE是△ABC中AC边上的垂直均分线,假如BC=9cm,AB=11cm,求△EBC的周长.金戈铁骑6. 如下图,∠1=∠2,DE∥AC,EF⊥AD交BC的延伸线于点F,求证:∠ 3 =∠B.A三、讲堂练习E12 37. 如下图,已知点P 是∠AOB内一点,点P 对于OA,OB的对称点分别为P1,P2 ,连结P1D C AF1. A B C在联谊会上,有、、三名选手站在一个三角形的三个极点地点上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公正,则凳子应放的最适合的地点是在△ABC的()A.三边中线的交点 B .三条角均分线的交点C.三边垂直均分线的交点 D .三边上高的交点PO B 2.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直均分线,DE交AB于点D,交AC于点E,连接BE.以下结论①BE 均分∠ABC;②AE=BE=B;C③△BEC周长等于AC+BC;④E点是AC的中点.P2此中正确的结论有(填序号)8. 如图,在△ABC中,AB的垂直均分线交BC边于点M,AC的垂直均分线交BC边于点N,若MN=4,△AMN的周长为16,求BC的长.ADE3. 在△ABC中,AB=AC,AH⊥BC于点H,M是AH上一点,CD⊥B M的延伸线于点D,比较BMC 和CD的大小关系.BN MA9.如下图,在△ABC中,AC=5,EF 垂直均分BC,点P 为直线EF上的任一点,则AP+BP的最小值是. DMBCH4. 如下图,长方形纸片ABCD,AB=2,点E在BC上,若将纸片沿AE折叠,点 B 恰巧落在AC上的点 F 处,若∠ACB=30°,求AC的长.四、课外作业DA1.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直均分线MN交AC于D,则∠DBC= 度.FC B E5. 如图,四边形ABCD中,点 E 是BC的中点,点 F 是CD的中点,AE⊥BC,AF⊥C D,求证:AB=AD.D 2.如图,DE是△ABC中AC边上的垂直均分线,假如BC=9cm,AB=11cm,求△EBC的周长.AFBCE金戈铁骑3. 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的均分线与AB的垂直均分线交于点O,将∠C沿EF(E在BC上,F 在AC上)折叠,点C与点O恰巧重合,求∠OEC大小.金戈铁骑。

角平分线与垂直平分线培优练习

角平分线与垂直平分线培优练习

1:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,假设AC=6,BC=4,求△BCF 的周长。

〔垂直平分线的性质〕2、:如图,A B ∥CD ,∠BAC 的角平分线与∠DCA 的角平分线交于点M ,经过M 的直线EF 与AB 垂直,垂足为F且EF 与CD 交于E求证:点M 为EF 的中点3、如图,△ABC 中,AD 为∠BAC 的平分线,AD 接AF 。

求证:∠B=∠CAF4:如下图,在△ABC 中,AB=AC ,∠BAC=1200,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,E 、G 在BC 上,BC=15cm ,求EG 的长度。

〔连AE ,AG 〕A5::如下图,Rt △ABC 中,,D 是AB 上一点,BD=BC ,过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F 。

求证:BE 垂直平分CD 。

〔证全等〕CEA D BF1.如图,∠A =520,O 是AB 、AC 的垂直平分线的交点,那么∠OCB = 。

2.如图,AB =AC ,∠A =440,AB 的垂直平分线MN 交AC 于点D ,那么∠DBC = 。

3.如图,在△ABC 中,∠C =900,∠B =150,AB 的中垂线DE 交BC 于D 点,E 为垂足,假设BD =8,那么AC = 。

4.如图,在△ABC 中,AB =AC ,DE 是AB 的垂直平分线,△BCE 的周长为24,BC =10,那么AB = 。

5.如图,EG 、FG 分别是∠MEF 和∠NFE 的角平分线,交点是G , BP 、CP 分别是∠MBC 和∠NCB 的角平分线,交点是P ,F 、C 在 AN 上,B 、E 在AM 上,假设∠G =680,那么∠P = 。

6.如图,O 为∠A 与∠C 的平分线的交点,OE ⊥AC 于E ,假设OE=2那么点O 到AB 的距离与O 到CD 的距离的 和是_____;7.如图,在△ABC中,∠C=090,点E 为BC 上一点,ED ⊥AB 于D ,并且ED=EC ,AE=BE ,那么∠EAC 与∠B 的大小关系是_____8.如图,∠BAC=090 ,PM 、QN 分别垂直平分AB 、AC ,垂足分别为M 、N ,交BC 于P 、Q ,那么∠PAQ=____〔用含α的式子表示〕9.如图在△ABC 中,∠BAC=072,∠B=068,AB 、AC 的垂直平分线分别交BC 于D 、E ,求∠EAD 的度数。

沪教版 八年级数学 暑假同步讲义 第20讲 线段垂直平分线及角平分线(解析版) 培优

沪教版 八年级数学 暑假同步讲义  第20讲 线段垂直平分线及角平分线(解析版) 培优

线段的垂直平分线和角平分线内容分析线段的垂直平分线和角平分线是八年级数学上学期第十九章第四节内容,主要对线段的垂直平分线和角平分线进行讲解,重点是线段的垂直平分线和角平分线定理的理解,难点是线段的垂直平分线和角平分线定理的运用.通过这节课的学习一方面为我们后期学习直角三角形提供依据,另一方面也为后面学习勾股定理奠定基础.知识结构模块一:线段的垂直平分线知识精讲一、线段的垂直平分线的性质及逆定理1、线段的垂直平分线上的任意一点到这条线段的两个端点的距离相等;注意:垂直平分线中的垂直是相互的,而平分则要看清楚到底是谁被平分.2、和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2 / 15【例1】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=︒,DE 垂直平分AB 于点D ,交AC于点E .求证:DE CE =.【解析】连接BE∵DE 垂直平分AB 于点D , ∴EB AE =, ∴︒=∠=∠30ABE A∵︒=∠+∠90ABC A ,30A ∠=︒, ∴︒=∠60ABC ,∴︒=∠30EBC .可证BCE BDE ≌△△()S A A ..,则CE DE =.【总结】本题主要考查直角三角形的性质以及线段垂直平分线的性质.【例2】 已知:如图,在ABC ∆中,90ACB ∠=°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD M ,为垂足,DE 交AC 于点F .求证:E 在AF 的垂直平分线上.【解析】∵EM 垂直平分BD ,∴ED EB =,∴D B ∠=∠∵90ACB ∠=°,∴︒=∠+∠90B A ,︒=∠+∠90DFC D ∴DFC A ∠=∠ ∵AFE DFC ∠=∠, ∴AFE A ∠=∠,∴EF AE = ∴E 在AF 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例3】 如图,ABC ∆中,AD 是BAC ∠的平分线,点E 在BC 延长线上,且例题解析DEABCABACONNMGFEDC BABAE ACE ∠=∠.求证:点E 在AD 的垂直平分线上.【解析】∵AD 是BAC ∠的平分线,∴DAC BAD ∠=∠∵BAD DAE BAE ∠+∠=∠,DAC ADE ACE ∠+∠=∠,又BAE ACE ∠=∠ ∴DAE ADE ∠=∠ ∴ED EA =∴点E 在AD 的垂直平分线上.【总结】本题一方面考查三角形的外角性质,另一方面考查线段垂直平分线逆定理的运用.【例4】 已知:在ABC ∆中,90ACB ∠=,30A ∠=°,BD 平分B ∠交AC 于点D .求证:点D 在AB 的垂直平分线上.【解析】∵︒=∠+∠90ABC A ,30A ∠=︒,∴︒=∠60ABC ,∵BD 平分B ∠,∴︒=∠30DBA ∴ABD A ∠=∠,∴BD AD = ∴点D 在AB 的垂直平分线上.【总结】本题一方面考查直角三角形的性质,另一方面考查线段垂直平分线逆定理的运用.【例5】 已知:在ABC 中,ON 是AB 的垂直平分线, OA OC =.求证:点O 在线段BC 的垂直平分线.【解析】∵ON 是AB 的垂直平分线, ∴OB OA =∵OA OC =,∴OC OB = ∴点O 在线段BC 的垂直平分线.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例6】 如图,在△ABC 中,∠A =30°,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD .求证:AF = FG = BG . 【答案】见解析【解析】∵DE 垂直平分AB ,4 / 15GF ECBAEDCBA∴︒=∠=∠30DAB A ∵FM 垂直平分AD , ∴DF AF =, ∴FDA A ∠=∠,∴︒=∠+∠=∠60ADF A DFE 同理可得:︒=∠60DGB , ∴DFG △是等边三角形, ∴BG FG DF ==又∵DF AF =,BG DG =, ∴AF = FG = BG .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.【例7】 如图,在△ABC 中,∠B =22.5°,边AB 的垂直平分线交BC 于点D ,DF ⊥AC ,并与BC 边上的高AE 交于点G . 求证:EG = EC . 【答案】见解析【解析】∵边AB 的垂直平分线交BC 于点D ,∴DA DB =,∴︒=∠=∠5.22B BAD ∴︒=∠+∠=∠45BAD B ADC , ∴ADE △为等腰直角三角形, ∴AE DE =证得:()A S A ACE DGE ..≌△△, ∴EG = EC .【总结】本题主要考查等腰直角三角形的性质以及线段垂直平分线的性质.【例8】 如图,已知:△ABC 中,AB = CB ,点D 在线段AC 上,且AB = AD ,∠ABC =108°,过点A 作AE ∥BC ,交∠ABD 的平分线于E ,联结CE . 求证:BD 垂直平分EC .【解析】连接ED∵AB = CB ,∠ABC =108°,∴︒=∠=∠36BCA BAC ∵AB = AD ,∴︒=∠=∠72ADB ABD , ∴︒=︒-︒=∠3672108DBC∵BE 平分ABD ∠,∴︒=∠=∠36EBD ABE ∵AE ∥BC ,∴︒=︒-︒=∠72108180BAE , ∴BEA BAE ∠=∠,∴BE BA =又∵AB = CB ,∴BC BE =证得:()S A S BCD BED ..≌△△,∴CD DE =∵BE BA =,CD DE =,∴ BD 垂直平分EC .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.二、 角平分线的性质定理和角平分线的性质定理的逆定理1、 角的平分线上的点到这个角两边的距离相等.2、 在一个角的内部(包括顶点)到这个角两边距离相等的点,在这个角的平分线上注意:角的平分线可以看作是在这个角的内部(包括顶点)到这个角两边距离相等的点的集合.【例9】 如图,//AD BC AC ,平分BAD ∠,BE 平分ABC ∠,交CD 于点E ,交AC 于点F .求证:点F 到EA EC 、的距离相等. 【答案】见解析【解析】∵AC 平分BAD ∠,∴DAC BAC ∠=∠∵BC AD ∥,∴DAC ACB ∠=∠ ∴BAC ACB ∠=∠,∴BC AB =证得:()S A S CBE BAE ..≌△△,∴CEB AEB ∠=∠ ∴点F 到EA EC 、的距离相等.【总结】本题主要考查角平分线的意义和逆定理的运用.例题解析知识精讲模块二:角平分线AFBDEC6 / 15FG EBPON CDM A 【例10】 如图,90B C ∠=∠=°,M 是BC 的中点,DM 平分ADC ∠.求证:AM 平分DAB ∠. 【答案】见解析【解析】过M 作MN ⊥AD ,垂足为N∵DM 平分ADC ∠,∴CM MN =∵M 是BC 的中点,∴MB CM =,∴MB MN = ∴AM 平分DAB ∠.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例11】已知:如图,//AD OB OC ,平分AOB P ∠,是OC 上一点,过点P 作直线MN ,分别交AD OB 、于点M 和N ,且MP NP =. 求证:点P 到AO 和AD 的距离相等. 【答案】见解析【解析】过P 作PE ⊥OB 于点E ,PF ⊥OA 于点F ,PG ⊥AD 于点G .∵OC 平分AOB ∠,∴PF PE =可证得:()S A A PGM PEN ..≌△△,则PG PE =,∴PG PF = ∴点P 到AO 和AD 的距离相等.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例12】如图,AD 为ABC ∆的角平分线,//DE AC ,交AB 于E ,过E 作AD 的垂线交BC 延长线于F . 求证:B FAC ∠=∠.【解析】∵AD 为ABC ∆的角平分线,∴DAC BAD ∠=∠∵//DE AC ,∴DAC EDA ∠=∠ ∴EDA BAD ∠=∠,∴AE DE = ∵AD EF ⊥,∴EF 垂直平分AD , ∴FD FA =,∴FDA FAD ∠=∠∵DAC FAC FAD ∠+∠=∠,BAD B FDA ∠+∠=∠ ∴B FAC ∠=∠.【总结】本题主要考查线段垂直平分性质定理及平行线+角平分线可以得到等腰三角形这个基本模型的运用.CMA DBABC DEF【例13】 已知:如图,在等腰直角三角形ABC 中,90ACB ∠=°,D 为BC 的中点,且DE AB ⊥,垂足为点E ,过点B 作//BF AC 交DE 的延长线于点F ,联结CF .(1)求证:AD CF ⊥;(2)联结AF ,试判断ACF ∆的形状,并说明理由.【解析】(1)∵ABC △为等腰直角三角形,∴︒=∠=∠45CBA CAB ∵//BF AC ,∴︒=∠45ABF证得:FBE DBE ≌△△,则可得DB BF = ∵D 为BC 的中点,∴DB CD =,∴BF CD = 证得:()S A S BCF CAD ..≌△△,∴BCF CAD ∠=∠∵︒=∠+∠90ACF BCF ,∴︒=∠+∠90ACF CAD ,∴AD CF ⊥; (2)等腰三角形.由(1)可得:AF AD =,CF AD =,∴CF AF = ∴ACF △是等腰三角形.【总结】本题主要考查等腰直角三角形的性质,本题(1)中的全等是一个基本模型,要注意理解,在后期证明中也会经常用到.【例14】如图,AP BP 、分别平分MAB ∠和NBA ∠,PC PD 、分别垂直于AM BN 、,如果123AC cm CP cm BD cm ===,,,那么PD =_______,AB = _________.【答案】2cm ,4cm .【解析】过P 作PE ⊥AB 于E .∵AP BP 、分别平分MAB ∠和NBA ∠ ∴2===PD PE PC可证:()S A A PEA PCA ..≌△△,()S A A PDB PEB ..≌△△ 则CE AC =,BE BD = ∴431=+=+=EB AE AB【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例15】如图,ABC ∆中,90C ∠=°,点O 为ABC ∆的三条角平分线的交点,OD BC ⊥,OE AC ⊥,OF AB ⊥,点D E F 、、分别为垂足,且1086AB BC CA ===,,,则点OPBCAM NDAEFABCDEF8 / 15GFEDCBA GFDA到三边AB AC 、和BC 的距离分别为_______. 【答案】2. 【解析】∵24862121=⨯⨯=⋅⋅=BC AC S ABC △ ∴ABC ABO OBC AOC S S S S =++△△△△111108624222OF OD OE =⨯⨯+⨯⨯+⨯⨯=∵点O 为ABC ∆的三条角平分线的交点, ∴OF OE OD == ∴2=OD【总结】本题一方面考查角平分线的性质定理,另一方面考查等积法的运用.【例16】如图,在ABC ∆中,90ACB ∠=°,AC BC =,AD 是BC 边上的中线,过C 作CF AD ⊥,E 为垂足,延长CE 交AB 于F .求证:ADC BDF ∠=∠. 【答案】见解析【解析】过B 作BG ∥AC 交CF 的延长线于G .证得:()A S A BCG CAD ..≌△△, ∴BG CD =,G ADC ∠=∠ ∵D 为BC 的中点, ∴DB CD =,∴BG BD =证得:()S A S GBF DBF ..≌△△,则可得G BDF ∠=∠ ∴ADC BDF ∠=∠【总结】本题一方面考查直角三角形的性质,另一方面考查全等的基本模型.【例17】如图,已知正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AE DC CE =+.求证:AF 平分DAE ∠.EQ PDCBA 【答案】见解析【解析】连接EF 交AD 的延长线于G .可证得:()A S A ECF GDF ..≌△△,则DG CE =,FG EF = ∵BC AD =,AE DC CE =+ ∴AE AG =可证得:()S S S AGF AEF ..≌△△, ∴GAF EAF ∠=∠ 即AF 平分DAE ∠.【总结】本题主要考查利用中线倍长构造全等,总而证明角平分线的成立.【例18】已知:如图,正方形ABCD 的边长为1,AB AD 、上各有一点P Q 、,若APQ∆的周长为2.求PCQ ∠的度数. 【答案】45°.【解析】∵APQ ∆的周长为2,∴2=++PQ AP AQ .∵正方形ABCD 的边长为1,∴2=+++PB AP AD AQ ∴BP DQ PQ +=. 延长PB 至E ,使得BE =DQ可证:()S A S CBE CDQ ..≌△△,则CE CQ =,BCE DCQ ∠=∠ ∵BP DQ PQ +=,DQ BE =,∴EP PQ = 可证:()S S S CPE CPQ ..≌△△,∴PCE QCP ∠=∠ ∵︒=∠+∠90BCQ DCQ ,BCE DCQ ∠=∠, ∴︒=∠+∠90BCQ BCE ,即︒=∠90QCE 又∵︒=∠+∠90PCE QCP ,PCE QCP ∠=∠ ∴︒=∠45PCQ【总结】本题综合性较强,主要考查了全等的运用,以及截长补短辅助线的添加,最终目的是构造全等,在解题时要注意认真分析.【习题1】ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,且OC BC =,则A∠随堂检测10 / 15EODCBA=________. 【答案】30°【解析】∵ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,∴OC OB OA ==∴OCB B ∠=∠,ACO A ∠=∠ ∵︒=∠+∠+∠+∠180ACO A OCB B ∴︒=∠+∠90OCB ACO ,即︒=∠90ACB ∵OC BC =∴OBC △为等边三角形,∴︒=∠60B ∵︒=∠+∠90A B ,∴︒=∠30A .【总结】本题主要考查线段垂直平分线性质以及等边三角形的性质.【习题2】 △ABC 中,AB = AC ,AC 的中垂线交AB 于E ,△EBC 的周长为20cm ,AB = 2BC ,则腰长为___________.【答案】cm 340.【解析】∵AC 的中垂线交AB 于E ,∴EC AE =∵△EBC 的周长为20cm ,∴20=+=++BC AB EC BC EB∵AB = 2BC ,∴340=AB【总结】本题主要考查线段垂直平分线性质以及等腰三角形的性质.【习题3】 如图所示,AB //CD ,O 为∠A 、∠C 的平分线的交点,OE ⊥AC 于E ,且OE =2, 则AB 与CD 之间的距离等于___________. 【答案】4【解析】过O 作OF ⊥AB 于F ,OG ⊥CD 于G∵O 为∠A 、∠C 的平分线的交点,∴2===OG OF OE , ∵AB //CD , ∴F 、O 、G 三点共线,∴4=FG . 【总结】本题主要考查角平分线性质以及平行线的性质. 【习题4】ABC ∆中,AD 平分BAC ∠,DE DF 、分别垂直于AB AC 、,垂足分别为E F 、,如果48ABC S ∆=,79AC AB ==,,则DF =______________. 【答案】6【解析】∵AD 平分BAC ∠,∴DF DE =∵487219212121=⨯⨯+⨯⨯=⋅⋅+⋅⋅=+=DF DE DF AC DE AB S S S ADC ABD ABC △△△MNABC ∴6=DF【总结】本题主要考查角平分线性质以及等积法的运用.【习题5】 已知:点A 和点D 都是线段BC 外一点,且AB = AC ,DB = DC ,E 是AD 上一点.求证:BE = CE .【答案】见解析【解析】∵AB = AC ,∴A 在线段BC 的垂直平分线上,∵DB = DC ,∴D 在BC 的垂直平分线上, ∴AD 是BC 的垂直平分线 ∵E 是AD 上一点 ∴BE = CE【总结】本题主要考查线段垂直平分线性质定理及其逆定理的运用.【习题6】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=°,MN 是AB 的垂直平分线.求证:12CM AM =.【答案】见解析. 【解析】∵MN 是AB 的垂直平分线,∴︒=∠=∠30MBA A∵90C ∠=°,30A ∠=°,∴︒=∠60CBA ,∴︒=︒-︒=∠303060CBM , ∴NBM CBM ∠=∠,∴MN CM =. 在直角△AMN 中,︒=∠30A ,则AM MN 21=,∴AM CM 21=. 【总结】本题主要考查线段垂直平分线性质以及直角三角形的性质.【习题7】 已知:如图,ABC ∆中,90A ∠=°,AB AC BD ==,ED BC ⊥.求证:AE DE DC ==. 【答案】见解析 【解析】连接BE可证:()L H BDE BAE .≌△△,∴DE AE = ∵90A ∠=°,AB AC =, ∴︒=∠45C ∵ED BC ⊥∴△DEC 为等腰直角三角形, ∴DC DE =BEACD12 / 15ABCDOEF∴AE DE DC ==【总结】本题一方面考查了直角三角形全等的判定方法,另一方面考查了等腰直角三角形的性质,由于部分学生还未学过(H .L )的判定定理,因此可选择性的讲解.【习题8】 如图,在ABC ∆中,BD 平分ABC ∠,EF 垂直平分BD 交CA 延长线于E .求证:EAB EBC ∠=∠. 【答案】见解析【解析】∵EF 垂直平分BD∴ED EB = ∴EDB EBD ∠=∠ ∵BD 平分ABC ∠, ∴ABD DBC ∠=∠∵ABD EDB EAB ∠+∠=∠,DBC EBD EBC +∠=∠ ∴EAB EBC ∠=∠【总结】本题一方面考查线段垂直平分线的性质定理,另一方面考查三角形外角性质的运用.【习题9】 已知:如图,在凹四边形ABCD 中,EO 垂直平分BC ,FO 垂直平分AD ,EO与FO 相交于点O ,且AB CD =. 求证:ABO DCO ∠=∠. 【答案】见解析 【解析】连接OD 、OA∵EO 垂直平分BC ∴OC OB = ∵FO 垂直平分AD ∴OD OA =可证:()S S S DOC AOB ..≌△△ ∴ABO DCO ∠=∠.【总结】本题主要考查线段垂直平分线以及角平分线性质定理的综合的运用.课后作业ABCDEF【作业1】 如图,Rt ABC ∆中,90C ∠=°,AD 平分BAC ∠,DE AB ⊥于E ,如果14DC cm AB cm ==,,那么ABD S ∆=___________.【答案】2【解析】∵AD 平分BAC ∠,DE AB ⊥,90C ∠=°, ∴1==DE CD∴2142121=⨯⨯=⋅⋅=DE AB S ABD △.【总结】本题主要考查角平分线性质定理的运用.【作业2】 如图,已知ABC ∆中,DE 是AC 的垂直平分线,5AC =,ABD ∆的周长为13,求ABC ∆的周长. 【答案】18【解析】∵DE 是AC 的垂直平分线,∴DC AD =∵ABD ∆的周长为13, ∴13=++AD BD AB ∴ABC ∆的周长为:AB AC BC AB AC BD DC AB AC BD AD ++=+++=+++13518=+=.【总结】本题主要考查线段垂直平分线性质定理的运用.【作业3】 如图,在ABC ∆中,已知点D 在BC 上,且DB AD BC +=.求证:点D 在AC的垂直平分线上. 【答案】见解析【解析】∵DB AD BC +=,BC DC DB =+∴DC AD =∴点D 在AC 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理逆定理的运用,证明点在线段垂直平分线上. 【作业4】 如图,在ABC ∆中,AB AC =,120BAC ∠=°,AC 的垂直平分线DE 交BC 于D E ,为垂足,且18BC cm =,求DE 的长.【答案】3cm【解析】∵AB AC =,120BAC ∠=°,∴︒=∠=∠30C B∵AC 的垂直平分线DE 交BC 于D ∴DC AD =,︒=∠=∠30CAD C ,ABCEDAB C DD BACEADBEC14 / 15ED CBA ∴︒=︒-︒=∠9030120BAD在直角△BAD 中,︒=∠30B ,则BD AD 21= ∴182=+=+=DC DC DC BD BC ∴6=DC在直角△CED 中,︒=∠30C ,则321==DC DE .【总结】本题主要考查线段垂直平分线性质定理及其直角三角形性质的运用.【作业5】 如图,正方形ABCD 的边长为1,AE 是CAB ∠的平分线,交BC 于点E ,则点E 到AC 的距离为___________. 【答案】12-.【解析】过E 作EF ⊥AC ,垂足为F可得:△CEF 为等腰直角三角形, 则由勾股定理可得:EF CE 2=∵AE 是CAB ∠的平分线,EF ⊥AC ,90B ∠= ∴BE EF = 又∵1=+EB CE ∴12=+EF EF ∴12-=EF【总结】本题综合性较强,主要考查了角平分线的性质以及正方形的性质,还运用勾股定理计算线段长.【作业6】 如图,已知ABC ∆中,点E 是AB 延长线上的一点,AE AC AD =,平分BAC ∠,BD = BE .求证:2ABC C ∠=∠. 【答案】见解析【解析】由题意,易得:()S A S ACD AED ..≌△△则:C E ∠=∠∵BD = BE ,∴BDE E ∠=∠ ∴C E DBE E ABC ∠=∠=∠+∠=∠22ABCDE【总结】本题主要考查等边对等角以及三角形外角性质的运用,解题时注意分析,当看到证明一个角是另一个角的两倍时,通常都考虑采用外角性质证明.【作业7】 如图,在ABC ∆中,AD BC ⊥于D ,AC CD BD +=.求证:2C B ∠=∠. 【答案】见解析【解析】在BD 上截取一点E ,使得DE =DC∵DC DE =,AC CD BD += ∴AC BE =可证:AED ACD ≌△△,则AE AC =,AED C ∠=∠ ∴AE BE =,∴BAE B ∠=∠ ∴C B BAE B AED ∠=∠=∠+∠=∠22 ∴2C B ∠=∠【总结】本题一方面考查了截长补短辅助线的添加,主要是看到两条线段和等于第三条线段的模型,另一方面考查了证明一个角是另一个角的两倍的基本模型,通常都考虑采用外角性质证明.ABCD。

线段的垂直平分线、角平分线经典习题及答案#精选、

线段的垂直平分线、角平分线经典习题及答案#精选、

3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。

例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。

求证:直线AB 是线段CD 的垂直平分线。

AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。

⊥⊥DE AB FG ACAB E G C例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。

求证:BE垂直平分CD。

CEFA D B例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与F,求证:OE=OF例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。

E,DF AC FAEB M CFD答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE最新文件仅供参考已改成word文本。

专题13.2线段的垂直平分线专题(限时满分培优训练)-【拔尖特训】2024-2025学年八年级数学上

专题13.2线段的垂直平分线专题(限时满分培优训练)-【拔尖特训】2024-2025学年八年级数学上

【拔尖特训】2024-2025学年八年级数学上册尖子生培优必刷题(人教版)专题13.2线段的垂直平分线专题(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•防城港期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.8B.6C.4D.22.(2022秋•东宝区期末)和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点3.(2022秋•黄石港区期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AB,AC于点M,N,△BCN的周长是7cm,则BC的长为()A.4cm B.3 cm C.2cm D.1cm4.(2022秋•长安区校级期末)某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处5.(易错题)(2023秋•青秀区校级月考)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC 的数量关系是()A.2∠BOC+∠BPC=360°B.∠BOC+2∠BPC=360°C.3∠BOC﹣∠BPC=360°D.4∠BPC﹣∠BOC=360°6.(易错题)(2022秋•汉南区校级期末)如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I 为三个角的平分线的交点,若∠BOC的度数为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°7.(易错题)(2022秋•东阿县校级期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠OEB =46°,则∠AOC=()A.92°B.88°C.46°D.86°8.(易错题)(2022春•雅安期末)如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=40°,则∠BAC=()A.105°B.100°C.110°D.140°9.(培优题)(2022春•舞钢市期末)如图,四边形ABCD中,DE和DF恰好分别垂直平分AB和BC,则以下结论不正确的是()A.AD=CD B.∠B=∠A+∠CC.∠EDF=∠ADE+∠CDF D.BE=BF10.(培优题)(2022春•周村区期末)如图,在△ABC中,∠BAC=80°,边AB的垂直平分线交AB于点D,交BC于点E,边AC的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.35°B.30°C.25°D.20°二.填空题(共6小题)11.(2022秋•句容市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长.12.(2022秋•德城区校级期末)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线DE交BC于点E,交AC于点D,∠B=70°,∠F AE=19°,则∠C=°.13.(易错题)(2023春•甘州区校级期末)如图,在△ABC中,AC的垂直平分线与AC,BC分别交于点E,D,CE=4,△ABC的周长是25,则△ABD的周长为.14.(易错题)(2023春•荔湾区期末)在平面直角坐标系中,已知A(8,0),B(0,4),作AB的垂直平分线交x轴于点C,则点C坐标为.15.(2023春•振兴区校级期中)如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=26°,∠EBD=25°,则∠AED=.16.(2023春•振兴区校级期中)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为11cm,分别连接OA、OB、OC,若△OBC的周长为23cm,则OA的长为.三.解答题(共7小题)17.(2023•渭南一模)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD 垂直平分EF.18.(2022春•合浦县期中)如图,已知点D是BC上一点,DE⊥AB,DF⊥AC,垂足分别为E、F,连接AD,若AD垂直平分EF,求证:AD是△ABC的角平分线.19.(易错题)(2023春•新民市期中)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.20.(易错题)(2023春•丰城市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=9,求△AEG的周长.(2)若∠BAC=130°,求∠EAG的度数.21.(培优题)(2023春•榆林期末)如图,在△ABC中,AC边的垂直平分线分别交BC、AC于点E、F,连接AE,作AD⊥BC于点D,且D为BE的中点.(1)试说明:AB=CE;(2)若∠C=32°,求∠BAC的度数.22.(培优题)(2023春•定边县校级期末)已知,如图,AD是△ABC的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠B=40°,求∠AEF的度数;(2)求证:∠B=12∠AED.23.(培优题)(2023春•兴庆区校级期末)如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.(1)若△CDE的周长为4,求AB的长;(2)若∠ACB=100°,求∠DCE的度数;(3)若∠ACB=a(90°<a<180°),则∠DCE=.。

线段的垂直平分线的性质及其应用两套资料培优教学案精编

线段的垂直平分线的性质及其应用两套资料培优教学案精编

线段的垂直平分线----知识讲解(一)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题. 【要点梳理】要点一、线段的垂直平分线 1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线. 2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线. 要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线. 要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合. 要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心. 要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.举一反三:【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【变式2】(2015秋•江阴市校级月考)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.类型二、线段的垂直平分线的逆定理2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.【总结升华】本题需要注意的是对于线段垂直平分线性质定理的逆定理的应用,部分学生可能错误地认为“因为到线段两端距离相等的点在线段垂直平分线上,所以已知AB=AC就可以说明AD是线段BC的垂直平分线了”,但却忽略了“两点确定一条直线”,所以只有当AB=AC,DB=DC时,才能说明AD是线段BC的垂直平分线.举一反三:【变式】如图,P是∠MON的平分线上的一点,PA⊥OM,PB⊥ON,垂足分别为A、B.求证:PO垂直平分AB.3、已知:如图,AB=AC ,DB=DC ,E 是AD 上一点. 求证:BE=CE .B【总结升华】本题综合运用了线段垂直平分线的性质定理及其逆定理,通过本例要学会灵活运用这两个定理解决几何问题,性质定理可以用来证明线段相等,本题中要注意必须有和已知线段两端距离相等的两个点才能确定垂直平分线这条直线.4、如图所示,在Rt △ABC 中,∠ACB=90°,AC=BC ,D 为BC 边上的中点,CE ⊥AD 于点E ,BF ∥AC 交CE 的延长线于点F ,求证:AB 垂直平分DF .【思路点拨】先根据ASA 判定△ACD ≌△CBF 得到BF=CD ,然后又因为D 为BC 中点,根据中点定义得到CD=BD ,等量代换得到BF=BD ,再根据角度之间的数量关系求出∠ABC=∠ABF ,即BA 是∠FBD 的平分线,从而利用等腰三角形三线合一的性质求证即可.【总结升华】主要考查了三角形全等的判定和角平分线的定义以及线段的垂直平分线的性质等几何举一反三:【变式】如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N. 求证:CM=2BM.类型四、尺规作图5、(2016秋•西市区校级期中)电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P的位置.(尺规作图,不写作法,保留作图痕迹)【思路点拨】根据题意,P点既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔P的位置.【总结升华】此题考查了线段的垂直平分线和角的平分线的性质,属基本作图题.线段的垂直平分线——巩固练习(基础)【巩固练习】一.选择题 1.如图,在Rt△ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE=10°,则∠C 的度数为( )A .30° B.40° C.50° D.60°2.(2016春•宿州校级期末)如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm ,则△ADC 的周长为( )A .14cmB .13cmC .11cmD .9cm3.(2015•达州)如图,△ABC 中,BD 平分∠ABC,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A=60°,∠ABD=24°,则∠ACF 的度数为( )A .48°B .36°C .30°D .24°4.如图,已知直角三角形ABC 中,∠ACB=90°,E 为AB 上一点,且CE=EB ,ED⊥CB 于D ,则下列结论中不一定成立的是( ) A .AE=BE B .CE=21AB C .∠CEB=2∠A D.AC=21AB5.如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A、80°B、70°C、60°D、50°6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=().A.25° B.27° C.30° D.45°二.填空题7.(2015•徐州校级模拟)如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为cm.8.如图,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5 cm,BC=3 cm,则ΔPBC的周长=_____.9.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.10.如图,在△ABC中,∠C=90°,∠A=30°,CD=2cm, AB的垂直平分线MN交AC于D,连结BD,则AC的长是___________cm.11.如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD : ∠DBA =3:1,则∠A的度数为________.12.(2016秋•乌拉特前旗期末)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.三.解答题:13.(2015秋•武昌区期中)如图,在△ABC中,△ABC的周长为38cm,∠BAC=140°,AB+AC= 22cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G,求:(1)∠EAF的度数;(2)求△AEF的周长.14.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.15.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.线段的垂直平分线---知识讲解(二)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题. 【要点梳理】要点一、线段的垂直平分线 1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线. 2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线. 要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线. 要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合. 要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心. 要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:2.(2015秋•和县期中)如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三:【变式】如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长..要点二、线段的垂直平分线的逆定理3.(2016春•鄄城县期中)如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【总结升华】本题考查了线段的垂直平分线的应用,掌握线段垂直平分线的性质和判定定理是解题的关键.4.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC 于点F、G,若∠BAC=110°,则∠EAG=________.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,继而可求得答案.【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)线段的垂直平分线——巩固练习(提高)【巩固练习】一.选择题1.如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、6B、4C、6D、42.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、33.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确4.如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B5.如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB6.(2015秋•陆丰市校级期中)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上 B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上 D.点P在边BC的垂直平分线上二.填空题7.(2016•长沙)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.8.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________ .9.(2015•西宁)如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC 于D,E两点,则CD的长为______________.10.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_____ 度.11.如图:已知,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________ .12.如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△AB D的周长为_________ cm.三.解答题:13.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2-GE2=EA2.14.(2015秋•扬州校级月考)如图,∠ACB=90°,AC=BC,D为△ABC外一点,且AD=BD,DE⊥AC交CA的延长线于E点.求证:DE=AE+BC.15.(2016秋•农安县期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.。

北师大版数学七年级下全等三角形、角平分线、垂直平分线专题练习

北师大版数学七年级下全等三角形、角平分线、垂直平分线专题练习

D B C A O D
C B A
F D C B A
E
M
D C
B
A 全等三角形、角平分线、垂直平分线专题练习
一、角平分线
如图1,AC BC ,AD BD ,若AB 平分CAD ,根据角平分线的性质可得= ,若AB 平分CBD ,根据角平分线的性质可得= ,若AC=AD ,可以判定
平分,若BC=BD ,可以判定平分。

二、垂直平分线
如图2,若已知AB 垂直平分CD ,则可得= ;= 。

若已知CD 垂直平分AB ,则可得= ;= 。

2、点(x ,y )关于x 轴的对称点的坐标为(,),
点(x ,y )关于y 轴的对称点的坐标为(,),
3、关于直线l 对称的两个图形的对应线段的延长线交点在上,对应点连线段被直线l。

4、(-1,3)和(-1,-3)关于对称,(1,3)和(-1,3)关于对称
三、习题。

1、如图,90B C ,M 是BC 的中点,DM 平分ADC ,求证:AM 平分DAB 。

2、如图,90C ,AD 是BAC 的平分线,DE AB ,BD=DF ,求证:CF=EB 。

图1 图2。

线段的垂直平分线与角的平分线训练专题培优(新)

线段的垂直平分线与角的平分线训练专题培优(新)

线段的垂直平分线与角的平分线专题一、选择题:1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( )A .50︒B .65︒C .80︒D .95︒2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( )A .3:4B .4:3C .16:19D .不能确定 3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。

其中正确的有( )A .2个B .3个C .4个D .1个 4.如图4,AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是( )A .PD>PCB .PD<PC C .PD=PCD .无法判断5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。

6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( ) A 、①②③④ B 、①③ C 、②④ D 、②③④8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )A 、3㎝B 、4㎝C 、5㎝D 、不能确定 9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。

八年级数学专项练习——垂直平分线与角平分线(含答案解析)

八年级数学专项练习——垂直平分线与角平分线(含答案解析)

八年级数学专项练习——垂直平分线与角平分线(含答案解析)1.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在PA、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°2.如图所示,已知AB=AB1,A1B1=B1B2,A2B2=B2B3,A3B3=B3B4…,以此规律操作下去,若∠B=50°,则∠A n-1B n B n-1(n≥2)的度数为()A.B.C.D.3.如图,∠BAC=120°.若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.30°B.40°C.50°D.60°4.如图,在△ABC中,AC的垂直平分线PD与BC的垂直平分线PE交于点P,垂足分别为D,E,连接PA,PB,PC,若∠PAD=45°,则∠ABC=.5.如图,已知BD平分∠ABC,AD=CD,DE⊥AB于点E,DF⊥BC于点F,BC=12cm,AB=6cm,那么AE的长度为cm.6.△ABC的外角∠DAC的平分线交BC的垂直平分线线于P点,PD⊥AB于D,PE⊥AC于E.⑴求证:BD=CE;⑵若AB=5cm,AC=10cm,求AD长.答案解析1.解:∵∠ABC=80°,∴∠BMN+∠BNM=180°-80°=100°,∵M、N分别在PA、PC的中垂线上,∴MA=MP,NC=NP,∴∠MPA=∠MAP,∠NPC=∠NCP,∴∠MPA+∠NPC=12(∠BMN+∠BNM)=50°,∴∠APC=180°-50°=130°,故选:C.2.解:在△ABB1中,AB=AB1,∠B=50°,∴∠AB1B=50°,∵A1B1=B1B2,∠AB1B是△A1B1B2的外角,3.解:∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=120°,∴∠B+∠C=60°,∴∠PAB+∠QAC=60°,∴∠PAQ=60°,故选:D.4.解:∵AC的垂直平分线PD与BC的垂直平分线PE交于点P,∴PA=PB=PC,∴∠PCA=∠PAD=45°,∠PAB=∠PBA,∠PCB=∠PBC,∵∠PCA+∠PAD+∠PAB+∠PBA+∠PCB+∠PBC=180°,∴∠PAB+∠PBA+∠PCB+∠PBC=90°,∴∠PBC+∠PBA=45°,∴∠ABC=45°,故答案为:45.5.解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,又∵AD=CD,∴Rt△ADE≌Rt△DFC(HL),∴AE=CF,∴Rt△BDE≌Rt△BDF(HL),∴BE=BF,∵BE=AB+AE=6+AE,∴BF=6+AE.∴BC=6+AE+CF=12,即12=6+2AE,解得:AE=3(cm),故答案为:3cm.6.⑴证明:如图,连接BP、PC.∵PQ垂直平分线段BC,∴PB=PC,∵∠PAD=∠PAE,PD⊥AD,PE⊥AE,∴PD=PE,∠PDB=∠PEC=90°,在Rt△PBD和Rt△PCE中,∴Rt△PBD≌Rt△PCE(HL),∴BD=CE.⑵解:在Rt△APD和Rt△APE中,∴Rt△APD≌Rt△APE,∴AD=AE,设AD=AE=x,∵△PBD≌△PCE,∴BD=EC,∴AB+AD=AC-AE,∴5+x=10-x,∴x=2.5,∴AD=2.5.。

(完整版)垂直平分线与角平分线典型题

(完整版)垂直平分线与角平分线典型题

线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线与角的平分线专题
一、选择题:
1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒
,∠CAD=65︒
,则∠ACD 等于 ( )
A .50︒
B .65︒
C .80︒
D .95︒
2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( )
A .3:4
B .4:3
C .16:19
D .不能确定 3.如图3,在△ABC 中,∠C=90︒
,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。

其中正确的有( )
A .2个
B .3个
C .4个
D .1个 4.如图4,AD ∥BC ,∠D=90︒
,AP 平分∠DAB ,PB 平分∠
ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是
( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断
5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )
A 、三角形三条角平分线的交点;
B 、三角形三条垂直平分线的交点;
C 、三角形三条中线的交点;
D 、三角形三条高的交点。

6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )
A 、锐角三角形;
B 、直角三角形;
C 、钝角三角形;
D 、不能确定
7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( ) A 、①②③④ B 、①③ C 、②④ D 、②③④
8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )
A 、3㎝
B 、4㎝
C 、5㎝
D 、不能确定 9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。

A 、1 B 、2 C 、3 D 、4 二、填空题:
1、已知:线段AB 及一点P ,PA=PB ,则点P 在
上。

2、已知:如图,∠BAC=1200
,AB=AC,AC 的垂直平分线
交BC 于D 则∠ADC= 。

9题图 第2题
3、△ABC 中,∠A=500
,AB=AC,AB 的垂直平分线交AC
于D 则∠DBC 的度数 。

4、如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠
BAC=1260
,则∠EAG= 。

5、如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 。

4题 5题
A
C
P D C B A E D C B
A D C
B A E D
C B A
4 1 3 c b a
6、在△ABC中,AB、AC的垂直平分线相交于点P,则PA、
PB、PC的大小关系是。

7、在△ABC中,AB=AC, ∠B=580,AB的垂直平分线交AC于
N,则∠NBC=
8.如图,已知AB∥CD,O是∠ACD和∠BAC的平分线的交点,
OA=3,OB=4,AC=5,则两平行线AB、CD间的距离为___,
9.如图所示,已知PA⊥ON于A,PB⊥OM于B,且PA=
PB,∠MON=50°,∠OPC=30°,则∠PCA=____
10.如图所示,在ABC
中,∠C=90°,折叠后,使A、B
两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重
合,则∠A等于____度。

8题 9题
15、如图,在⊿ABC中,∠C=90º,AC=3,BC=4,
AB=5,角平分线AF和BG交于点D,DE⊥AB
于E,则DE长为______。

AE=______
12.已知如图,在△ABC中,BC=8,AB的中垂线交BC于
D,AC的中垂线交BC与E,则△ADE的周长等于
_________.
13、如图,△ABC中,DE是AC的垂直平分线,AE=3cm,
△ABD的周长为13cm,则△ABC的周长是 .
14、如图,AB=AC,∠BAC=90°,D是AB的
中点。

CE⊥BD交BA的延长线于F,BF=8,则△
ABC的面积是
四、如图,OA=OB,OC=OD,∠AOB=∠
COD=a,AC 、BD的角平分线交于点P,
(1)当AOC三点在同一直线上时,若a=60°,
∠APB+∠CPD的度数是
(2)当AOC三点在同一直线上时,
∠APB+∠CPD的度数是__(用含a的私自
表示)
(3)在(2)的条件下,当AOC不在同一直线上时,
(2)的结论是否还成立?请说理由E
O
D
C
B
A
N
O
P
M
C
B
A
E
D
C
B
A。

相关文档
最新文档