六年级数学圆柱和圆锥ppt课件.ppt

合集下载

数学人教版六年级下册《圆柱的认识》课件

数学人教版六年级下册《圆柱的认识》课件
因此,圆柱侧面积的 计算公式为:侧面积 = 底面周长 × 高。
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。

鲁教版(五四制)六年级数学上册:1.1 生活中的立体图形 课件(共31张PPT)

鲁教版(五四制)六年级数学上册:1.1 生活中的立体图形  课件(共31张PPT)

作业
完成课本习题。
生活中的立体图形
第二课时
教学目标
1.通过丰富的实ห้องสมุดไป่ตู้,进一步认识点、 线、面并初步感受点、线、面之间的关 系。
2.进一步经历从现实世界中抽象出 图形的过程,从构成图形的基本元素的 角度认识常见几何体的某些特征。
3.通过观察、分析、抽象概括,提 高认识空间图形的能力。
生活中的立体图形
练习2:给几何体分类
分类一
(1)
(2)
(3)
按“柱锥球划”分:
(4) (5)
(6)
(1)(2)(4)(6)是柱体;(5)是锥体;(3)是球体
分类一
(1)
(2)
(3)
(4) (5)
(6)
按面的曲或平划分:
(3)(4)(5)是一类,组成它们的面中至少有一个是曲 的;(1)(2)(6)一类,组成它们的各面都是平的。
生活中的立体图形
第一课时
教学目标
1.感受图形世界的丰富多彩。 2.在具体情境中认识圆柱、圆锥、 棱柱、棱锥、球,并能用自己的语言描 述它们的某些特征以及分类。
大家一起来参观我的书房
正长圆圆球方方柱锥体体
常见的几何体
正方体
长方体 圆柱 圆锥

这是什么东东啊? 是三棱柱吗? 三棱锥
棱柱
棱柱的特点
谢谢
直棱柱,简称棱柱, 它的侧面均为长方形, 我们本册书只研究直棱 柱。
斜棱柱
你能说说圆柱、圆锥、棱柱的形状具有哪些特征?
议 一 议

下底面都是圆,侧面

都是曲面。

不 同 点
有三个 面,上、下 两底面是形 状完全相同、 平行的两个 圆。

六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)

六年级下册数学课件-第3单元  圆柱与圆锥 丨人教新课标 (共88张PPT)

5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固

六年级数学下第三单元 圆柱与圆锥

六年级数学下第三单元 圆柱与圆锥

第三单元、圆柱与圆锥自主学习一、情境导入1.在生活中有许多这种形状的物体,谁知道它们都是什么形状?这节课我们就一起来认识这样的形状。

2、板书课题:圆柱的认识二、引导自学(1)认识圆柱的面。

师:请同学摸摸自己手中圆柱的表面,说说发现了什么?师:指导看书,引导归纳。

(上下两个面叫做底面,它们是完全相同的两个圆。

圆柱的曲面叫侧面。

)(2)认识圆柱的高(3)圆柱的侧面展开是什么图形,一、前置性作业1、我们以前学过的平面图形有哪些?,学过的立体图行有 .3、观察书中第17页上的物体,这类物体的名称叫().4、举例:生活中有哪些圆柱形的物体?5、求下面各圆的周长:(1)半径是1米(2)直径是3厘米二、探究新知⒈认识圆柱各部分名称及特征。

(1)拿一个圆柱形的实物,看看圆柱有哪几部分组成?自学课本18页。

我的发现:圆柱有两个和一个组成。

圆柱的两个圆面叫做;周围的面叫做;两底面之间的距离叫做。

(2)圆柱有什么特征?小组内说说自己的想法。

圆柱的特征:圆柱的两底面都是,并且大小;圆柱的侧面是;有条高,长度都相等。

⒉认识圆柱的侧面、底面及之间的关系。

圆柱的侧面展开后是什么形状?剪一剪再展开。

第二课时圆柱的表面积主备:胡佳佳辅备:张昌华、盛进仕、杨文静、周正龙自主学习一、导入回忆圆柱的特征二、引导自学1、组织学生预习新知独立完成“自主学习”的练习。

2、自我检测一、知识铺垫⒈复习圆柱的特征:圆柱是由哪几部分组成的?圆柱的上、下两个底面是两个什么样的圆?什么是圆柱的高?高有多少条?围成圆柱的曲面叫圆柱的什么?圆柱的侧面沿着高展开后是什么图形?长方形的长、宽与圆柱有什么关系?2.拿出自己找到的圆柱体,说一说它的组成吧。

3.那我们做这样一个圆柱体,至少需要多大的纸呢?也就是求什么?请用自己的话简单说一说。

二、自主探究⒈圆柱的表面积的意义及计算方法。

(1)圆柱表面积含义。

圆柱体的表面积指的是什么?拿着你的圆柱体小组内说一说吧。

我的想法:圆柱的表面积是指圆柱的和两个的面积之和。

北师大版数学六年级下册全册ppt课件 (完整)

北师大版数学六年级下册全册ppt课件 (完整)
北师大版数学六年级 下册全册
第一单元 圆柱与圆锥 第二单元 比例 第三单元 图形的运动 第四单元 正比例与反比例
数学好玩 整理与复习 总复习
北师大版 六年级下册 第一单元 圆柱与圆锥
旋转后会得到哪个图形? 想一想,连一连。
圆柱
圆台

圆锥
操作活动:
准备两块橡皮泥,捏成圆柱和 圆锥;用看、滚、剪、切等多种 方式探索圆柱和圆锥的特征。
1.上面一排图形旋转后会得到下面的哪个图形?
2.找一找下面图中的圆柱或圆锥,说说圆柱 和圆锥有什么特点。
如果小麦堆的底面半径为2m,高为1.5m。小麦堆 的体积是多少立方米?
1 3.14 22 1.5 3 =6.28(m3)
答:小麦堆的体积是6.28m3。
1.下图中,圆锥的体积与哪个圆柱的体积相等?说 说你是怎么想的。
北师大版 六年级下册 第二单元 比例
12:6=8:4
内项 外项
12 = 8 64
6:4=3:2
6=3 42
3:2=15:10 2:3=10:15 10:2=15:3 2:10=3:15
1.
⑴分别写出图中两个长
方形长与长的比和宽
与宽的比,判断这两
个比能否组成比例。
⑵分别写出图中每个长
方形与宽的比,判断
新的发现。
12×4=6×8
6×2=4×3
3×10=2×15
10×3=2×15 淘气的发现你同意吗?再写出几个比例验证一下。 在比例里,两个内项的积等于两个外项的积。
3.应用比例内项的积与外项的积的关系,判断下面 哪几组的两个比可以组成比例,并写出组成的比 例。
4.根据下面的两组乘法算式,分别写出两个不同的 比例。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,

人教版六年级数学下册第三单元第11课《整理和复习》课件

人教版六年级数学下册第三单元第11课《整理和复习》课件
少立方分米?(结果保留一位小数) 24÷12=2(dm) 3.14×(2÷2)2×2×13≈2.1(dm3) 答:削成的圆锥的体积约是 2.1 dm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。

2022春六年级数学下册一圆柱和圆锥复习课件北师大版

2022春六年级数学下册一圆柱和圆锥复习课件北师大版
第二十九页,编辑于星期六:三点 三十五分。
典型例题分析
分析:圆锥沿底面直径经过顶点切开后表面积比原来增加了两个三角形的面
积,这两个三角形的底是圆锥的底面直径,高是圆锥的高。先求出每个三角形的面
积,已知三角形的高是6cm,根据三角形的面积公式求出底,继而求出圆 锥的底面半径。
第三十页,编辑于星期六:三点 三十五分。
第十八页,编辑于星期六:三点 三十五分。
典型例题分析
解答:圆①的周长:3.14×4=12.56(cm) 圆②的周长:3.14×5=15.7(cm) 圆③的周长:3.14×6=18.84(cm)
比较:圆②的周长等于长方形的长。
答:选择圆②作底合适。
第十九页,编辑于星期六:三点 三十五分。
典型例题分析
2
2
(2)圆锥的体积
圆锥体积的计算公式为:圆锥的体积=底面积×高× =1 Sh1,因为S
=πr ,所以V=πr h。
2
2
33
第十二页,编辑于星期六:三点 三十五分。
复习驿站
(3)如何区分是求圆柱的体积、容积还是求表面积
求做圆柱形状的物体需要的材料、圆柱形状的墙壁抹水泥面积的多少,或贴墙需 要多少瓷砖等,这样的表述是求表面积。还有一个判定方法就是看所求问题的单位,所 求问题的单位是平方的,则求表面积;所求问题的单位是立方、升、毫升的,则求体积 。求圆柱能装下多少的问题,就是求容积,用体积公式。
2
3
答:这个粮囤大约能装稻3 谷7.95立方米。
第十五页,编辑于星期六:三点 三十五分。
复习驿站
8.圆锥、圆柱的体积关系
(1)等底(面积)等高时,圆锥的体积是圆柱体积的 ,1 即圆锥的体积=
圆柱的体积× 。1

人教版六年级下册数学第三单元 《圆柱与圆锥》教材分析(课件)

人教版六年级下册数学第三单元 《圆柱与圆锥》教材分析(课件)
系; 3、解决有关的实际问题,培养解
题的能力。
关键课例:圆柱的认识 例2 圆柱的侧面展开图
有效开展活动
让侧面“展开”的慢一些
先猜一下,圆柱的侧面展开图是什么形状的? 验证,动手剪
再把展开的图形围成圆柱,探究展开图与圆柱间的关系。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测。在 通过实验和推理验证,培养学生良好的学习和思考习惯。例如教材联系长方 体体积公式,鼓励学生估计圆柱体积的计算方法。联系圆柱体积计算公式, 鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是是按照引出问题—— 联想,猜测——实验探究——导出公式的思路设计的。在猜测的基础上进行 实验和推理。使学生受到研究方法和思维方式的训练,发展和提高学生自主 学习的能力。
第三单元《圆柱和圆锥》
—— 教材分析
人教版 六年级 数学 下册
课标中“图形与几何”的要求
空间观念
(核心)
空间观念主要是指对空间物 体空或间图观形念的主形要状是、指大对小空及间位物置体关或 系图的形认的识形。状,大小及位置关系的 认识。能能够够根根据据物物体体特特征征抽抽象象出出几 何几图何形图,形根,据根几据何几图何形图想形象想出象所出 描所述描的述实的际实物际体物;体想,象想并象表并达表物达 体物的体空的间空方间位方和位相和互相之互间之的间位的置位 关置系关;系感。知感并知描并述描图述形图的形运的动运和动 变和化变规化律规。律,空间观念有助于理 解现空实间生观活念中有空助间于物理体解的现形实态生与 活结中构空,间是物形体成的空形间态想与象结力构的,经是验 形成空间想象基力础的。经验基础。
旋转 视图还原 抽象 切和裁 展开和折叠
等积变换
圆柱和圆锥的体积
圆柱和圆锥的特征

数学六年级下册圆柱与圆锥3容积第1课时计算容积PPT

数学六年级下册圆柱与圆锥3容积第1课时计算容积PPT
【教材37页练一练第3题】
1米=10分米 V = πr2h = 32×10×3.14 =90×3.14=282.6( dm3 )
282.6dm3 =282.6L 282.6×0.74≈209(千克) 答:这个圆柱形油桶大约能装209千克汽油。
6. 一个圆柱形奶桶,它的底面内直径是40厘米,高是50厘米。
V = πr2h = 102×(25-10)×3.14 = 1500×3.14 = 4710(立方厘米)
4710立方厘米 = 4.71立方分米 = 4.71升 答:这个杯中有4.71升的水。
3. 轩轩家来了两位客人,妈妈冲了800 mL的果汁。如果倒在 底面直径为6 cm,高为12cm的玻璃杯中,轩轩和两位客人各 一杯,够吗?(壁厚忽略不计)
一个保温杯,从外面测量的尺寸如图所示。
(1)这个保温杯的体积是多少立方厘米? (2)已知保温杯壁的厚度是0.8厘米。这个保温杯能装 多少毫升的水?(得数保留整数)
当保温杯装满水时,水的体积就是这个保温杯的容积。
小组讨论
1. 求保温杯的容积与保温杯的体积相同吗?
外高度 18cm
2. 要求保温杯的容积需要知道什么?怎么求?
外高度 18cm
外直径7cm
内直径: 7-0.8×2=5.4(厘米)
内高度: 18-0.8×2=16.4(厘米)
容积: (5.4÷2)2×16.4×3.14 = 119.556×3.14 ≈ 375(立方厘米)体积单位 = 375(毫升) 容积单位
1立方厘米=1毫升
外高度 18cm 外直径7cm
计算容积和计算体积有什么相同点和不同点?
1升水有多少千克?
1000毫升=1000克 1升=1000毫升
容积:375毫升

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(打结处大约用彩带15厘米) (1)S=2πrh+2πr²=2×3.14×15×20+2×3.14×15²=3297(cm²)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知

苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件

苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?

六年级数学2.圆柱的展开图ppt课件

六年级数学2.圆柱的展开图ppt课件
底面
底面
精选ppt课件
10
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
11
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
12
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
13
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
14
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
15
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
16
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
17
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
底面
精选ppt课件
18
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
)相高等时,侧面展
精选ppt课件
22
底面
高 底面的周长 底面
精选ppt课件
23
底面 —— 两个,圆形, 大小相同,互相平行。

圆柱体
侧面 —— 一个,曲面, 展开后是一个长方形 或正方形或平行四边 形。
高 —— 无数条,一样长,
精选ppt课件
24
判断:对的打“√”,错的打“×”。
①圆柱体的高只有一条。( ×)
精选ppt课件
5
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
精选ppt课件
6
2 圆柱的侧面展开后是什么形状?剪一剪,再展开。
精选ppt课件
7

人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件

人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件
答:这座房子的体积是31.4m3。
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。

这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ

六年级数学下册《圆柱和圆锥的认识》课件

六年级数学下册《圆柱和圆锥的认识》课件
定积分法
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧

北师大版六年级数学下册《全册》全套课件ppt

北师大版六年级数学下册《全册》全套课件ppt
北师大版
六年级
(下册)
[精品]
第一单元 圆柱与圆锥
点动成线
线动成面
面动成体
旋转后会得到哪个图形? 想一想,连一连。
圆柱
圆台

圆锥
1.上面一排图形旋转后会得到下面的哪个图形?
o’底面
侧高 面
o 底面
侧高 面
o 底面
知识小结
圆柱:
1.圆柱的上下两个面都是圆柱的底面,是圆形:曲面叫做圆柱的侧面。展开 图是长方形。
12:6=8:4
6:4=3:2
内项 外项
12 = 8 64
6=3 42
比例 定义:表示两个比相等的式子叫比例;
3:2=15:10 2:3=10:15 10:2=15:3 2:10=3:15
1.
⑴分别写出图中两个长
方形长与长的比和宽
与宽的比,判断这两
个比能否组成比例。
⑵分别写出图中每个长
方形与宽的比,判断
回想一下怎样计算长方体正方体的体积呢?
h S
h S
V= Sh
长方体=长×宽×高
正方体=棱长×棱长×棱长
h S
V= Sh
圆柱的体积=底面积×高 字母:V=Sh


化ห้องสมุดไป่ตู้





底面
半径
圆柱底面周长的一半
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升)
1 19.625 3.6 =23.55(m3) 3
5.张大伯家有一堆小麦,堆成了圆锥形,张大伯量 得它的底面周长是9.42m,高是2m,这堆小麦的 体积是多少立方米?如果每立方米小麦的质量为 700kg,这堆小麦约重约重多少千克?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)让学生在操作中理解圆柱、圆锥的 体积 。
22
◆练习教学建议
23
◆练习教学建议
24
回顾整理 ◆教学建议:
(一)自主式回顾整理。 (二)在教师的引领下回顾整理。
25
◆练习教学建议
26
综合应用
◆教学建议:
一、让学生课前调查了解水结成冰,冰 化成水,体积发生了怎样的变化,变化的 数据是多少。
二、结合学生的交流,讨论实验的方法、 步骤,准备实验材料。
三、实验。 四、通过计算交流实验结果,提高学生 的综合学习和研究能力。
27
4
三、单元教学内容

主题
1 冰淇淋盒
知识点
圆柱和圆锥的认识
2 制作圆柱形纸筒 圆柱的侧面积和表面积
3 冰淇淋包装盒容积 圆柱和圆锥的体积
5
四、单元编写特点
1.打破了传统的知识编排顺序,加强了圆柱和圆 锥的对比和联系。
同时安排圆柱和圆锥的认识,可以通过对圆柱和圆 锥模型的观察、操作和比较,更清晰地了解它们之间 的联系和区别,发现并掌握圆柱和圆锥的特征。圆柱 与圆锥体积安排在一个窗,在探索时给予启发,引导 学生用实验的方法探索圆锥和圆柱体积之间的关系。
15
◆练习教学建议
16
◆练习教学建议
17
◆练习教学建议
18
◆练习教学建议
19
◆练习教学建议
20
信息窗三:冰淇淋包装盒容积
◆教学内容:圆柱和圆锥体积。 ◆例题的设置:
第一个红点:圆柱的体积。
第二个红点:圆锥的体积。
21
◆信息窗教学建议
(一)启发诱导学生,回忆以往解决数学 问题的思想和方法,通过猜想和操作, 找到圆柱体积的计算方法,引领学生实 现方法的迁移。
6
四、单元编写特点
2.体现从猜想到验证的学习过程,渗透研 究数学问题的思想与方法。
7
五、单元课时统筹
圆柱圆锥认识 圆柱表面积 圆柱圆锥体积 回顾整理
探索+练习: 探索、练习: 圆柱体积探索、2课时
1课时
1课时
基本练习:1
课时
巩固练习: 圆柱体积巩固
1课时
练习:1课时
圆锥体积探索、 基本练习:1课 时
巩固: 2课时 8
六、信息窗教学建议
信息窗一:冰淇淋盒
◆教学内容:圆柱和圆锥的特征 。 ◆信息窗介绍:两种不同形状的冰淇淋包装盒 。 ◆例题的设置: 第一个红点:初步认识圆柱和圆锥。 第二个红点:圆柱和圆锥的特征 。
9
◆ห้องสมุดไป่ตู้息窗教学建议
(一)注重学生已有的生活经验 。 (二)多给学生提供一些动手操作的
义务教育课程标准实验教科书(五四分段)青岛版数学五年级下册
三、冰淇淋盒有多大
_____圆柱和圆锥
1
一、教材地位
前接知识 新知识 后续知识
圆、长方体、正方 圆柱和 第三学段的几
体等有关知识
圆锥
何知识(立体几
何、三视图等)
2
二、单元教学目标
1.在现实情境中,通过观察、操作、比 较等活动,认识圆柱和圆锥,掌握它们 的特征。
2. 结合具体情境,通过探索与发现,理 解并掌握圆柱的侧面积、表面积和圆柱、 圆锥体积的计算方法,并能解决简单的 实际问题。
3
二、单元教学目标
3.经历探索圆柱、圆锥有关知识的过程, 进一步发展空间观念。
4.在观察与实验、猜测与验证、交流与 反思等活动中,初步体会数学知识的产 生、形成与发展的过程,体验数学活动 充满着探索与创造,初步了解掌握一些 数学思想方法。
机会。 (三) 注重多媒体的应用,培养学生的 空间观念。
10
◆练习教学建议
11
◆练习教学建议
12
◆练习教学建议
13
信息窗二:制作圆柱形纸筒
◆教学内容:圆柱的侧面积和表面积。
14
◆信息窗教学建议
(一)加强直观操作,让学生直观理解圆 柱的表面积与侧面积 。 课前操作 课中操作
(二)注重几个概念的区分。 侧面积、表面积、底面积等
相关文档
最新文档