4-3交流绕组的磁势
交流绕组的磁势
选用高磁导率材料
采用高磁导率的材料制作绕组,提高磁势的效率。
优化磁路设计
合理设计电机磁路,降低磁阻,提高磁势的利用 率。
3
提高绕组利用率
优化绕组排布,提高绕组的填充系数,从而提高 磁势效率。
减小磁势损耗的方法
采用低损耗材料
01
选用低损耗的磁性材料和绝缘材料,降低磁势过程中的能量损
失。
优化冷却系统
02
转。
磁势波形
交流绕组的磁势波形是正弦波, 其频率与电源频率一致。磁势的 幅值和相位角取决于绕组的匝数
和电流的相位。
磁势平衡
在电动机运行过程中,磁势在空 间中旋转并保持平衡,以减少磁 场能量的损失和减小电动机的振
动。
发电机的工作原理
01
发电机的磁势
发电机中的磁势是由直流励磁电流产生的,该电流通过励磁绕组产生磁
磁势的波形
正弦波
在理想情况下,交流绕组的磁势波形 应为正弦波。正弦波具有连续、平滑 的特性,能够减少谐波干扰和能量损 失。
畸变波形
实际应用中,由于各种因素的影响, 交流绕组的磁势波形可能会出现畸变, 如波形失真、脉冲等。畸变的磁势波 形可能导致电机性能下降、振动和噪 声等问题。
磁势的频率与相位
频率
磁势大小
三相绕组的磁势大小取决于各相绕组 的匝数、电流有效值以及磁场频率。
多相绕组的磁势
磁势波形
多相绕组产生的磁势波形为多相正弦波。
磁势大小
多相绕组的磁势大小取决于各相绕组的匝数、电 流有效值以及磁场频率。
磁势特点
多相绕组的磁势具有更高的对称性和稳定性,适 用于大型电机和变压器的设计。
03
交流绕组磁势的特性
场。发电机的磁势与发电机转子的转速和励磁电流的频率有关。
第4章 交流绕组—磁动势讲解
5
基波磁动势表达式
f y1(t, ) Fy1 cos 幅值 Fy1 0.9NcIc sin t
基波磁动势沿气隙圆周有p个完整的正弦波,极对数为p 例如Z=12,p=2的三相单层绕组。q=1,每相有2个整距线圈。
3
将气隙圆周展开,得到磁动势沿圆周的空间分布波形如图所 示。气隙圆周某点的磁动势表示由该定子磁动势所产生的气 隙磁通通过该点气隙的磁压降。
磁动势波形为矩形波。当 线圈电流i随时间按正弦规
律交变时,矩形波的高度 为
Fy
Nci 2
2 2
NcIc
sin
t
矩形波的高度和正负随时 间变化,变化的快慢取决 于电流的频率。
fA3 Fm3 sin t cos 3 fB3 Fm3 sin( t 120 ) cos 3( 120 ) fC3 Fm3 sin( t 240 ) cos 3( 240 )
f3 fA3 fB3 fC3
Fm3[sin t sin( t 120) sin( t 240)]cos3 0
② 合成磁动势基波的转速与三相电流的频率和绕组的极对 数有关;
③ 当某相电流达到最大值时,合成磁动势的波幅刚好转到 该相绕组的轴线上;
④ 电流在时间上经过多少角度,合成磁动势在空间上转过 相同的电角度;
⑤ 旋转磁动势由超前相电流所在的相绕组轴线转向滞后相 电流所在的相绕组轴线。改变电流的相序,则旋转磁动 势改变转向。
13
两个单层分布绕组产生的磁动势如上述分析,均为阶梯波。
第4章 交流电动机的磁动势、绕组和感应电动势
60 f p
三相笼形异步电机和三相绕线式异步电动机
4.1 交流电机绕组产生的磁动势
定子绕组: 安放在定子铁心
槽里的交流电
枢绕组。
线圈
交流绕组的一些基本量
(1)电角度与机械角度 • 电机圆周在几何上分成 360°,这个角度称为机
械角度 • 若电机磁场在空间按正弦规律分布 • 当有导体经过 N、S 一对磁极时 • 导体中所感应(正弦)电动势的变化为一个周期,
1t
)
121NNy 2
y
2I cos1t 2I cos1t
2
2
3
2
2
4.1 交流电机绕组产生的磁动势
4.1.1 单相集中整距绕组的磁动势
4. 磁动势的幅值随时间变化
• 时间不同,磁动势的幅值大小也不同,磁动势的 幅值在随时间交变。(P74 图4-2)
• 或者可以把这种交变称为脉振。 • 这种不能移动只能脉振的磁动势,叫脉振磁动势。
磁动势以傅氏级数展开后的表示式为:
f ( ,1t) f1 f3 f5...
41
2
2
I1N1 p
c os1t
cos
1 3
4
1 2
2
I1N1 p
c os1t
cos3
1 4 1
5 2
2
I1N1 p
c os1t
cos5
...
公式中只列出了基波、3次和5次谐波,还有7次、9 次等高次谐波。
图4.4 矩形波磁动势的基波及谐波分量
fy
X
A2
X
O
1
2 iN y
a
A
X
2
4.1 交流电机绕组产生的磁动势
交流电机的绕组、电动势和磁动势
N极面
S极面
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N
NS
S
N
S
A
X
单层绕组的特点: (1)最大并联支路数等于极对数; (2)不能利用短距绕组消除高次谐电势和磁势; (3)线圈数少,绕线和嵌线的工时少; (4)无层间绝缘,下线方便,槽利用率高;
YA Z B
C
X
例 3:Q=36,2P=4,绘制 a=1的三相单层交叉式 绕组展开图。
1、计算绕组参数; 2、画槽电动势星形图,划分相带; 3、连接A相绕组,画A相绕组展开图; 4、画B、C相绕组展开图。
例 4 :Q=24;2P=2;要求绘制三相单层同心式绕组。
18槽2极单层同心式绕组(a=1)
A
B
C
X
Y
Z
24 槽 4 极单层整距绕组
绕组结构参数? y=?τ=? q=? α=?
24槽4极单层整距绕组
三相4极24槽单层整距绕组
两个图的区别? 三相4极24槽单层链式绕组
判断:绕组的结构型式及绕组结构参数
τ
τ
τ
τ
1 2 3 4 5 6 7 8 9 101112131415161718192021222324
同步电机
异步电机
同步电机:多用作发电机,也用作电动机,可改 变电网功率因数。
异步电机:主要用作电动机,只有特殊场合才用 作发电机。
两种类型的交流电机涉及三个共同部分:
◆交流绕组的基本结构 ◆交流绕组中感应的电动势 ◆交流绕组产生的磁动势
5.1 交流电机的基本工作原理
一、同步发电机的基本工作原理
二、异步电动机的基本工作原理
第七章 交流绕组的磁动势
F m 2 F q k p 0 .9 2 qc N k p k d I c 0 .9 2 qc N k N I c
单相脉振磁势的幅值表达式
• 为了统一表示相绕组的磁势,引入每相电 流I1,每相串联匝数N1等概念。
Iy
I1 a
Fp10.9(2qNy)Iykqky
对双层绕组:
2.振幅 合成磁势的振幅为每相脉动磁势振幅的3/2倍。
3.转速 角速度ω=2πf(电弧度/s)
n1=f/p(r/s)=60f/p (r/min)同步转速,基波转速。 4.幅值位置合成磁势的振幅的位置随时间而变化,出现在
ωt-x=0处。当某相电流达到最大值时,旋转磁势的波 幅刚好转到该线绕组的轴线上
5.旋转方向 由超前电流的相转向பைடு நூலகம்后电流的相
之间相差电角度
也相当于分布
sin q
kd1
q sin
2
2
•相当于单层绕组的分布情况
kp1 cos 2
分析:
• 双层绕组磁势的基波振幅:
F m 1 2 F q 1 k p 1 0 . 9 2 q c k p 1 k N d 1 I c 0 . 9 2 q c k N 1 N I c
脉动磁势分解成两个旋转磁势
脉动磁势波的节点和幅值的位置是固定不变的。
基波分量
F m 1 s t s i x n 1 2 i F m 1 c n t o x 1 2 F m 1 c s t o x s
• 在空间按正弦规律分布随时间按正弦规律变化的 脉动磁势可以分解为两个旋转磁势分量
改变旋转磁场转向的方法:调换任意两相电源线(改变 相序)
问题:
1、若额定负载的星形旋转电机突然断了一相,电机会发生什么变化?
第六篇 电动势及磁通势
• 三相共六个旋转磁势: 三相共六个旋转磁势: 六个旋转磁势
1 1 π π f A1 = F 1 cos(ωt − x) + F 1 cos(ωt + x) φ φ 2 2 τ τ 1 1 π π fB1 = F 1 cos(ωt − x) + F 1 cos(ωt + x −240°) φ φ 2 2 τ τ 1 π 1 π fC1 = F 1 cos(ωt − x) + F 1 cos(ωt + x −120°) φ φ 2 τ 2 τ 2012-1-4
2012-1-4
2
一 交流绕组
三相对称绕组: 三相对称绕组: 对三相电机来说, 对三相电机来说,为了保持电 气上的对称, 气上的对称,每相绕组所占槽数应 该相等、且均匀分布, 该相等、且均匀分布,空间互差 1200电角度,各相绕组参数一样。 电角度,各相绕组参数一样。 作用: 作用: * 通入电流 磁场(电动机) 通入电流→磁场 电动机) 磁场( * 磁场与定子绕组切割 电势 电 磁场与定子绕组切割→电势 电势→电 发电机) 流(发电机)
2012-1-4 4
交流绕组的基本术语 空间电角度与机械角度 机械角度:电机圆周在几何上分 机械角度 电机圆周在几何上分 成360° ° 空间电角度:电机里一对主磁极 空间电角度 电机里一对主磁极 表面所占的空间距离为360°。 表面所占的空间距离为 ° 有: 电角度= × 电角度=p×机械角度 元件: 元件:构成绕组的线圈为绕组的 元件(单匝和多匝) 元件(单匝和多匝)
2012-1-4 5
交流绕组的基本述语 线圈:为单匝或多匝串联, 线圈:为单匝或多匝串联,每个 线圈一个首端、 线圈一个首端、一个末端两个引 出线 相带: 相带:每极面下每相绕组所占范 围(60度) 度 Z • 每极每相槽数: q = 每极每相槽数:
交流绕组的磁动势
定、转子旋转磁场:
A Z
旋转方向相同
X
转速相等
定、转子旋转磁场在空间保 持相对静止——同步
B
• 3、在产生一定大小的电动势和磁动势,且 保证绝缘性能和机械强度可靠的条件下,尽 量减少用铜量。
• 4、制造工艺简单、检修方便。
C X
B
转子绕组又称励磁绕组,
Y
C
A
X
起励电源
图1.18 自并励系统原理电路图
Z
B
励磁绕组中流过直流电流,产生的磁场称励磁磁场或主极磁场,
相对于转子静止,随转子一起转动,相对于定子转速为转子转速n,
在随转子一起转动的过程中,定子三相绕组感应对称的电动势, 电动势的相序由转子的转向决定, 频率由转速决定, f pn
60
• 1、导体电动势
• 2 、整距线匝电动势 y1= τ
Ec1 2.22 f 1 Et1 4.44 f 1
3、短距线匝电动势有效值y1< τ Et1( y1 ) 4.44k y1 f 1
对于三相绕组,当流过对称的三相电流,将产生一个旋转磁动势
Y A
Z
C X
B
定、转子磁动势之间的关系
转子磁场旋转,
定子三相绕组感应对称的电动势, 电动势的相序由转子的转向决定,
定子三相合成旋转磁场
Y
C
频率由转速决定,
f
pn 60
转向由三相电流的相序和绕组的空
间排列决定,
转速由频率决定,
n
60 f p
对于单相绕组,将产生一个脉振磁动势,
因为采用了短距和分布绕组,其各高 次谐波已被极大的削弱,
该脉振磁动势为,在时间上随电
流同频率脉振,在空间上每一时
交流绕组及其电动势和磁动势
•4.2三相双层绕组
•一、基本概念
•1.线圈(绕组元件):是构成绕组的基本单元。绕组就是线圈 按一定规律的排列和联结。线圈可以区分为多匝线圈和单匝线 圈。与线圈相关的概念包括:有效边;端部;线圈节距等(看 图)
•4.2三相双层绕组 •一、基本概念
•2.极距τ :沿定子铁心内圆每个磁极所占的范围
•3.线圈节距y:一个线圈两个有效边之间所跨过的槽数称为线 圈的节距。用y表示。(看图) •y<τ时,线圈称为短距线圈;y=τ时,线圈称为整距线圈; •y>τ时,线圈称为长距线圈。
4.谐波的弊害
⑴使电动势波形变坏,发电机本身能耗增加 ,η↑,从而影响用电设备的运行性能
• ⑵干扰临近的通讯线路
二、消除谐波电动势的方法
因为EΦv=4.44fυNRwvΦv所以通过减小KWr 或Φr可降低EΦr
1.采用短距绕组 2.采用分布绕组,降低。 3.改善主磁场分布 4.斜曹或斜极
4.5通有正弦交流电时单相绕组的磁动势
• 二、交流绕组的分类 • 按相数分为:单相、三相、多相
• 按槽内层数分为:单层(同心式、链式、交叉 式)、双层(叠绕组、波绕组)、单双层
• 每极每相槽数q:整数槽、分数槽
•4.2三相双层绕组 •双层绕组的主要优点(P113)
•一、基本概念
:
•1.线圈(绕组元件):是构成绕组的基本单元。绕组就是线圈
⑶谐波磁场的槽距角:dγ =γd
⑷谐波磁场的转速:nr = ns主磁极的转速( 同步转速)
⑸谐波感应电动势的频率:fv= pv* nv/60 = vp ns/60=vf1
⑹谐波感应电动势的节距因数kpv ⑺谐波感应电动势的分布因数kdv ⑻谐波感应电动势的绕组因数kwv= kpv kdv ⑼谐波电动势(相值)
第18讲 交流电机电枢绕组产生的磁通势汇总
cos
120
fC1
F1cos t
240cos
240
一、三相电枢绕组产生的磁通势
f A1 fB1
F 1cos tcos
F1cos t 120cos
120
fC1
F1cos
t
240 cos
240
其中,
F1
4
2 Nkdp1 I 2p
利用脉振波分解为两个行波,对上述三相的脉振磁通势分解为:
f A1
一、三相电枢绕组产生的磁通势
S
· S
A·
X
X
A
· · ·
N
· N
N
S
N
·
·
·
S
·
·
A1
·
A2
· A1
·
·
·
·A2 S
N
S
·
N
一、三相电枢绕组产生的磁通势
一、三相电枢绕组产生的磁通势
为了分析旋转磁动势的旋转方向,设三相对称电流按余弦规 律变化,U 相电流最大时为计时点,电流取首进尾出为正,电 流波形和各时刻旋转磁动势的位置如图所示:
第17讲 三相绕组的磁通势
一、三相绕组产生的磁通势 二、二相绕组产生的磁通势
回顾:单相绕组磁通势
回顾:单相绕组磁通势
一、三相电枢绕组产生的磁通势
1、基波磁通势
如图为简单的三相绕组在定子内表面的空间分布。直角坐 标的放置及坐标原点如图所示。用最简单的绕组说明问题, 也可以理解为三相对称的复杂绕组的简化。
二、两相电枢绕组产生的磁通势
(2)矢量法
画 t 0o瞬间的矢量图。线圈AX的电流为正的最大值时,产
生的正反转基波磁通势 F&A , F&A正好处于+A轴线上。BY线圈的 电流在过90°才能达到最大值,产生正反转基波磁通势
第4章交流绕组及其电动势和磁动势
波绕组的连接规律:把所有N极下属于同一相的 线圈依次串联起来组成一组,再把S极下属于同一 相的线圈依次串联起来,组成另一组,根据需要将 这两组串联或并联,就构成一相绕组。
3.连相绕组: 将属于同一相的2p个线圈组连成一相绕组,并
标记首尾端。
串联与并联,电势相加原则。 按照同样的方法 构造其他两相。
4.连三相绕组 将三个构造好的单相绕组连成完整的三相绕组
△接法或者Y接法
例:一台交流电机定子槽数Z=36,极数2p=4,并联支 路数a =2, y1=7,试绘制三相双层叠绕组展开图。
4.1.2异步电机的基本工作原理
1、电生磁:三相对称绕组通
往三相对称电流产生圆形旋转 磁场。
2、磁生电:旋转磁场切割
转子导体感应电动势和电流。
3、电磁力:转子载流(有功
分量电流)体在磁场作用下受 电磁力作用,形成电磁转矩, 驱动电动机旋转,将电能转化 为机械能。
V2
•
W1
•
n1 •
••nຫໍສະໝຸດ U1•U2Q
36
此角亦是相邻槽中导体感应电动势的相位差。
相带绕组:每 个相带各占 电角度。
三相双层绕组的槽电动势星形图
(Q 36,2 p 4)
相带
极 槽号 A
ZB X
C
Y
对
第一对极下 (1槽~18槽) 1,2,3 4,5,6 7,8,9 10,11,12 13,14,15 16,17,18
第二对极下 (19槽~36槽)19,20,21 22,23,24 25,26,27 28,29,30 31,32,33 34,35,36
上海电力学院电机学期末考试题库--交流绕组电动势和磁动势
绕组电势磁势一、选择1设同步电机稳定运行时,定子电枢电流产生的旋转磁势相对定子的转速为n a, 转子励磁电流产生的旋转磁势相对定子的转速为n b,贝u:(1) n a>n b;(2) n a<n b ;⑶ n a=n⑷都有可能,与电机的运行状态有关。
2当采用短距绕组同时削弱定子绕组中的五次和七次谐波磁势时,以下那一种绕组是我们应该选用的:⑴绕组跨距为(4 / 5 h ;⑵绕组跨距为(5 / 6 # ;⑶绕组跨距为(6 / 7 ;⑷绕组跨距为(7/3。
3交流绕组每相感应电势公式Ei= 4 . 4 4 f康林中的枷是:⑴磁通随时间交变的最大值;⑵一台电机的基波磁通量;4公式F=l. 3 5 是指:⑴一相的磁势振幅;⑵三相一对极的合成磁势振幅;⑶三相一个极的合成磁势振幅。
5由三相定子绕组基波电流产生的五次空间磁势谐波,它的转速是:⑴静止不动:⑵是基波磁场转速的1/5⑶等丁基波磁场转速;⑷五倍丁基波磁场转速。
6由三相定子绕组基波电流产生的七次空间磁势谐波,它产生的磁通切割定子绕组感应电势的频率是:⑴等丁零;⑵等于某波频率;⑶等丁基频的1/7 ;⑷等丁基频的七倍。
7三相异步电动机定子绕组做成分布及短距以后,虽然感应电势的基波分量有所减少,但是它带来的优点主要是:⑴改善了电势的波形;⑵可以增加某次谐波电势;⑶可以增加电机的额定转速;⑷可以改善磁势的波形。
8整数槽双层迭绕组最大并联支路数为a,极对数为p,它们之间的关系是:①am=2p ②am=□③am=O. 5op①〔6 0相带〕;②〔1 2 0相带〕9整数槽单层绕组的最大并联之路数为a m,极对数为p ,它们之间的关系是:①am=2p ②am=□③am=0. 5op①〔q为偶数〕;②〔q为奇数〕1 0整数槽双层波绕组的最大并联之路数为a m ,极对数为p ,最大并联支路数为:①2 p; ②P ;③2。
①〔y = 2r+!B寸〕;②〔y = 2rH寸〕1 1单层交流绕组中,每相申联匝数N i同每个线圈的匝数N y ,每极每相槽数q ,极对数p ,并联支路数a之间的关系是:①2 p q y^ a =N; ②p q y/a = N③ 2 p q y^^ = N; ④ p q^a = N12交流双层绕组中,每相申联匝数N同每个线圈的匝数by ,每极每相槽数q,极对数p,并联支路数a之间的关系是:① 2 p q " a =必; ② p q W a = N;③2 p q哭③=肢④pq Na = N。
第三篇 交流电机的绕组电动势和磁动势
答:幅值
单相绕组基波磁动势幅值大小:与一条支路匝数N、绕组系数kw1、磁极对数p及相电流 有关,其中N、kw1及p由构造决定, 由运行条件决定。
幅值位置:恒于绕组轴线上,由绕组构造决定。
第三篇交流电机的绕组电动势和磁动势
一、填空
1.一台50Hz的三相电机通以60 Hz的三相对称电流,并保持电流有效值不变,此时三相基波合成旋转磁势的幅值大小,转速,极数。
答:不变,变大,不变。
2.★单相绕组的基波磁势是,它可以分解成大小,转向,转速的两个旋转磁势。
答:脉振磁势,相等,相反,相等。
3.有一个三相双层叠绕组,2p=4, Q=36,支路数a=1,那么极距 =槽,每极每相槽数q=,槽距角α=,分布因数 =, ,节距因数 =,绕组因数 =。
11.一个整距线圈的两个边,在空间上相距的电角度是多少?如果电机有p对极,那么它们在空间上相距的机械角度是多少?
答:整距线圈两个边在空间上相距的电角度为 ;电机为p对极时,在空间上相距的机械角度为 。
12.★定子表面在空间相距 电角度的两根导体,它们的感应电动势大小与相位有何关系?
答;定子表面在空间相距 电角度的两根导体,它们的感应电动势的波形相同,其基波和各次谐波电动势的大小分别相等。基波电动势的相位差为 电角度,且空间上超前(沿转子转向空间位置在前)的导体,其基波电动势的相位是滞后的。
绕组短距时,—个线圈的两个线圈边中的基波和谐波(奇数次)电动势都不再相差 ,因此,基波电动势和谐波电动势也都比整距时减小。合理短距时,对基波,因短距而减小的空间电角度是较小的,因此基波电动势减小得很少;但对 次谐波,短距减小的则是一个较大的角度(是基波的 倍),因此,总体而言,两个线圈边中谐波电动势相量和的大小就比整距时的要小得多,因为谐波电动势减小的幅度大于基波电动势减小的幅度,所以可使电动势波形得到改善。
电机学第四章交流电机绕组的基本理论
1. 三相交流绕组的结构;
2. 三相交流绕组产生的磁势分析;
3. 三相交流绕组产生的感应电势分析; 是交流电机(感应电机和同步电机)的共同问题
4.1 交流绕组的基本要求
一、基本要求:
电气要求: 1、绕组产生的电动势(磁动势)接近正弦波 ---谐波分量少。 2、三相绕组的基波电动势对称 3、一定导体数下,产生尽可能大的基波电动势
从不过分消除基波和用铜考虑, 应选尽可能接近于整距
• 均匀原则:每个极域内的槽数(线圈数)要相等,各 相绕组在每个极域内所占的槽数应相等; • 对称原则:三相绕组的结构完全一样,但在电机的圆 周空间互相错开120电角度。
•电势相加原则:线圈两个圈边的感应电势应该相加; 线圈与线圈之间的连接也应符合这一原则。 • 如线圈的一个边在N极下,另一个应在S极下。
(2)、槽电动势的星形图
槽内导体感应电动势的相量图,亦称为槽电动势星形图。
600相带: 如图
以A相位例,由于 q 3,故A相共有12个槽 相带:每极下每相所占的区域。 A相带: 1、2、3线圈组( )与19、20、21( ) )
X相带:10、11、12 (
) 与28、29、30(
将四个线圈组按照一定的规律连接,即可得到A相绕组。
二、相电动势和线电动势大小
交流绕组合成 相电势:
E E E E
2 1 2 3 2 5
E 1 1 (
交流绕组线电势
星形
E 3 E 1
2 l1
) (
2
E 5 E 1
)
2
El E E
2 l5
3 E E
2 1 2 5
三角形
第四章交流绕组及其电动势和磁动势详解
2 Bav B1
Bav :平均磁密
f f E1 B1 2f B1l Bav l 1 2.22 f1 2 2 2 2
l f 2
E1 2.22 f1
1 :一极下磁通量
整距线圈的感应电动势Ec1 y1 则线圈的一根导体位于N极下最大磁密处时,另一根 导体恰好处于S极下的最大磁密处。所以两导体感应电势瞬时值总 是大小相等,方向相反,设线圈匝数Nc,则整距线圈的电势为
节距 线圈两边所跨定子圆周上的距离,用y1表示,y1应接近极距τ
=整距 Q y1 短距 = 2p 长距
槽距角 相邻两槽间的电角度
p 3600 Q
每极每相槽数
Q : 定子槽数
Q m:相数 p:极对数 q 2 pm 即每一个极下每相所占的槽数
2.1 槽电势星形图和相带划分
11 13 15 17 19 21
A
图4-8
X
单层链式绕组中A相的展开图 (2p=6,Q=36)
这种绕组主要用在q=偶数的小型四极、六极感应电动机中。如q 为奇数,则一个相带内的槽数无法均分为二,必须出现一边多, 一边少的情况。因而线圈的节距不会一样,此时采用交叉式绕组。
交叉式绕组 主要用于q=奇数的小型四极、六极电机中,采用不等距线圈。 三相四极36槽定子,绘制交叉式绕组展开图
E E 2E 4.44 fN E c1 1 1 1 c 1
短距线圈的电动势,节距因数 短距线圈的节距y1<τ,用电角度表示时
y1
180
E E E c1 1 1
180 y1 Ec1( N c 1 ) 2 E1 cos 2 E1 sin 90 2 y1 4.44 f sin 90 4.44 fk p1
交流绕组的电动势和磁动势
三相对称绕组在一对磁极中相带具有什么分布规律?
课程导入
课程导入
A-Z-B-X-C-Y
课程讲解
课程总结
课后作业
2023年4月25日星期二11时0分23秒
课程导入
课程导入
旋转磁场是交流电机工作的基础,在交流电机理论中有两种旋转磁场
1、机械旋转磁场
课程讲解
通过原动机拖动磁极旋转可以产生机械旋转磁场。
课程导入
课程讲解
课程总结
课后作业
用图解法分析——不同时刻三相合成磁动势
三相对称绕组通入三相对称电流,产生的
课程导入
基波合成磁动势是一个幅值恒定不变的圆
形旋转磁动势,它有以下主要性质:
课程讲解
(1)幅值是单相脉动磁动势最大幅值的3/2倍。
课后作业
Bm——磁通密度的最大值
Bav——正弦分布磁通密度的平均值, Bav=
2 Bm
一根导体电动势的有效值与电动势的频率和每极磁通量成正比,频率一定时,电动势
仅与每极磁通量的大小成正比。
二、线圈中的感应电动势
课程导入
1、整距线圈的电动势
课程讲解
课程总结
c1
E t Ec1-Ec2
Et
E c1 2.22 fΦ1
ky1 sin
y1
90
采用短距线圈主要为了削弱高次谐波,从而改善波形。
c2
三、线圈组的电动势
2、分布绕组
课程讲解
课程总结
课后作业
E q 4.44fqk y1Φ1
S
q个线圈为集中绕组
N
课程导入
S
N
1、集中绕组
交流绕组的磁动势
要点二
技巧
利用有限元分析、电磁仿真等工具进行设计优化,提高设 计效率。
设计实例分析与应用前景展望
实例
以某型电机为例,通过优化绕组磁动势设计 ,实现了电机性能的提升和能耗的降低。
前景
随着技术的不断进步,交流绕组磁动势的优 化设计将具有更广泛的应用前景,为电机行
业的发展注入新的活力。
06
交流绕组磁动势在电机中的应用案例分析
04
交流绕组磁动势的测量与计算方法
测量方法及原理
80%
电流测量法
通过测量绕组中的电流,结合绕 组的匝数和磁动势的计算公式, 得到磁动势值。
100%
磁通测量法
通过测量绕组周围的磁通量,结 合绕组的匝数和磁动势的计算公 式,得到磁动势值。
80%
霍尔效应法
利用霍尔效应原理,通过测量绕 组周围的磁场强度,结合绕组的 匝数和磁动势的计算公式,得到 磁动势值。
02
大小,实现电能的传输和分配。
• 分析评价:交流绕组磁动势在变压器中的应用能够提高变压
03
器的效率,降低能耗,同时保证变压器的稳定运行。
应用前景展望与挑战应对策略
应用前景展望
随着科技的不断进步和新能源的发展,交流绕组磁动势在电机中的应用将更加广泛,如 高效电机、永磁电机等领域。
挑战应对策略
针对交流绕组磁动势在电机应用中的挑战,需要加强技术研发和创新,提高电机的性能 和效率,同时加强电机的维护和保养,保证电机的稳定运行。
02
交流绕组磁动势的数学模型
磁动势的向量表示
磁动势的向量定义
磁动势是一个向量,其大小等于磁通 势的幅度,方向与磁通势的旋转方向 相同。
磁动势的向量运算
磁动势的向量可以通过加减、数乘等 运算进行变换,以满足不同应用场景 的需求。
电机学3交流绕组的电动势和磁动势
第五章 交流绕组和电动势 第六章 交流绕组的磁动势
李艳
第五章 交流绕组和电动势
5.1交流电机的基本工作原理及对绕组的要求 5.2三相单层集中整距绕组及其电动势 5.3三相单层分布绕组及其电动势 5.4三相双层分布短矩绕组及其电动势
第六章 交流绕组的磁动势
6.1单层集中整距绕组的磁动势
基波磁动势最大值为:
4 2 F NI 0 . 9 NI y 1 y y 2
整距绕组基波磁动势在空间按余弦分布,幅值位于绕组轴线, 空间每一点的磁动势大小按正弦规律变化——仍然为脉动磁动势。
单相脉动磁动势的分解
1 1 f(, t ) F c o s t c o s F c o s ( t ) F c o s ( t ) 1 1 1 1 2 2 + = f(, t ) + f(, t ) 1 1
5.4三相双层分布短距绕组及其电动势
短距线圈的电动势
E 4 . 4 4 f N Φ k y 1 ( y ) y 1 1 y 1
1
2 B m1 l
E y y 1 ( y τ ) 0 1 k s in ( 9 0 ) y 1 E τ y 1 ( y τ )
ห้องสมุดไป่ตู้
称为短距系数: 线圈短距时电动势 比整距时打的一个 折扣.
Z q 2 pm
• 7.相带:60度相带——将一个磁极分成m份,每份 所占电角度 120度相带——将一对磁极分成m份,每份 所占电角度 • 8.极相组——将一个磁极下属于同一相(即一个 相带)的q个线圈,按照一定方式串联成一组,称 为极相组(又称为线圈组)。 • 9.线圈组数 = 线圈个数/ q
交流绕组的磁动势(3)
A
X
动势空间矢量位于相绕组轴线上。
三相绕组可简化成空间上互差
B
C
120度的三个单层整距线圈。
9.2.5 基波脉振磁动势的分解
(1) 解析表达 f1 F1m cost cos f1 f1
1 2
F1m
cos(t
)
1 2
F1m
cos(t
)
A
A
A
(2) 矢量表达
F1
F1 F1
t 180
F1
F1
t 0
9.2.4 一相绕组的磁动势
(2) 结论
f
( )
(0.9 1
I
W p
kw
) cost
cos
① 单相绕组通入单相交流电流产生的磁动势即是空间
的函数,又是时间的函数。
② 谐波磁动势是指磁动势在空间上的谐波分布。
③ 基波与谐波磁动势的幅值均以通入电流的频率随时
间在空间脉振。
④ 基波磁动势仍可用空间矢量表示,为此需引入等效
绕组及相绕组轴线的概念。
9.2.4 一相绕组的磁动势
(3) 等效绕组及相绕组轴线
A
f1
(0.9
I
W p
kw1) cost cos
W kW1
A
X
等效绕组:在p=1且产生磁动势
相等的前提下,以一个单层整距线
A
圈代替一相短距、分布绕组。
等效的单层整距线圈平面中法
W kW1 线即为相绕组轴线,且基波脉振磁
)]
A
B
f B1
F1m 2
[cos(t
)
cos(t
240)
]
fC1
F1m 2
第四章 磁动势
p
5 产生旋转磁动势的条件: 必须有两个或两个以上的绕组; 绕组的轴线在空间上必须错开(但不能互差0或180 ); 绕组内的电流在时间上必须有相位差(但不能互差0或 180 )。 6 对称m相绕组通过对称m相电流时,所生成的磁动势是一 个圆形旋转磁动势,转速为
n1 60 f1 p
• 单相绕组产生的谐波磁势也是正弦脉振磁势,时间上按 正弦规律脉振。
f F cosx cos t
3、单相绕组的磁动势
结论: 1)单相绕组的磁动势是一种空间位置上固定、幅值随时 间变化的脉振磁动势。 2)单相绕组的基波磁动势幅值的位置与该相绕组的轴线相重合。
3)单相绕组脉振磁动势中的基波磁动势幅值 F1 0.9 N1kW 1 I p v 次谐波磁动势幅值为 N1k wv 1
1 三相绕组的合成基波磁动势
f1 ( , t ) F1 cos(t ) 3 N1k w1 F1 F 1 F1 1.35 I 2 p
F 1 0.9 N1k w1 I p
t 0
f1 ( , t ) F1 cos
iA 2 I cost 2 I I Am
三相绕组的合成基波磁动势的性质及特点: 1 一个空间上正弦分布,幅值大小不变的圆形旋转磁动势 波。 2 合成基波磁动势的幅值是单相基波磁动势幅值的3/2倍。 3 若电流是正序A-B-C的,则磁动势波旋转方向是从A相转 向B相,再转向C相。 如果电流是负序A-C-B的,则磁动势波旋转方向是从A相 转向C相,再转向B相。 因此,如果要改变三相异步电动机磁场的旋转方向,只 要改变定子电流的相序,把定子绕组三个出线端的任意两 个(例如B端和C端)对调即可。 4 旋转磁场的电角速度在数值上等于定子电流的角速度, 其基波磁动势的同步转速 n 60 f1
三相绕组磁动势
三相绕组磁动势
在电力系统中,三相绕组磁动势是一个重要概念,它与电力传输和配电系统的正常运行密切相关。
三相绕组磁动势是指在三相交流电系统中,由于三相电流的相位差而产生的磁场动势。
三相电流是指在电力系统中由三个相位差120度的电流组成的电流。
三相电流在电力传输和配电系统中得到广泛应用,因为它具有许多优点,如功率传输效率高、电压稳定等。
然而,由于三相电流的相位差,会引起磁场的变化,进而产生磁动势。
三相绕组磁动势对电力系统的运行和稳定性具有重要意义。
在三相电网中,三相绕组磁动势的大小和相位差会影响电力设备的工作状态和电力传输的稳定性。
当三相绕组磁动势的大小和相位差不平衡时,会导致电力设备的负载不均衡,进而影响电力传输的可靠性。
为了保证电力系统的正常运行,需要对三相绕组磁动势进行合理控制和调节。
一种常用的方法是通过调节电力设备的参数,如电流大小和相位差,来控制磁动势的大小和相位差,从而实现电力系统的稳定运行。
三相绕组磁动势还与电力系统的故障检测和保护有关。
当电力系统中发生故障时,如短路或过载,会导致三相电流的不平衡,进而引起三相绕组磁动势的变化。
通过监测和分析三相绕组磁动势的变化,
可以及时发现电力系统的故障,并采取相应的保护措施,以防止故障的进一步扩大。
三相绕组磁动势在电力系统中具有重要作用。
它与电力传输和配电系统的正常运行、稳定性以及故障检测和保护密切相关。
通过合理控制和调节三相绕组磁动势,可以确保电力系统的安全稳定运行。
电力系统的运行人员和维护人员需要对三相绕组磁动势的原理和调节方法有深入的了解,以保证电力系统的可靠供电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 f c N ci N c I c sin t Fcm sin t 2 2
矩形波磁动势可能分解为基波和一系列高次谐波: 3 f c ( x , t ) Fc1 sin t cos x Fc 3 sin t cos x ... Fc sin t cos x ...
一、单相绕组的脉振磁势
1、整距线圈的磁势
一台两极气隙均匀的交流电机,一个整距 绕组通入交流电流,线圈磁动势在某瞬间的分 布如图,由全电流定律得:
Hdl i N
c
i
忽略铁心磁阻,磁动势完全降落在两 个气隙上.每个气隙的磁动势为:
空间分布为矩形波,随时间按正弦规律变 化.变化频率为电流频率。 空间位置不变而幅值和方向随时间变化的磁动势称为脉动磁 动势。
(2)短距线圈组磁势
图中,给出了一个 q 3, 9, y 8 的双层短距绕组 在一对极下的属于同一相两个线圈组。可见,上下层导 体移开一个距离 ,即节距缩短而对应的电角度。
由于绕组所建立的 磁势的大小和波形 只取决于导体的分 布情况和导体中电 流的方向,而与导 体间的连接次序无 关。因此可将上层 绕组边等效的看成 一个单层整距分布 线圈组;下层绕组 边等效的看成另一 个单层整距分布线 圈组,而上下两个 线圈组在空间上相 差 电角度。
(3)单相绕组脉振磁势
每个极下的磁动势和磁阻构成一条分支磁路。若电机有p 对磁极,就有p条并联的对称分支磁路,所以一相绕组的基波 磁动势就是该绕组在一对磁极下线圈所产生的基波磁动势,若 每相电流为Ip:
Nkw 1 f p1 (x,t) Fp1 sin t cos x 0.9 I p sin t cos x p
不难看出,求整距线圈组合成磁势的方法与求线圈组电 势的方法相同,同样要引入一个基波分布系数kq1,相当 于由于线圈分布而造成的基波磁势的折扣系数。于是得 到整距线圈组基波磁势的最大幅值为:
Fqm1 qFcm1kq1 0.9(qNC I C )Kq1
式中基波分布系数:
k q1 q个线圈磁势矢量和 Fq1 2 2 q个线圈磁势代数和 qFC1 q 2 R sin q sin 2 2 2 R sin q sin q
每个线圈组是由若干个节距相等,匝数相同,依次 沿定子圆周错开同一角度(通常为一槽距角)的线 圈串联而成,下面按整距线圈组和短距线圈组两种 情况分别分析线圈组的磁势。
(1)整距线圈组磁势
以q=3的整距线圈组为 例。 每个线圈磁势大小相 等,不同的仅是各个 线圈在空间相隔 电 角度。所以q个线圈组 成线圈组时,把q个线 圈的基波磁势逐点相 加,可得合成磁势, 如图(a)。可见合成 磁势并不等于每个线 圈磁势的q倍,而是等 于个线圈磁势的矢量 和,如图(b)。
Fp1 2 Fq1k y1 0.9( 2 qNc ) k y1kq1 Ic
综合以上分析,绕组采用短距和分布后,其磁势 较整距和集中放置有所改变。 ①分布系数可理解为绕组分布排列后所形成的磁势 较集中排列时应打的折扣; ②短距系数表示线圈采用短距后所形成的磁势较整 距时应打的折扣; ③采用分布和短距后,可大大削弱谐波的影响,从 而改善磁势波形。
f c1 ( x , t ) Fc1 sin t cos x 基波磁动势最大值为:
Fc1 4
基波磁动势为:
2 N c I c 0.9 N c I c 2
整距绕组基波磁动势在空间按余弦分布,幅值位于绕组轴线, 空间每一点的磁动势大小按正弦规律变化——仍然为脉动磁动势。
2、线圈组的磁势
如图(a),每个线圈组都可用求整距线圈组磁势的方法求得其 基波磁势。如图(b)(c),短距分布线圈组的磁势,可如同求 电势一样引入短距系数来计入由于线圈短距对基波磁势的影响。
பைடு நூலகம்
于是,双层短距分布线圈组基波磁势的最大幅值为:
Fm1 2Fqm1k y1 2(0.9qNC IC )Kq1k y1 0.9(2qNC )KW1IC
即一个脉动磁动势可以分解成两个幅值大小相等的磁动势。
1 先分析 f ( x , t ) F p1 sin( t x ) 2
p1
取幅值点分析 t x 2 t 0时 , x ; 2 2 t 时 , x 0 ; 2 t 时 , x ; 2 2
第三节 交流绕组的磁势
在对称三相交流绕组中通入对称三相交流 电流时,会建立旋转磁场,旋转磁场对电 机的能量转换和运行性能都有很大的影响。 本节讨论三相旋转磁势的性质、大小和分 布情况。 为了分析三相绕组的旋转磁势,首先分析 单相绕组的磁势。
一、单相绕组的脉振磁势 二、三相绕组的基波合成磁势
单相绕组的基波磁动势是在空间按余弦规律分布, 幅值大小随时间按正弦规律变化的脉动磁动势。
单相脉动磁势分解:
1 1 f p1 (x,t) Fp1 sin t cos x Fp1 sin( t x) Fp1 sin( t x) 2 2 = f p+1 (x,t)+ f p-1 (x,t)
y1 0 K sin 90 其中: y1
(短距系数)
KW 1 K y1 K q1
(绕组系数 )
总结:
整距分布绕组的磁动势:
每个绕组由q 个线圈串联构成,依次在定子圆周空间错开 槽距角α,绕组的基波磁动势为q个线圈基波磁动势的空间矢量 和: Fq1 qFc1kq1
一组双层短距分布绕组的基波磁动势: 双层短距分布绕组的基波磁动势为两个等效绕组基波磁动 势的相量和,用短距系数计及绕组短距的影响:
f p1(x,t)
2
2
x
动画显示
综上分析
( 1 )随 着 时 间 推 移 f p1 ( x , t )朝x轴 正 方 向 移 动 , 故f p1 ( x , t )称 为 正 向旋转磁动势 。